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Abstract
The aim of this study is to provide a systematic assessment of the influence of the position on the arterial input function 
(AIF) for perfusion quantification. In 39 patients with a wide range of left ventricular function the AIF was determined using 
a diluted contrast bolus of a cardiac magnetic resonance imaging in three left ventricular levels (basal, mid, apex) as well as 
aortic sinus (AoS). Time to peak signal intensities, baseline corrected peak signal intensity and upslopes were determined 
and compared to those obtained in the AoS. The error induced by sampling the AIF in a position different to the AoS was 
determined by Fermi deconvolution. The time to peak signal intensity was strongly correlated (r2 > 0.9) for all positions with 
a systematic earlier arrival in the basal (− 2153 ± 818 ms), the mid (− 1429 ± 928 ms) and the apical slice (− 450 ± 739 ms) 
relative to the AoS (all p < 0.001). Peak signal intensity as well as upslopes were strongly correlated (r2 > 0.9 for both) for 
all positions with a systematic overestimation in all positions relative to the AoS (all p < 0.001 and all p < 0.05). Differences 
between the positions were more pronounced for patients with reduced ejection fraction. The error of averaged MBF quan-
tification was 8%, 13% and 27% for the base, mid and apex. The location of the AIF significantly influences core parameters 
for perfusion quantification with a systematic and ejection fraction dependent error. Full quantification should be based on 
obtaining the AIF as close as possible to the myocardium to minimize these errors.
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Abbreviations
3Ch	� 3-Chamber
AIF	� Arterial input function
AoS	� Aortic sinus
CAD	� Coronary artery disease

CMR	� Cardiovascular magnetic resonance
LVEF	� Left ventricular ejection fraction
LV	� Left ventricle
ROI	� Region of interest
MBF	� Myocardial blood flow
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Introduction

Perfusion cardiovascular magnetic resonance (perfusion-
CMR) is an established test for assessing the presence and 
severity of myocardial ischemia with a class IA indication 
in the most recent European Guidelines [1]. It has shown 
to be strongly correlated with fractional flow reserve [2, 3] 
and has recently been shown to allow for a safe noninvasive 
guidance of patients with moderate to severe pretest likeli-
hood for coronary artery disease (CAD) which is noninferior 
to invasive angiography supported by fractional flow reserve 
[4]. Increasingly fully quantitative methods are employed to 
determine myocardial blood flow (MBF) and flow reserve 
[5–8]. Perfusion quantification requires correction for the 
speed and amount of contrast agent arrival to the coronary 
arteries with the so called “arterial input function” (AIF). 
Since the AIF cannot be measured in the coronary arteries 
with CMR, the use of the same imaging plane as the perfu-
sion measurement itself (e.g. basal short axis view, mid short 
axis view or apical short axis view) or the use of the basal 
short axis plane for all other slices has become the accepted 
standard [9]. As the contrast agent bolus disperses during its 
passage through the circulation some influence of the loca-
tion of the AIF on the final results is to be expected.

However, the influence of the location on the AIF has 
not been systematically assessed. We determined the pres-
ence and extent of error induced by positioning the AIF 
in the basal, mid and apical left ventricle, rather than the 
aortic sinus (AoS) which is closest to the coronary ostiae. 
For quantification we used Fermi deconvolution. It is cur-
rently the most widely used convolution method.

Methods

In 39 patients with suspected nonischemic cardiomyopathy 
and a wide range of ejection fractions a weight adapted con-
trast agent bolus (0.00375 mmol/kg body weight in 95% 
saline, Gadovist R, Bayer AG, Leverkusen, Germany) was 
injected with a flow rate of 3 ml/sec followed by a 20 ml 
saline chaser (Accutron MR, Medtron, Saarbrücken, Ger-
many) (adapted from [10]). During the first pass of the con-
trast agent a 3-chamber view was obtained in mid-diastole 
of every heartbeat using the identical sequence usually used 
for stress-perfusion imaging in our Institute (Echo-Time: 
1.11-2.0 ms, Repetition-Time: 3.5 ms, Flip Angle: 35–50°, 
typical acquired spatial resolution 2. × 2.5 × 8 mm, 3 T, 90° 
saturation prepulse, with 100 ms prepulse delay ) with the 
patients holding their breath in expiration. Two proton den-
sity images per slice were acquired at the beginning of each 
acquisition for estimating the coil sensitivity profile [11].

All patients were scanned at 3 T (Skyra, Siemens AG, 
Erlangen, Germany) using 32-channel surface coils. All 
patients gave written informed consent and the study was 
approved by the local ethics committee (T1 Mapping Reg-
istry CMR Studie, Business Nr.: 1/16 and Decipher HFpEF, 
Business Nr.: 273/17).

Image analysis

Using MEDIS Suite 3.2 (Medis, Leiden, The Netherlands), 
three regions of interest (ROI) were placed in each dynamic 
of the first pass perfusion 3-chamber images at a basal, mid 
and apical level. These levels are defined as 25%, 50% and 
75% of the endsystolic distance from the mid of the mitral 
valve to the tip of the apical blood pool of the LV blood [12]. 
These positions are routinely used for the position of the 
short axis views for perfusion imaging in our Institute. Care 
was taken to avoid any papillary muscles. A fourth ROI was 
placed in the aortic sinus (AoS) at the level of the coronary 
arteries (Fig. 1). After baseline correction, signal intensity 
time curves were constructed for each ROI generating four 
AIFs. Time to peak was determined as the time between 
arrival of the contrast agent (signal increase above 2 SD 
of the contrast free images) and the time of the peak signal 
intensity. The change of signal from baseline to peak signal 
intensity was determined and noted as peak signal inten-
sity. Upslope was defined as the highest upslope of three 
consecutive heartbeats of the AIF. For quantitative analysis 
Fermi deconvolution was performed with R studio 1.2.5001 
using a least square fit based on the Levenberg-Marquardt 
algorithm.

Differences versus the AIF in the AoS were then calcu-
lated in [ms] for time to peak and in [%] for peak signal 
intensity and the upslope.

To calculate the error induced by the different locations, 
four average AIFs of all patients were calculated after base-
line correction and normalization for time to peak and peak 
signal intensity using the data obtained from the four sam-
pling positions. A single myocardial response function was 
created from a patient with an ejection fraction closest to the 
mean of all patients. The difference in MBF based on the 
AIF obtained in the three ventricular positions versus the 
AIF obtained in the AoS was calculated and provided in [%].

Ejection fraction was measured using automatically 
generated contours with final user correction and approval 
(SuiteHeart, NeoSoft, Pewaukee, Wi, USA). Patients were 
categorized into preserved ejection fraction (EF > 50%) or 
reduced ejection fraction (EF ≤ 50%).

Statistical analysis

The following statistical tests were used as appropriate: 
rANCOVA for repeated measurements with F-test for 
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significance, unpaired Welch two sample t-test for differ-
ences between group categories, linear regression with 
correlation coefficient for comparing two continuous vari-
ables (Pearson’s method for normally distributed data and 
Spearman’s method for not normally distributed data as 
determined by Shapiro-Wilk normality test). All tests were 
2-tailed. Statistical significance was reached at p < 0.05. 
Statistical analysis was performed with R studio (Version 
1.2.5001).

Results

Patient characteristics are shown in Table 1.
Strong correlations were observed between the respective 

parameters (peak signal intensity, time to peak, upslope) in the 

AoS, and the three left ventricular positions (r2 between 0.91 
and 0.99, p < 0.01 for all, Fig. 2a–c).

Highly significant differences between the AoS and the 
three other locations were observed for each parameter (all 
p < 0.001, except for the upslope of the midslice versus AoS 
with p < 0.05; Table 2).

The largest differences to the AoS were found for the time 
to peak at the base, for the peak signal intensity at the apex and 
for the upslopes at the base (Table 2).

All differences were significantly more pronounced in 
patients with reduced LVEF in comparison to patients with 
preserved LVEF (Fig. 3a–c).

The differences for the shape of the input function resulted 
in errors of 8%, 13% and 27% for the base, the mid slice and 
the apex in comparison to the AoS.

Discussion

Our data shows, that the position of the region of interest 
used to determine the arterial input function (AIF) for perfu-
sion quantification has significant effects on its shape. Some 
of these differences are systematic, however, there is also 

Fig. 1   Data acquisition:  the three typical regions of interest (basal, 
mid, apex, defined as 25%, 50% and 75% of the end-systolic dis-
tance from the mid of the mitral valve to the tip of the apical blood 
pool) plus a fourth ROI (aortic sinus) were placed in each dynamic of 

the first pass perfusion 3-chamber image. After baseline correction, 
signal intensity time curves were calculated, resulting in four aortic 
input functions

Table 1   Patient characteristics

Age (years) 62.1 ± 12.1
Female (%) 48.3%
BSA (m/cm2) 1.95 ± 0.28
Ejection fraction (%) 46 ± 17
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large random error. Most importantly, the magnitude of the 
error correlates negatively with the ejection fraction result-
ing in larger errors in patients with reduced ejection fraction. 
This is of specific importance, as one of the core reasons to 
use the AIF is to control for differences of contrast agent 
delivery in patients with reduced ejection fraction.

For two decades myocardial perfusion-CMR studies were 
mainly reported visually by assessing the speed and amount 

of signal increase within the myocardium during the first 
arrival of the contrast agent bolus during maximal vasodila-
tion. Until recently, most attempts to quantify MBF based on 
perfusion-CMR were restricted to academic research sites 
and the effort for full quantification, in combination with 
a large amount of assumptions, was tedious. If quantifica-
tion was performed, frequently a semiquantitative approach 
based on differences of specific parameters (e.g. upslope) 

Fig. 2   a Influence of position and EF on the peak signal intensi-
ties:  Correlation graph and Bland–Altman plots of the peak signal 
intensities for each short axis layer (basal, mid, apex). The strong cor-
relation between the data in the AoS and the three other locations (r2 
> 0.9 for all locations) can be appreciated. The Bland Altman plots 
show a large bias demonstrating a systematic error. Patients with 
ejection fraction > 50% are shown with black triangles, those with 
EF ≤ 50% are shown with red dots. Note the large confidence inter-
vals demonstrating large random errors. The dotted middle line indi-

cates the mean difference of the peak signal intensities. The dashed 
lines represent the 95% confidence intervals. Values are given in %. b 
Influence of position and EF on time to peak: correlation graph and 
Bland–Altman plots of the time to peak signal intensities for each 
short axis layer (basal, mid, apex). Values are given in ms. All other 
information similar to Fig. 2a. c Influence of position and EF on the 
upslope: correlation graph and Bland–Altman plots of the upslope for 
each short axis layer (basal, mid, apex). Values are given in %. All 
other information similar to Fig. 2a 
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between stress and rest was used. This has the advantage 
to cancel out some of the systematic effects. In addition, 
local normal ranges or a comparison between segments of 
a given patient were applied. These approaches, however, 
have the disadvantage to not allow provision of absolute 
ranges of normal with objective and transferable cut-off val-
ues, require stress and rest imaging and are limited in their 
ability to address changes, e.g. with therapy. More recently 
fully quantitative methods have become readily available and 
started to be used in clinical practice. However, when pro-
viding full quantification of MBF in ml/g/min myocardium 
any error will be misleading, as the claim for an absolute 
number inherently infers, that all assumptions in the process-
ing chain of the parameter are sufficiently controlled.

The role of the position of the input function has been 
analyzed previously, mainly for cardiac positron emission 
tomography where a similar dependency of MBF on the 
position of the input function was found [13, 14]. Its impor-
tance for perfusion CMR has been discussed [15], but not 
systematically analysed.

The obtained data in the current report provide important 
knowledge:

First, the position of the AIF creates a systematic error. 
This error could be addressed by either using normal val-
ues for the specific pathway used to obtain the results, 
by applying correction factors or potentially, by calculat-
ing a myocardial perfusion reserve based on the quantita-
tive data, rather than providing MBF itself. The excellent 

Fig. 2   (continued)
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correlation between the various locations for each parame-
ter demonstrate, that the systematic effect is strong and can 
be accounted for. Importantly, the largest systematic differ-
ence was found for time to peak, which is least important 
for full quantification.

Second, the position of the AIF creates a random 
error demonstrated by the large confidence intervals in 
the Bland–Altman analyses. While it may be possible 
to reduce these effects by better fitting algorithms and 

Fig. 2   (continued)

Table 2   Differences relative to the Aortic sinus

Base p value Mid p value Apex p value

Delta time to peak (dTTP) (ms) − 2153 ± 818 < 0.001 − 1429 ± 928 < 0.001 − 477 ± 741 < 0.001
Delta peak signal intensities (dpSI) (%) 21.8 ± 14.0 < 0.001 40.4 ± 35.3 < 0.001 52.1 ± 27.0 < 0.001
Delta upslope (%) 11.63 ± 16.1 < 0.001 3.0 ± 10.75 < 0.05 6.91 ± 9.17 < 0.001
Delta flow (%) 8 13 27
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modern machine learning optimization, they highlight the 
need to minimize this error during data acquisition.

Third, the error created by different positions of the AIF 
varies with important core parameters, such as ejection 
fraction. Again, it may be possible to partially account 
for this by taking the ejection fraction or other parameters 

of cardiac function into account, this observation is espe-
cially disturbing, as one of the core functions of the AIF 
was to correct for physiological differences, such as car-
diac function. Given that normal values for myocardial 
perfusion are mainly based on healthy controls which 
also have normal ejection fraction, this error may cause 

Fig. 3   a Influence of position and EF on the peak signal inten-
sity:  Influence of slice position and ejection fraction (EF) on the 
peak signal intensities. Patients with and EF > 50% are shown in light 
grey, patients with an EF < 50% are shown in dark grey. The center 
line in each box represents the median, the upper and lower border 
of the box represent the upper and lower quartile respectively and the 
whiskers represent the values that fall within the 1.5 x interquartile 

range above and below the respective quartile. b Influence of position 
and EF on the time to peak (all p < 0,01):  Influence of the ejection 
fraction (EF) regarding the time to peak signal intensity in each layer. 
All other information similar to Fig.  3a.  c Influence of the position 
and EF on the upslope: Influence of the ejection fraction (EF) regard-
ing the upslope in each layer. All other information similar to Fig. 3a
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a misunderstanding of underlying pathophysiologies, or 
systematic misclassification of the presence and extent of 
myocardial ischemia in specific subgroups of patients.

In order to determine the best AIF, it is necessary to 
consider and analyze the systematic errors mentioned 
above and the limitations of the current study mentioned 
below. Diseases that affect the ejection fraction or cardiac 
blood flow may have a strong impact on the AIF.

A first opportunity to generate further data in the future 
is to examine stress images (taking the aspects mentioned 
above into account) and compare them with the data 
obtained here. After that a first concept for the standardi-
zation of CMR perfusion studies can be proposed.

Limitations

Several limitations apply. The study was meant to high-
light the need to standardize the location of the AIF and 
obtain it in the aortic sinus whenever possible. As such, 
we did not address other potential confounders, such as 
valvular heart disease, arrhythmia, or aortic pathologies. It 
can be speculated, that even larger errors may be observed 
in these patient groups. We did not perform stress, calcu-
late diagnostic accuracy, or perform full quantification of 
MBF. Extending our observations to these topics would 
add data, but not broaden the core results underlined by 
strong significant differences. Furthermore, gender-spe-
cific differences, e.g. regarding the ejection fraction, were 
not investigated. Our study did not provide any clear signs 
for this. Investigating this would be relevant from our point 
of view, but would go beyond the scope of this scientific 
work. In addition, due to the small number of patients, an 
adequate statement to that topic could not be made here.

Conclusions

The location of the AIF significantly influences core 
parameters for perfusion quantification such as peak signal 
intensity, time to peak SI and upslope. The placement of 
the AIF creates systematic errors, random errors and ejec-
tion fraction dependent errors. Full quantification should 
therefore be based on obtaining the AIF as close as pos-
sible to the myocardium to minimize these errors.
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