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Abstract
To investigate the role of right ventricular free wall strain (RVFWSL) to predict low functional capacity in repaired tetralogy 
of Fallot (rTOF). We prospectively enrolled 33 patients with rTOF with moderate to severe PR who underwent rest and peak 
exercise echocardiography on a semisupine cycloergometer. Conventional function and strain imaging parameters of both 
ventricles were measured. Patients performing < 7 METS were defined to have low functional capacity. Logistic regression 
was used to identify parameters associated with low functional capacity. Eleven patients (33.3%) had low functional capacity. 
These patients were shorter (height 155 ± 7 vs 163 ± 9 cm, p = 0.023), more frequently female (27.3 vs 72.7%, p = 0.024) and 
had history of Blalock–Taussig shunt (45.5 vs 9.1%, p = 0.027). On multivariate analysis RVFWSL was the only predictor of 
low functional capacity OR 1.39 (CI 95%, 1.06–1.83., p = 0.018) per % change. A RVFWSL < 17% (absolute value) had an 
AUC of 0.785, sensitivity of 81.8% and specificity of 77.3% to predict low functional capacity. Right ventricular free wall 
strain is an independent predictor of low functional capacity in repaired tetralogy of Fallot with moderate to severe PR. A 
value < 17% might be useful in deciding when to perform pulmonary valve replacement, when functional capacity cannot 
be objectively measured.

Keywords  Tetralogy of Fallot · Pulmonary valve replacement · Echocardiography · Adult congenital heart disease · Global 
longitudinal strain · Stress echocardiography

Introduction

Tetralogy of Fallot (TOF) is the most common cyanotic 
congenital heart disease, occurring in approximately 
one in 3500 births [1]. Surgical repair has significantly 
changed the natural history of disease. However late after 
TOF repair significant comorbidities such as arrhythmias, 
sudden cardiac death, valvular heart disease and heart 
failure are common and contribute to adverse clinical 
outcomes [2]. Pulmonary regurgitation (PR) is the most 
common hemodynamic sequelae, and the main culprit for 
late complications [3]. NYHA functional class in patients 
with PR after TOF repair is a powerful predictor of hos-
pitalization and death [4]. Accordingly guidelines give 
a Class I recommendation to perform pulmonary valve 
replacement (PVR) for patients with repaired TOF and 
moderate or greater PR with cardiovascular symptoms not 
otherwise explained (dyspnea, chest pain, and/or exercise 
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intolerance). In the absence of symptoms, right ventricular 
dilation or dysfunction are considered reasonable triggers 
for PVR [2]

When measured objectively, more than 50% of patients 
who reported no symptoms have a reduced functional capac-
ity [5, 6]. However stress testing is not always feasible. 
Therefore, we aimed to identify resting echocardiographic 
parameters that could predict low functional capacity.

Materials and methods

Study population

We prospectively enrolled asymptomatic patients (NYHA 
Class I) with repaired TOF and moderate to severe pul-
monary regurgitation regularly evaluated in a dedicated 
adult congenital heart disease clinic, who were referred for 
echocardiographic examination to our department during 
the period March 2018–June 2019. To be eligible, patients 
had to be able to exercise on a semisupine cycle ergometer. 
Exclusion criteria included pregnancy, significant comorbid-
ities limiting prognosis (life expectancy < 1 year) and associ-
ated major cardiac anomalies (atrioventricular canal, major 
aortopulmonary collateral arteries, pulmonary hypertension 
and Ebstein anomaly). All patients gave their informed con-
sent prior to their inclusion in the study.

Echocardiographic examination

A complete baseline echocardiogram was performed before 
stress test, all measurements were performed according to 
current recommendations [7] using a Vivid-E9 machine 
(General Electric, Milwaukee, USA). Pulmonary regurgita-
tion and stenosis were classified as mild, moderate or severe 
according to the recommendations of the American Society 
of Echocardiography [8–10]. Briefly, severity was visually 
assessed by an experienced echocardiographer, patients with 
more than mild pulmonary regurgitation were included in 
the study. Using color Doppler, and continuous wave Dop-
pler, we evaluated jet width/annulus ratio, pulmonary regur-
gitation spectrum, pressure half time (PHT), early termina-
tion of the PR and diastolic flow reversal in the proximal 
branches. A PHT < 100 ms, PR index < 0.77, presence of 
diastolic flow reversal in the pulmonary branches and PR 
jet width/pulmonary annulus > 0.7, were the severity param-
eters used. Patients with the presence of 3 of this criteria, or 
2 if PR index was < 0.77 and diastolic flow reversal in the 
pulmonary branches was present were classified as severe 
PR, while patients not satisfying these criteria were classi-
fied as moderate.

Exercise stress echocardiography

We performed exercise echocardiography (ESE) using 
semi supine cycle ergometry (Schiller CE 0124 Ergosana). 
With an Initial workload of 25 W, with 25 W increments 
every 2 min. Dedicated images for right free wall, left ven-
tricular global longitudinal strain and three-dimensional 
volumes/ejection fraction were recorded at rest, peak 
stress and early recovery. All right function parameters 
were measured using a focused right ventricular view [11]. 
The following parameters were measured at rest and at 
peak exercise: tricuspid annular plane systolic excursion 
(TAPSE), right ventricular fractional area change (RV 
FAC), tissue Doppler (TDI) tricuspid and mitral annular 
velocities, trans-tricuspid and transmitral inflow veloci-
ties, peak tricuspid regurgitation jet velocity, peak sys-
tolic transpulmonary gradient, peak protodiastolic pulmo-
nary gradient (from pulmonary regurgitation continuous 
Doppler), end diastolic and end systolic left ventricular 
volumes as well as left ventricular ejection fraction. All 
images were stored for offline analysis.

Furthermore, we measured left ventricular contractile 
reserve (LVCR) defined as the stress/rest ratio of force, 
calculated as the ratio between systolic pressure (by auto-
mated cuff sphygmomanometer) and left ventricular end-
systolic volume. End-systolic volume was obtained from 
the apical four- and two-chamber views using the biplane 
Simpson method [12, 13].

Right ventricular contractile reserve (RVCR) was 
defined as any increase in RV FAC between rest and peak 
exercise stress, calculated as [(RV FAC at peak exercise—
RV FAC at rest)/RV FAC at rest] × 100 [14]. Right ventric-
ular force (elastance) was calculated as the ratio between 
protodiastolic peak pulmonary gradient (as a surrogate of 
mean pulmonary artery pressure) [15] and right ventricu-
lar end-systolic area. The ratio of early trans-tricuspid flow 
velocity to annular velocity (E/e´) was considered an index 
of RV filling pressures. Lung ultrasound scanning was per-
formed at rest and soon after exercise in the semisupine 
position using the simplified 4 region scan protocol [16].

Patients with < 7 metabolic equivalent of task (METs) 
were defined to have low functional capacity [17]. METs 
were calculated using the generated power (Watts) and the 
patient´s weight during cycle ergometry [18].

Strain analysis

Images were stored and analyzed offline in a dedicated 
workstation (EchoPAC GE v11.3). The images were 
analyzed by an experienced echocardiographer in strain 
imaging blinded to clinical data. For right ventricular 
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free-wall longitudinal strain (RVFWSL), the delineation 
started at the lateral tricuspid annulus level and stopped at 
the insertion of the RV free wall in the LV [19]. The endo-
cardium was manually traced using the single wall track-
ing tool and adjusted to the wall thickness. RVFWSL was 
calculated from a focused right chamber view, by averag-
ing the segmental maximum peak longitudinal strain of 
the RV free wall. For LV strain and LV mechanical dis-
persion, standard four, three and two chamber views were 
used, according to the EACVI/ ASE/Industry Task Force 
for 2D speckle tracking echocardiography [20]. Adequate 
tracking was visually assessed before acceptance. Inter-
observer variability was assessed in 14 anonymized cases 
by using measures from two observers (ARC and HRZ). 
Intra-observer variability was assessed in the same cases 
measured by the same with a 2 weeks difference period.

Three‑dimensional (3D) analysis

Dataset acquisition for 3DE images was performed using 
second harmonic imaging from the apical approach. Dur-
ing acquisition, we used the multi-slice display to ensure 
that the entire LV or RV cavity was included in the data-
set. Four to six consecutive electrocardiography-gated 
sub-volumes were acquired during breath holding to gen-
erate full-volume datasets with a minimum volume rate 
of 20 vps [21]. Datasets were stored digitally in raw-data 
format and exported to a separate workstation. Measure-
ments of 3DE LV volumes and LVEF were performed 
using a commercially available software package (4D 
AutoLVQ, GE Vingmed Ultrasound, Horten, Norway). 
Briefly, initialization of LV endocardial border tracing 
was manually performed by identifying two points on the 
4-chamber view image at end-diastole and at end-systole 
(1 point in the middle of the mitral annulus and a second 
point at the LV apex). Manual editing of the semi-auto-
matically generated endocardial contours was routinely 
applied to include the LV outflow tract, as well as papil-
lary muscles and trabeculae within the LV cavity [22]. 
Measurements of the 3D RV volumes and RVEF were per-
formed using the analysis by TomTec software (TomTec 
Imaging Systems, Unterschleissheim, Germany). Three 
orthogonal planes and various landmarks were selected 
to define the end-diastolic and end-systolic frames. The 
program automatically supplies 4-chamber, sagittal, and 
coronal RV views on the basis of the initial view adjust-
ment. Right ventricular end diastolic volume (RVEDV) 
and right ventricular end systolic volume (RVESV) were 
calculated from 3D echocardiographic data sets. RVEF 
was determined as follows: RVEF = [(RVEDV-RVESV)/
RVEDV] × 100.

Statistical analysis

Statistical analysis was performed using Stata V12.1. 
Shapiro–Wilk test was used to study the distribution of 
numerical variables. Parametric variables are expressed 
as mean ± standard deviation, comparison between groups 
was done with Student’s t test. Non parametric variables are 
expressed as median and interquartile ranges, comparison 
between groups was performed using Wilcoxon sum rank 
test. Categorical variables are summarized as percentage, 
comparison between groups was done with Xi2. To identify 
which parameters were independently associated with low 
functional capacity, multivariate logistic regression was per-
formed including significant variables on univariate analy-
sis. ROC curves were plotted to identify the cut-off value 
of RVFWSL to predict low functional capacity. Sensitivity, 
specificity and likelihood ratios were calculated using this 
cut-off value assuming the best case scenario. Two tailed 
P values with an α error less than 0.05 were considered 
statistically significant. RVFWSL variability was assessed 
by analyzing intra-class correlation (ICC) in 14 randomly 
selected cases.

Results

Forty-two patients met the inclusion criteria, eight were 
excluded (two patients were not able to exercise, one because 
of osteo-muscular disease and the other with Down syn-
drome without the ability to follow the instructions for exer-
cise, one patient was pregnant, one patient had an unstable 
stent in a pulmonary branch and four patients had associated 
major cardiac anomalies.)

A total of thirty-four patients were enrolled, one was 
eliminated due to non-interpretable functional capacity 
(development of an anxiety crisis at the beginning of exer-
cise n = 1) (Fig. 1).

Thirty-three patients with repaired Tetralogy of Fallot and 
moderate to severe PR (42% women; mean age 26.3 ± 6.7) 
were enrolled. Demographic and clinical data are summa-
rized in Table 1. ESE was feasible in all patients. Eleven 
patients (33.3%) were found to have low functional capacity 
(achieved < 7 MET). Patients with low functional capacity 
were shorter (height 155 ± 7 vs 163 ± 9 cm, p = 0.023), more 
frequently female (27.3 vs 72.7%, p = 0.024) and had more 
common history of Blalock–Taussig shunt (45.5 vs 9.1%, 
p = 0.027). Additionally, the period of time from repair sur-
gery to ESE was longer in those with low functional capacity 
(21.3 ± 6.5 vs 17.5 ± 4.9 years, p = 0.07). Importantly, the 
prevalence of severe pulmonary regurgitation and RVCR 
was comparable among groups (63.6 vs 72.7%, p = 0.709) 
and (72.7 vs 81.8%, p = 0.687) respectively.
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None of the resting LV systolic or diastolic echocardio-
graphic parameters were related to low functional capacity. 
Both LV GLS and contractile reserve were impaired in 

both groups, whereas patients with low functional capacity 
had lower values of LV contractile reserve (1.4 ± 0.37 vs 
1.7 ± 0.48, p = 0.048), (Table 2). Right ventricular ejection 

Fig. 1   Detailed graphical 
description of patient enroll-
ment

Table 1   Clinical and 
demographic data according to 
functional capacity. N = 33

Values presented as mean ± SD or median (25% and 75% percentile)
MS milliseconds
a Arrhythmias included atrial Flutter, ventricular bigeminy and frequent atrial premature beats

Normal functional 
capacity (n = 22)

Low functional 
capacity (n = 11)

p

Age (years) 24.6 ± 6.6 28.6 ± 5.7 0.104
Female gender (%) 6 (27.3) 8 (72.7) 0.024
Weight (Kg) 58.8 ± 14 69.1 ± 32.7 0.218
Height (cm) 163 ± 9 155 ± 7 0.023
BMI (Kg/m2) 21.7 ± 3.7 23.6 ± 5 0.212
BSA (m2) 1.6 ± 0.2 1.55 ± 0.17 0.309
Age at primary repair (years) 5.5 (2–10) 5 (3–13) 0.729
Follow up from correction (years) 17.5 ± 4.9 21.3 ± 6.5 0.07
Type of primary repair 0.861
Total correction 14 (63.6) 6 (27.3)
Total correction + pulmonary valve replacement 6 (27.3) 7 (63.6)
Rastelli operation 1 (4.5) 3 (27.3)
Total correction + surgical repair of pulmonary 

artery branches
1 (4.5) 1 (9.1)

Previous shunt palliation 2 (9.1) 5 (45.5) 0.027
Re-operated patients (%) 8 (36.4) 2 (18.2) 0.43
Systolic pulmonary artery pressure (mmHg) 32 ± 10.8 25 ± 11.7 0.86
Peak trans-pulmonary gradient (mmHg) 22.5 (13–62) 24 (10–48) 0.553
Severe pulmonary valve stenosis 4 (18.2) 2 (18.2) 0.999
Severe pulmonary valve regurgitation 14 (63.6) 8 (72.7) 0.709
QRS (ms) 142 ± 26 135 ± 36 0.539
QRS ≥ 180 ms (%) 3 (13.6) 1 (9.1) 0.706
Arrhythmiasa 4 (18.2) 3 (27.3) 0.661
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fraction was comparable in both groups (50.5 ± 6.5 vs 
48.3 ± 7.7, p = 0.505) but only feasible in 67% of patients. 
RVFWSL (14.4 ± 4.8 vs 20.2 ± 3.6, p = 0.0005) was the 
only resting echocardiographic parameter related to low 
functional capacity. In multivariate analysis including 
gender, height, RVFWSL and previous shunt palliation, 
RVFWSL remained the only predictor of low functional 
capacity (OR 1.39 CI 95%, 1.06–1.83., p = 0.018 per % 
change). Table  3. A RVFWSL < 17% (absolute value) 
had an AUC of 0.785 to predict low functional capacity 

(Fig. 2). In the best case scenario (since there was no vali-
dation in an independent cohort) this cut off value had a 
sensitivity of 81.8% and specificity of 77.3% to predict low 
functional capacity. A representative example of a patient 
with low functional capacity and normal functional capac-
ity and their correspondent RVFWSL values is shown in 
Fig. 3.

We performed a second multivariate analysis including 
LV GLS, although it was not statistically significant in uni-
variate analysis. In this model RVFWSL remained the only 

Table 2   Echocardiographic and 
exercise stress test analysis

Values presented as mean ± SD or median (25% and 75% percentile)
MET metabolic equivalent of task, 2D LVEF two dimensional left ventricular ejection fraction, 3D LVEF 
three dimensional left ventricular ejection fraction, LV MD left ventricular mechanical dispersion, LV 
left ventricle, LV GLS left ventricular global longitudinal strain. RVEF right ventricular ejection fraction, 
TAPSE tricuspid annular plane systolic excursion, RVFAC right ventricular fractional area change, RV right 
ventricle, RVFWSL right ventricular free wall longitudinal strain, 3DRVEF three dimensional right ven-
tricular ejection fraction
a Patients showing any increase of RVFAC

Normal functional capacity 
(n = 22)

Low functional capacity 
(n = 11)

p

METs 7.55 (7.2–8.75) 6.2 (5.7–6.7)  < 0.001
Watts 116.7 ± 29.5 79 ± 19 0.0005
Maximal reached heart rate from 

predicted (%)
69.3 ± 12.6 69.8 ± 7.1 0.899

2D LVEF, baseline (%) 56.8 ± 6.4 55.8 ± 7.1 0.678
LV end diastolic volume (ml) 90 (80–97) 93 (68–96) 0.605
LV end systolic volume (ml) 39 (32–46) 40 (26–49) 0.842
2D LVEF, stress (%) 62.5 ± 6.2 59.6 ± 7.8 0.263
3D LVEF, baseline (%) 56.8 ± 5.2 57.2 ± 4.9 0.853
3D LVEF, early recovery (%) 58.9 ± 5.9 61.6 ± 5.9 0.281
LV GLS, baseline (%) 14.4 ± 3.2 14.1 ± 2 0.773
LV GLS, early recovery (%) 15.4 ± 3.2 15.8 ± 3.4 0.962
LV MD 57.3 ± 23.2 63.1 ± 21.1 0.488
LV contractile reserve 1.7 ± 0.48 1.4 ± 0.37 0.048
LV E/e’, baseline 5.4 ± 1.9 5.6 ± 1.7 0.754
LV E/e’, stress 5.4 (4.9–7.9) 5.2 (4.6–8.3) 0.803
RVEF, baseline (%) 56.8 ± 5.2 57.2 ± 4.9 0.853
RV end diastolic volume (ml) 159 (134–214) 156 (118–232) 0.641
RV end systolic volume (ml) 68 (66–118) 82 (53–105) 0.944
RVEF, early recovery (%) 58.9 ± 5.9 61.6 ± 5.9 0.281
TAPSE, baseline (mm) 18.1 ± 3.2 16.1 ± 2.3 0.075
TAPSE, stress (mm) 19.7 ± 3.9 18.2 ± 1.8 0.242
RVFAC, baseline (%) 43.1 ± 8.4 38.3 ± 7.7 0.116
RVFAC, stress (%) 47.8 ± 9.6 41.2 ± 10.8 0.089
RV contractile reservea 16 (72.7) 9 (81.8) 0.687
RVFWSL, baseline (%) 20.2 ± 3.6 14.4 ± 4.8 0.0005
3DRVEF 50.5 ± 6.5 48.3 ± 7.7 0.505
RV elastance, baseline 1.0 ± 0.046 0.88 ± 4.5 0.453
RV E/e’, baseline 4.9 (3.9–6.8) 5.5 (3.8–6.7) 0.954
RV E/e’, stress 5.7 ± 2.6 5.7 ± 2.1 0.985
Dynamic pulmonary B lines 0 0 1
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independent predictor of low functional capacity (OR 1.3, CI 
95% 1.03–1.63, p = 0.027 per % change) (Table 4.)

A good inter-observer agreement was found in the meas-
urement of RVFWSL, ICC 0.95 (0.85–0.98, 95%CI).

Discussion

This study provides new evidence about the feasibility of 
ESE and clinical value of RVFWSL in patients with repaired 
tetralogy of Fallot (rTOF) and moderate to severe PR.

Our main findings can be summarized as follows: (1) 
right ventricular function quantification using TAPSE, FAC 
and right ventricular free wall strain is highly feasible in 
patients with rTOF and moderate to severe PR during exer-
cise (2) in patients with rTOF and moderate to severe PR, 
subclinical left ventricular dysfunction is common (low GLS 
values and LVCR), however resting diastolic and systolic 
function parameters are not related to functional capacity. 

(3) low rest RVFWSL is an independent predictor of low 
functional capacity.

Surgical repair has improved survival in patients with 
tetralogy of Fallot, leading to an exponential growth of this 
population. Nonetheless late after repair complications are 
common and contribute to adverse clinical outcomes [2]. 
Severe pulmonary regurgitation is common (consistently 
67% of our study population had severe PR), and contrib-
utes to adverse outcomes [3]. The presence of symptoms 
in patients with severe PR is currently a trigger for PVR 
according to the latest guidelines [2] aiming to improve 
symptoms and avoid ventricular function deterioration, 
although a significant benefit in mortality has yet to be 
demonstrated [23–25]. However the presence of symptoms 
can be underestimated, since patients with rTOF are in gen-
eral younger than other patients with cardiovascular disease 
(i.e. HF, CAD, etc.) and have a long standing disease adapt-
ing their daily activities to their performance. Over 50% 
of patients with adult congenital heart disease (ACHD) in 
NYHA class 1 who underwent cardiopulmonary exercise 
testing, have been previously shown to have a peak VO2 
below 80% of predicted for age and gender and thus, have an 
impaired functional capacity despite the lack of symptoms 
[5, 6]. In our study 33.3% of the patients were found to be 
symptomatic during ESE, most of which had severe PR, 
uncovering the need for PVR according to current guideline 
recommendations [2]. This finding highlights clinical assess-
ment in the outpatient setting might not be sensitive enough 
and ESE may have important additional prognostic value in 
patients with rTOF. Furthermore, reclassification of NYHA 
with an objective test has prognostic implications as it has 
been shown that adult congenital heart disease patients with 
NYHA class II have a 2.5 fold increased risk of death. (5) 
With the increasing number of patients with ACHD, it might 
not be always feasible to perform cardiopulmonary exercise 
testing (CPET) or ESE, furthermore ACHD patients may not 
be able to exercise. Accordingly, the value of resting imag-
ing variables as surrogate of low functional class might be 
useful for clinical decision making.

Although left ventricular dysfunction is common 
(reduced LVEF and/or GLS) in patients with rTOF, and its 

Table 3   Univariate and 
multivariate analysis for 
predicting low functional class

OR odds ratio, RVFWSL right ventricular free wall longitudinal strain

R2 = 0.399 Bivariate analysis Multivariate analysis

OR 95% confidence 
interval

p value OR 95% confidence 
interval

p value

Female gender 7.1 1.4–36.1 0.018 5.9 0.65–54.1 0.113
Height (cm) 0.89 0.81–0.98 0.035 0.95 0.81–1.11 0.533
Blalock-Taussig
shunt

8.3 1.2–54.4 0.027 3.2 0.23–44.2 0.383

RVFWSL 1.28 1.05–1.57 0.014 1.28 1.04–1.59 0.02

Fig. 2   ROC curve analysis. Receiver-operating characteristic (ROC) 
curves demonstrating diagnostic accuracy of right ventricular free 
wall longitudinal strain (RVFWSL) to predict low functional capacity. 
Sens sensitivity, Sp specificity, LR likelihood ratio, AUC​ area under 
the receiver-operating characteristic curve
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presence carries increased risk of mortality [26], we found 
none of these parameters were useful to predict a low func-
tional capacity. Importantly RVFWSL was the only resting 
echocardiographic parameter capable to predict low func-
tional capacity. Alghamdi et al. reported that RVFWSL 
was the best predictor of functional capacity, even superior 
to RVEF measured with cardiac MRI [27]. Also the most 
recent guidelines on multimodality imaging in ACHD sup-
port the use of RVFWSL in the follow up of ACHD patients 

[28]. Our study supports these findings and adds to literature 
a RVFWSL cut off value of < 17% (absolute value) during 
rest echocardiography which strongly correlates to low func-
tional capacity.

Although the precise mechanism by which RVFWSL 
predicts low functional capacity is not clear, several theo-
ries might account for this finding. First, RVFWSL strongly 
correlates with the degree of histological fibrosis (R = 0.8, 
p < 0.0001), and was found to be markedly superior to 

Fig. 3   Right ventricular free 
wall strain analysis showing a 
normal RVFWSL in a patient 
with normal functional capacity 
(a) and a reduced RVFWSL in 
a patient with low functional 
capacity (b). RVFWSL right 
ventricular free wall strain 
longitudinal

Table 4   Univariate and 
Multivariate analysis for 
predicting low functional class 
with LV GLS forced in the 
model

LVGLS left ventricular global longitudinal strain. Other abbreviations as in Table 3

R2 = 0.424 Bivariate analysis Multivariate analysis

OR 95% confidence 
interval

p OR 95% confidence 
interval

p

Female gender 7.1 1.4–36.1 0.018 10.7 0.66–172.2 0.095
Height (cm) 0.89 0.81–0.98 0.035 0.92 0.77–1.11 0.398
Blalock-Taussig shunt 8.3 1.2–54.4 0.027 2.1 0.11–41.1 0.613
RVFWSL 1.28 1.05–1.57 0.014 1.29 1.02–1.63 0.027
LV GLS 1.03 0.85–1.34 0.765 1.26 0.78–2.03 0.333
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TAPSE (r = 0.34, 0.05) [29]. Therefore the degree of right 
ventricular fibrosis resulting in lower RVFWSL might 
contribute to abnormal exercise capacity. Second, patients 
with rTOF have been shown to have reduced right ventricu-
lar contractile reserve (RVCR) during stress compared to 
healthy subjects [30, 31]. Up to 40% of patients with rTOF 
do not have an increase in right ventricular function param-
eters during stress, supporting the notion of subclinical 
right ventricular dysfunction [14, 30]. Furthermore late 
after rTOF in a small subset during a 4.2 years follow up 
small increases in end systolic and diastolic volumes below 
guideline recommended thresholds were found, however a 
significant change in RVFWSL occurred [32]. These find-
ings suggests RVFWSL might be able to detect patients 
with right ventricular dysfunction at an earlier stage, just 
as global longitudinal strain of the left ventricle has been 
shown to be useful to refine prognostic stratification [33–35].

The study of RVFWSL in patients with rTOF is particu-
larly important as it carries incremental prognostic value as 
it has been related to poor quality of life, and adverse events 
(composite of death or heart failure), and in the present study 
with impaired functional class [36].

Study limitations

Small sample from a single institution is a limitation that 
needs to be acknowledged. However, our results add to the 
reported prognostic value of RVFWSL and for the first time 
(to the best of our knowledge) we present a cut off value of 
RVFWSL to predict low functional capacity in patients with 
repaired tetralogy of Fallot and moderate to severe PR. Our 
laboratory lacks the capacity of measuring expired gases 
and thus, the performance of a complete CPET, however the 
evaluation of NYHA functional class has been shown to be 
prognostically important in patients with ACHD. Although 
functional capacity was measured with the calculation of 
METs during semi supine cycloergometer, there is plenty 
of scientific evidence supporting the measurement of func-
tional capacity with the calculation of METs and its strong 
predictive value for mortality [37, 38].

Moreover, previously reported mean peak VO2 values 
among rTOF individuals with mean age of 29–32 years are 
24.2–25.2 ml/kg/min (corresponding to mean 71% of pre-
dicted) [39]. The threshold to define low functional capacity 
in our study was 7 METs which corresponds to an estimated 
VO2 of 24.5 ml/min/kg. Hence in our cohort, individuals 
of similar age within the low functional capacity group 
achieved a median of 6.2 METs which likely represents true 
impaired exercise capacity.

Cardiac magnetic resonance (CMR) was not available 
within an acceptable time limit in most of our patients and 
therefore CMR data is not reported. However, the objective 

of this study was not to investigate a correlation between 
RVFWSL and RVEF measured with MRI and 3D echocar-
diogram which has been previously reported [27, 32], but to 
identify resting echocardiographic predictors of low func-
tional capacity. Despite the fact that 3D and MRI RVED and 
volumes have a good correlation (r = 0.73), [40] in our study 
less than a 50% of the acquisitions were considered optimal 
(most of our patients had severe pulmonary regurgitation 
and important RV dilation which limits the acquisition qual-
ity) and was only feasible in 67% of the patients.

Quantification of pulmonary regurgitation in our study 
was performed by integrating multiple parameters as rec-
ommended by the American Society of Echocardiography 
guidelines. Although CMR was not performed to quantitate 
PR, echocardiography can reliable detect severe PR with 
multi parametric assessment compared to CMR. It has been 
shown in patients with rTOF that combining multiple 2D 
and Doppler echocardiography parameters; specifically, if 
diastolic flow reversal in branch pulmonary arteries and PR 
index < 0.77 were both present, the probability of having 
severe pulmonary valve regurgitation was 100% as compared 
with CMR (defined as the presence of ≥ 40% regurgitant vol-
ume) [41]. Furthermore, echocardiography can reliably dis-
tinguish mild pulmonary regurgitation, and has been shown 
to have a sensitivity of 97% to identify more than moderate 
PR compared to CMR [42]. Quantitative assessment of PR 
with echocardiography is challenging and lacks validation, 
and therefore was not used in this study. In our study ten 
patients had a CMR available with quantitation of pulmo-
nary regurgitation severity with a time limit of 6 months. 
Agreement between CMR and echocardiography for classi-
fying PR was 90% with a kappa coefficient of 0.62, p = 0.01 
in this patient subset.

Conclusions

Right ventricular free wall strain is an independent predic-
tor of low functional capacity in repaired tetralogy of Fallot 
patients with moderate to severe pulmonary regurgitation. 
A value < 17% might be useful in deciding when to perform 
pulmonary valve replacement, especially in those in which 
functional capacity cannot be objectively measured.
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