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Abstract
The early detection of subclinical myocardial dysfunction can contribute to the treatment and prevention of heart failure (HF). 
The aim of the study was to (i) describe myocardial global longitudinal strain (GLS) patterns in a large general population 
sample from Norway and their relation to established cardiovascular disease (CVD) risk factors; (ii) to determine its nor-
mal thresholds in healthy individuals and (iii) ascertain the relation of myocardial GLS to stage A subclinical heart failure 
(SAHF). Participants (n = 1855) of the 7th survey of the population-based Tromsø Study of Norway (2015–2016) with GLS 
measurements were studied. Linear and logistic regression models were used for assessment of the associations between 
CVD risk factors and GLS. Mean GLS (SD) in healthy participants was − 15.9 (2.7) % in men and − 17.8 (3.1) % in women. 
Among healthy subjects, defined as those without known cardiovascular diseases and comorbidities, GLS declined with age. 
An increase of systolic blood pressure (SBP) of 10 mm Hg was associated with a 0.2% GLS reduction. Myocardial GLS in 
individuals with SAHF was 1.2% lower than in participants without SAHF (p < 0.001). Mean myocardial GLS declines with 
age in both sexes, both in a general population and in the healthy subsample. SBP increase associated with GLS decline in 
women. Our findings indicate high sensitivity of GLS for early subclinical stages of HF.
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Introduction

Cardiovascular disease (CVD) is a leading cause of death 
worldwide [1]. Global myocardial longitudinal strain (GLS) 
is a derived deformation parameter, enabling detection of 
subtle left ventricular (LV) function abnormalities. GLS is 
superior to LV ejection fraction (LVEF) in prediction of car-
diovascular mortality in patients with chronic kidney disease 
[2], all-cause mortality in patients with systolic heart failure 
(HF) [3] and atrial fibrillation [4]. Furthermore, myocardial 
GLS was found to be an independent predictor of the adverse 
outcomes after acute myocardial infarction (MI) [5], infec-
tive endocarditis [6], aortic stenosis [7], hypertrophic car-
diomyopathy [8] and stroke [9]. The role of myocardial GLS 
in CVD mortality prediction in populations with low CVD 
risk has also been investigated [10]. In patients with arte-
rial hypertension, myocardial GLS was related to structural 
remodeling of the LV [11]. Kuznetsova et al. have recently 
shown that high mean arterial pressure was associated with a 
decline in GLS over a follow-up of 4.7 years [12]. However, 
there are few studies of the associations between systolic 
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blood pressure (SBP), hypertension treatment and GLS in 
general unselected populations.

To date there is no consensus, and thus no established 
clinical guidelines [13, 14], as to what constitutes cut points 
for normal myocardial GLS, however peak GLS level of 
− 20% mentioned as expected in healthy persons [13]. 
Assessment of cut off points of normal myocardial GLS 
in healthy individuals have produced varying results. Most 
population studies find higher reference values in healthy 
subjects [15, 16].

Stage A subclinical HF (SAHF) define individuals with 
absence of clinical symptoms or structural heart disease but 
presence of risk factors for HF [17]. SAHF progression is 
associated with impairment of structural and functional state 
of the heart over time with progression to the next stage 
of HF [18]. Myocardial GLS has improved prediction of 
subsequent clinical HF in patients with Stage B subclinical 
HF [19] and myocardial GLS is already known to be related 
to SAHF in high risk groups [20–22]. However, whether 
this applies to the whole SAHF group is, to the best of our 
knowledge, unknown. Whether GLS adds information in 
SAHF group beyond CVD risk factors and self-reported 
dyspnea symptoms in a general population has yet to be 
elucidated.

The main aim of our study is to describe peak-myocardial 
GLS in a large general population sample from Norway and 
their relation to established CVD risk factors. Secondary 
aims are to determine GLS normal thresholds in healthy 
individuals and the relation of myocardial GLS to SAHF.

Methods

Study population

The Tromsø Study is a prospective cohort study, which was 
initiated in 1974 with the aim of assessing the role of known 
modifiable risk factors for CVD in Northern Norway and 
detection of new targets for prevention of CVD. The design 
of the study was described in previous publications [23]. 
Seven consecutive surveys have been conducted. Our study 
sample included 840 men and 1015 women from 7th survey 
in The Tromsø Study who underwent echocardiography and 
had myocardial GLS data (Fig. 1). We excluded those with 
missing values on risk factors (n = 108) leaving 1747 indi-
viduals aged 40–99 years for the main analyses.

Data collection

Self-reported history of MI, HF, atrial fibrillation, angina, 
stroke, diabetes, chronic obstructive pulmonary disease was 
collected by questionnaires. Additionally, we included those 
who experienced atrial fibrillation during echocardiography 

as atrial fibrillation “positive” individuals. Participants with 
HbA1c ≥ 6.5% were treated as having diabetes regardless 
of self-reported status. Breathlessness was assessed by the 
modified UK Medical Research Council (mMRC) breath-
lessness/dyspnea scale [24].

Blood pressure (BP) was measured three times with 
1-min intervals using an automated device Dinamap Pro care 
300 Monitor (GE Medical Systems Information Technolo-
gies, Tampa, FL, USA). The mean of the last two readings 
was used in the analysis. Hypertension was defined as SBP 
≥ 140 mm Hg, diastolic blood pressure (DBP) ≥ 90 mm Hg 
or self-reported use of antihypertensive medication. Meta-
bolic syndrome was defined according to American Heart 
Association (AHA)/National Heart, Lung and Blood Insti-
tute statement [25].

Study groups definitions

Healthy persons were defined as those without known car-
diovascular diseases and comorbidities. We excluded those 
with hypertension, diabetes, atrial fibrillation, HF, angina, 
MI, stroke, chronic obstructive pulmonary disease and ejec-
tion fraction of the left ventricle (LV EF) < 50% leaving a 
“healthy” subsample of 1068 individuals (Fig. 1). To assess 
the effect of increasing echocardiographic pathology by age 
we additionally excluded from the healthy subsample those 
with severe valve dysfunction, LV or left atrial (LA) enlarge-
ment or severe tricuspid regurgitation (> 2.8 m/s).

For defining the SAHF individuals we excluded subjects 
(n = 1146) with known CVD (previous history of MI, HF or 
stroke) and echocardiographic geometric LV abnormalities 
(Left ventricular myocardial mass index (LVMMi) > 50 in 
men and > 47 in women; relative LV wall thickness (rwt) 
> 0.42 or rwt ≤ 0.42 with LVMMi > 50 in men and > 47 in 
women), LV EF < 50%, and severe valve dysfunction (mitral 
and aortic stenosis and regurgitation ≥ grade 3) (Fig. 1). 
Thus, we identified a subset of 709 individuals who may 
include those with SAHF. In the American College of Car-
diology Foundation/AHA guidelines guidelines [17], SAHF 
is defined as the presence of at least one of the following 
conditions: diabetes, metabolic syndrome, obesity, arterial 
hypertension or angina. Applying these criteria, we identi-
fied 220 individuals with SAHF (Fig. 1).

Echocardiography imaging

In The Tromsø 7 Study echocardiography was performed by 
a qualified sonographer using a GE Vivid E9 (GE Medical, 
Horten, Norway) ultrasound scanner. Offline image reading 
using EchoPac software (EchoPac version 113; GE Medical, 
Horten, Norway) was performed by one reader (MS).
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Conventional echocardiography

Cineloops were recorded using standard 4-chamber, 
2-chamber and long-axis apical views according to a 
prespecified protocol [26]. We obtained the images at a 
framerate of 50–70 frames per second. Ultrasound exami-
nations were performed according to American Society 
of Echocardiography (ASE) and European Association 
of Cardiovascular Imaging (EACVI) guidelines [13] in 
the left lateral decubitus position. M-Mode images were 
aligned in the parasternal long axis view and recorded in 
the short axis view. LV myocardial mass was calculated 
according to ASE guidelines and indexed by height2.7 [13]. 
LVEF and LA volume were calculated using the biplane 
Simpson’s method. LA volume was indexed (LAVi) by 
body surface area (BSA) [27]. Mitral valve Doppler meas-
urements were performed with a Doppler sample volume 
of 2-mm placed between the tip of the mitral leaflets in the 
apical 4-chamber view. We adjusted the spectral gain until 
the flow curves became clear [28]. The insonation angle 
for Doppler measurements was kept perpendicular toward 

the mitral inflow. Maximal velocity flow was measured in 
early diastole and after atrial p-wave.

Tissue Doppler parameters such as peak septal and lat-
eral é were derived from apical 4-chamber view with 5-mm 
sample volume located at the septal and lateral side of the 
mitral annulus. Abnormal echo parameters considered as 
tricuspid regurgitation velocity > 2.8 m/s; LAVi > 34 ml/
m2 [29].

Two‑dimensional strain

Two-dimensional strain was analyzed according to EACVI/
ASE common standards for 2D speckle tracking echocar-
diography [30]. The endo- and epicardial borders were ini-
tially traced with the use of automated function imaging. 
Myocardial GLS values were obtained from averaging of 
endo- mid- and epicardial layer’s GLS values from three api-
cal views based on 17-segment model. Images were checked 
visually for clear visibility of the endo- and epicardial bor-
ders during the entire cardiac cycle. Attention was paid to 
accurate placement of region of interest (ROI) with the aim 

Individuals with performed echocardiography in Tromsø 
7 Study

n=2340

Individuals with measured myocardial GLS

n=1855

Descriptive analyses

n=1855 
(Men 840; Women 1015)

Overall and age/sex-specific analyses 
for healthy/unhealthy individuals; 

abnormal GLS analyses; blood 
pressure analysese

n=1747
Healthy individuals (n=1068) 

Participants 
with missing 
informationc

n=108

Analyses of subclinical 
HFd

n=709
SAHF positive (n=220)

Participants with 
exclusion criteria for 

subclinical HFb

n=1146

Participants 
with 

inappropriate 
imagesa

n=485

Fig. 1   Flowchart of the study participants. The Tromsø Study (2015–
2016). aParticipants excluded from GLS analysis due to inappropri-
ate imaging quality. bIndividuals with any of the following: left ven-
tricle geometry abnormalities, left ventricle ejection fraction < 50%, 
severe valvular heart disease, history of myocardial infarction, heart 
failure or stroke. cMissing information on any of the following vari-
ables: myocardial infarction, angina, stroke, bronchitis, hypertension, 

diabetes, atrial fibrillation, heart failure, HbA1c, left ventricle ejec-
tion fraction. dIncluded those with the present at least one of the fol-
lowing: diabetes, metabolic syndrome, obesity, arterial hypertension, 
angina. eFive individuals with missing information were excluded 
from GLS analyses according to SBP groups. One individual 
excluded from logistic regression analysis
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of avoiding inclusion of extracardiac structures. Further-
more, we paid attention not to include papillary muscles in 
contour of LV or the fibrous part of the basal inferoseptum or 
LV outflow tract [31]. ROI was visually assessed and manu-
ally adjusted in case of inappropriate tracking. Views with 
more than two segments with inappropriate tracking were 
excluded from the analysis.

Statistical methods

The study population included individuals aged from 40 to 
99 years divided in 10-year age groups. Baseline charac-
teristics of the study participants were described with the 
use of means with standard deviations and proportions. For 
analyses of associations between myocardial GLS and SBP 
we divided study population by the following SBP groups: 
< 120, 120–129, 130–139, 140–159, 160–169, 170–179 and 
≥ 180 mm Hg.

According to the sex-specific SBP groups, means for 
myocardial GLS were adjusted for age using linear regres-
sion analysis. Absolute means were tabulated for those aged 
63 years. Comparisons between groups were performed by 
analysis of variance (ANOVA), χ2 test and Fisher’s exact 
test. For analysis of GLS change by age we used weighted 
linear regression. The “Weight” variable for regression 
equation was estimated from number of individuals in each 
age group. Lower limit of normal (LLN) myocardial GLS 
for “healthy” subpopulation was defined as absolute mean 
GLS minus 1.96*standard deviation. Bootstrapping with 
1000 samples was used to define upper 97.5th and lower 
2.5th percentiles for LLN with confidence intervals [32]. 
We used quantile regression for estimation of the p value 
for trend of LLN change by age. Logistic regression models 
were applied to estimate odds ratios (OR) for different risk 
factors of myocardial GLS below age and sex-specific LLN 
(abnormal GLS). The OR for each of the following predic-
tors (BMI, history of: MI, atrial fibrillation, angina, diabetes, 
stroke, arterial hypertension and breathlessness scale) were 
estimated separately.

Intra- and inter-reader variability of myocardial GLS 
was assessed in recordings of 27 of 30 randomly selected 
participants. Three individuals were excluded due to inap-
propriate image quality. Intra-reader variability was assessed 
in repeated GLS measurements by one reader (M.S) with 
3-months intervals. To assure external validity of meas-
urements as well as internal inter-reader variability was 
assessed with two readers (M.S. and A.R and presented as 
intra-class correlation coefficients (ICC) and mean differ-
ence ± SD. Coefficient of repeatability (CR) was calculated 
using the formula 2.77*SDw with SDw as the within-subject 
standard deviation. Visual assessment of inter-observer vari-
ability was performed with use of a Bland–Altman plot.

A two-sided p < 0.05 was considered statistically signifi-
cant. Statistical analyses were performed using SAS statisti-
cal package, version 9.4 (SAS Institute, Cary, NC, USA).

Results

Descriptive characteristics

The descriptive echocardiographic and clinical character-
istics of the study population are presented in 10-year age 
groups (Table 1). Study sample included 840 (45.3%) men 
and 1015 (54.7%) women. The prevalence of self-reported 
pathology increased across the entire age range except for 
MI, diabetes and angina pectoris which have the highest 
prevalence in 70–79 years individuals. Of the echocar-
diographic characteristics: LVMMi, LAVi, Mitral E-wave 
deceleration time (DT), E/e′ ratio showed a linear relation 
to age, while LVEF and E/A ratio did not. 

Myocardial GLS in The Tromsø 7 Study

In our general population sample, mean myocardial GLS 
declined with age in both men and women (Fig. 2).

Myocardial GLS of the healthy participants

The prevalence of healthy individuals by age from The 
Tromsø 7 Study sample according to the healthy/unhealthy 
criteria is presented in Table 2. We found that the preva-
lence of healthy women was stable between 40 and 59 with 
a decline after 60 years of age (p for change of healthy pro-
portions by age < 0.001). In men the decrease of healthy 
individuals starts earlier than in women but then follows 
the same slope by age (p < 0.001). There was no interaction 
between age group and sex (p = 0.457). 

Mean myocardial GLS (SD) in healthy participants 
(n = 1068) was − 15.9 (2.7) % in men (n = 451) and − 17.8 
(3.1) % in women (n = 617). Figure 2 describes mean lev-
els of myocardial GLS in healthy participants according to 
age and sex. Healthy women had higher values of myocar-
dial GLS than men in all age groups. Significant change of 
mean myocardial GLS by age was observed for both sexes 
(p = 0.001 and < 0.001 in men and women respectively). In 
the healthy subgroup without echo abnormalities the age 
effect on GLS was no longer significant in men (p-value for 
men 0.179, for women < 0.001).

The comparison of GLS in healthy versus unhealthy indi-
viduals is demonstrated in Online Resources 2 (for men) and 
3 (for women) as well as the numbers of individuals with 
measured myocardial GLS (Online Resource 4).
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Abnormal myocardial GLS in The Tromsø 7 Study 
sample

With the use of mean myocardial GLS values in the healthy 
individuals aged 40–99 years, myocardial GLS LLN equaled 
− 10.6% for men and − 11.7% for women. Data shown in 
Table 3 estimates LLN with bootstrapped 2.5th and 97.5th 
CI by age groups and sex. A tendency of declining LLN with 
the age was still present in both men and women, however 
the differences were non-significant (p-values for age trend 
were 0.522 and 0.801 for men and women respectively).

Abnormal myocardial GLS and risk factors

We estimated OR for factors possibly associated with abnor-
mal myocardial GLS (Table 4). Individuals with diabetes 

had 2.91-fold (95% CI 1.52, 5.55) increased risk of having 
abnormal myocardial GLS. All other predictors had signifi-
cant effect on abnormal GLS excluding hypertension and 
mMRC scale ≥ 2. Table 5 shows the difference in GLS for 
each of the significant predictors of GLS. The lowest myo-
cardial GLS (SD) of − 14.3 (3.5) % was found in individuals 
with self-reported HF.

Myocardial GLS and SBP

Myocardial GLS in women declines as SBP increase 
(Fig. 3). In men with and without antihypertensive treat-
ment differences in myocardial GLS between SBP groups 
were non-significant (p = 0.206 and p = 0.276 for untreated 
and treated men respectively). Men and women with BP 
treatment had lower values of myocardial GLS than those 

Table 1   Descriptive characteristics of the participants who underwent echocardiography and had their myocardial GLS measured

The Tromsø Study (2015–2016)
BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, LVMMi left ventricle myocardial mass index, LV EF left ven-
tricle ejection fraction, LAVi left atrial volume index, DT mitral peak E deceleration time, E/e′ ratio mitral peak E to tissue Doppler peak e′ ratio, 
E/A ratio mitral peak E to peak A ratio, GLS global longitudinal strain, MI myocardial infarction, HF heart failure, Afib atrial fibrillation, mMRC 
modified Medical Research Council (mMRC) breathlessness/dyspnea scale, SD standard deviation. Due to missing observations, numbers (n) for 
the variables may be marginally less (within 1.0%)

Characteristics Total Age-group (years)

40–49 50–59 60–69 70–79 80 +

n (%) 1855 (100) 247 (13.3) 338 (18.2) 694 (37.4) 467 (25.2) 109 (5.9)
BMI, kg/m2 (SD) 26.9 (4.1) 27.1 (5.0) 26.6 (4.1) 26.8 (3.8) 27.3 (4.2) 26.0 (3.5)
SBP, mm Hg (SD) 133.8 (20.5) 121.2 (15.6) 126.9 (18.2) 133.9 (19.3) 141.3 (19.8) 150.9 (22.0)
DBP, mm Hg (SD) 75.2 (9.9) 74.0 (9.9) 76.1 (9.6) 76.1 (9.8) 74.3 (10.0) 73.5 (9.8)
Antihypertensive treatment, n (%) 612 (33.4) 24 (9.8) 51 (15.2) 229 (33.4) 248 (54.0) 60 (58.3)
Hypertension, n (%) 549 (29.7) 24 (9.8) 45 (13.3) 209 (30.2) 212 (45.5) 59 (54.1)
mMRC scale
Grade 0–1, n (%)

1778 (95.9) 239 (96.8) 333 (98.5) 673 (97.0) 436 (93.4) 97 (89.0)

Grade ≥ 2, n (%) 77 (4.2) 8 (3.2) 5 (1.5) 21 (3.0) 31 (6.6) 12 (11.0)
History of MI, n (%) 106 (5.9) 2 (0.8) 2 (0.6) 35 (5.2) 60 (13.4) 7 (7.5)
History of HF, n (%) 67 (3.6) 2 (0.8) 4 (1.2) 20 (2.9) 27 (5.8) 14 (13.2)
History of Stroke, n (%) 59 (3.3) 2 (0.8) 4 (1.2) 22 (3.3) 22 (5.0) 9 (9.2)
History of Angina, n (%) 74 (4.1) 4 (1.6) 1 (0.3) 23 (3.4) 39 (8.8) 7 (7.5)
History of Afib, n (%) 127 (6.9) 9 (3.6) 14 (4.1) 47 (6.8) 45 (9.6) 12 (11.0)
History of diabetes, n (%) 114 (6.2) 9 (3.6) 7 (2.1) 43 (6.2) 51 (10.9) 4 (3.7)
History of bronchitis, n (%) 16 (0.9) 2 (0.8) 3 (0.9) 4 (0.6) 3 (0.7) 4 (4.2)
LVMMi, g/m2.7, n (SD) 43.9 (14.1) 38.4 (10.8) 40.2 (11.3) 44.4 (13.3) 47.7 (15.9) 50.0 (18.0)
LV EF (biplane), % (SD) 54.5 (7.8) 55.1 (7.2) 55.7 (6.8) 54.6 (7.8) 53.3 (8.5) 54.0 (8.9)
LAVi, ml/m2 (SD) 34.3 (12.0) 31.3 (8.6) 32.6 (9.8) 33.4 (11.3) 36.4 (12.7) 43.0 (19.4)
DT, ms (SD) 189.9 (58.0) 158.6 (37.3) 172.5 (40.7) 191.0 (53.0) 210.5 (68.6) 219.7 (71.5)
E/e′ ratio (SD) 8.0 (3.3) 6.3 (1.6) 7.0 (1.8) 7.9 (2.8) 9.1 (4.0) 11.3 (5.3)
E/A ratio (SD) 1.0 (1.6) 1.3 (0.4) 1.1 (0.3) 0.9 (0.3) 0.8 (0.4) 1.5 (6.4)
Myocardial GLS, % (SD) − 16.3 (3.2) − 17.4 (3.2) − 17.1 (2.9) − 16.3 (3.2) − 15.5 (3.1) − 15.7 (3.6)
Myocardial GLS, % (SD) Men − 15.3 (2.9) − 15.7 (2.7) − 16.0 (2.8) − 15.4 (2.9) − 14.9 (2.8) − 14.2 (3.6)
Myocardial GLS, % (SD) Women − 17.2 (3.2) − 18.5 (3.1) − 17.9 (2.8) − 17.1 (3.2) − 16.1 (3.2) − 16.9 (3.0)
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without treatment. In linear regression analysis adjusted for 
age and sex, 10 mm Hg increase of SBP resulted in a 0.2% 
decrease of myocardial GLS (β = 0.235; p < 0.001). After 
adjustment for age, sex, BMI, history of: MI, atrial fibril-
lation, angina, diabetes, stroke, arterial hypertension and 
breathlessness scale, SBP remained an independent predic-
tor of myocardial GLS decline (β = 0.146; p < 0.001).

Subclinical HF and myocardial GLS

In the subgroup without LV echocardiographic abnor-
malities (total n = 709), 120 (29.1%) of women and 100 
(33.8%) of men were categorized as SAHF individuals. 
Mean myocardial GLS (SD) (n) in those with SAHF were 
− 16.7 (2.5) % (n = 220) and − 17.9 (2.6) % (n = 489) in 
participants without SAHF (p < 0.001). In the SAHF pos-
itive group 3.2% reported dyspnea by exertion (mMRC 
scale ≥ 2, versus 1.6% in individuals without SAHF 
(p = 0.257).

Fig. 2   Age and sex-specific myocardial GLS means with 95% CI 
bands in general and healthy subsamples (n = 1747). The Tromsø 
Study (2015–2016). For “General” subsample: p-value (Difference 
between men and women by age groups): 40–49: p < 0.001; 50–59: 
p < 0.001; 60–69: p < 0.001; 70–79: p < 0.001; 80 + : p < 0.001. 
p-value (for change of mean myocardial GLS by age) Men: p < 0.001; 
Women: p < 0.001. Numbers for men and women: 40–49 (M99; 
W144) 50-59 (M144; W188) 60–69 (M314; W345) 70–79 (M200; 
W225); 80 + (M39; W49); Total n = 1747. For “Healthy” subsample: 
p-value (difference between men and women by age groups) 40–49: 
p < 0.001; 50–59: p < 0.001; 60–69: p < 0.001; 70–79: p = 0.009; 
80 + : p = 0.115. p-value (for change of mean myocardial GLS by 
age) Men: p = 0.001; Women: p < 0.001. Numbers for healthy: 40–49 
(M81; W119); 50–59 (M109; W155); 60–69 (M170; W230); 70–79 
(M72; W98); 80 + (M19; W15); Total n = 1068. GLS global longitu-
dinal strain, CI confidence interval

Table 2   Healthy individuals (%) by age groups and sex

The Tromsø Study (2015–2016)
a Healthy individuals: all excluding those with hypertension, diabetes, 
atrial fibrillation, heart failure, angina, myocardial infarction, stroke, 
chronic bronchitis and ejection fraction of the left ventricle < 50%

Age group (years) Proportion of healthya individuals

Men n/total (%) Women n/total (%)

40–49 81/99 (81.8) 119/144 (82.6)
50–59 109/144 (75.7) 155/188 (82.5)
60–69 170/314 (54.1) 230/345 (66.7)
70–79 72/200 (36.0) 98/225 (43.6)
80+ 19/39 (48.7) 15/49 (30.6)
p for trend < 0.001 < 0.001

Table 3   LLN for myocardial GLS expressed as percentage (95% CI)

The Tromsø Study (2015–2016)
LLN lower limit of normal, GLS global longitudinal strain, CI confi-
dence interval
a 95% confidence intervals were calculated using bootstrapping with 
1000 samples

Age group 
(years)

Men Women

LLN (%) 95% CIa LLN (%) 95% CIa

40–49 − 10.9 − 12.0, − 10.1 − 12.7 − 14.2, − 11.5
50–59 − 11.0 − 11.9, − 9.9 − 12.7 − 13.7, − 11.6
60–69 − 10.9 − 11.6, − 10.3 − 11.5 − 12.4, − 10.7
70–79 − 10.5 − 11.5, − 9.5 − 10.1 − 11.5, − 8.7
80+ − 7.8 − 11.0, − 5.4 − 10.9 − 13.8, − 9.0
All ages 

(40–99)
− 10.7 − 11.2, − 10.2 − 11.7 − 12.2, − 11.2

P for trend 0.522 0.801

Table 4   Odds ratios for factors associated with abnormal myocardial 
GLS

The Tromsø Study (2015–2016)
a For each risk factor the OR for having an age and sex-specific abnor-
mal GLS was estimated in a separate model
n of observations used 1746; Abnormal myocardial GLS (n = 100), 
Normal myocardial GLS (n = 1646)
BMI body mass index, MI myocardial infarction, GLS global longitu-
dinal strain, mMRC scale modified Medical Research Council breath-
lessness/dyspnea scale

Parameter Odds ratio (models with various predictorsa)

Point estimates Wald 95% CI limits p-value

Diabetes 2.91 1.52, 5.55 0.001
BMI, kg/m2 1.23 1.17, 1.29 < 0.001
Angina 2.68 1.24, 5.80 0.012
MI 2.47 1.24, 4.96 0.011
Atrial fibrillation 2.04 1.02, 4.06 0.043
Stroke 2.67 1.11, 6.43 0.029
Hypertension 1.52 0.96, 2.39 0.072
mMRC scale ≥ 2 1.93 0.81, 4.59 0.138
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Inter‑observer variability of GLS

We benchmarked the single reader (MS) against another clini-
cal echocardiographist (AR) who had extensive experience of 
routine measurement of myocardial GLS. Analyses of myocar-
dial GLS reproducibility (Online Resource 1) and Bland–Alt-
man plots visual assessment (Fig. 4) showed good to excellent 
intra- and inter-observer agreement levels.

Discussion

This is the first study to our knowledge to explore GLS pat-
terns and its associations to CVD risk factors and SAHF 
in a general population. The main results of this study 
were the following: (1) mean GLS in healthy participants 
aged 40–99 years was − 15.9 (2.7) % in men and − 17.8 
(3.1) % in women with significant change of GLS by age 
in both sexes; (2) GLS LLN was estimated as − 10.6% for 
men and − 11.7% for women aged 40–99 years; (3) GLS 
declines in women with increase of SBP; (4) Increase of 
SBP by 10 mm Hg results in 0.2% GLS reduction in age 
and sex adjusted regression model; (5) Myocardial GLS in 

Table 5   Mean myocardial GLS 
(SD) (95% CI) (n) adjusted 
for age and sex according to 
the history of the different risk 
factors

The Tromsø Study (2015–2016)
GLS global longitudinal strain, MI myocardial infarction, HF heart Failure, mMRC scale modified Medical 
Research Council breathlessness/dyspnea scale, CI confidence interval, SD standard deviation

HF risk factors 
(total n = 1747)

Mean GLS (SD) (95% CI) (n) p-value

Present Absent

Self-reported HF − 14.3 (3.5) (− 15.1; − 13.4) (51) − 16.4 (3.1) (− 16.6; − 16.3) (1696) < 0.001
Diabetes − 14.8 (3.2) (− 15.4; − 14.2) (101) − 16.5 (3.1) (− 16.6; − 16.3) (1646) < 0.001
mMRC scale ≥ 2 − 14.8 (3.5) (− 15.5; − 14.1) (69) − 16.5 (3.1) (− 16.6; − 16.3) (1678) < 0.001
MI − 15.2 (3.1) (− 15.8; − 14.6) (95) − 16.5 (3.2) (− 16.6; − 16.3) (1652) < 0.001
Angina − 15.5 (3.5) (− 16.3; − 14.8) (70) − 16.4 (3.1) (− 16.6; − 16.3) (1677) 0.017
Hypertension − 15.9 (3.0) (− 16.1; − 15.6) (487) − 16.6 (3.2) (− 16.8; − 16.4) (1260) < 0.001
Stroke − 15.8 (3.3) (− 16.6; − 15.0) (52) − 16.4 (3.2) (− 16.5; − 16.3) (1695) 0.138
Atrial fibrillation − 15.9 (3.3) (− 16.5; − 15.4) (112) − 16.4 (3.2) (− 16.6; − 16.3) (1635) 0.090

Fig. 3   Mean myocardial GLS levels stratified by SBP, sex and anti-
hypertensive treatment. The Tromsø Study (2015–2016). Means are 
adjusted for age and estimated for a mean age of 63 years using linear 
regression. p-value between SBP groups: Men (Untreated) = 0.206; 
Women (Untreated) < 0.001; Men (Treated) = 0.276; Women 
(Treated) = 0.898. SBP systolic blood pressure; GLS global longitudi-
nal strain, SD standard deviation

Fig. 4   Bland-Altman plot for inter-observer study. The Tromsø 7 
Study. Difference in GLS: difference between observer AR and 
observer MS measurements (AR minus MS); bMean GLS: mean GLS 
of two observers AR and MS; SD: standard deviation; GLS: Global 
longitudinal strain; AR: observer 1; MS: observer 2. *P-value for lin-
ear regression model [y (difference in GLS) = × (mean GLS)] = 0.408
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individuals with SAHF was 1.2% lower (p < 0.001) than in 
participants without SAHF.

Myocardial GLS in general population

Our findings of a decline in myocardial GLS with age con-
firmed previous studies describing the same age and sex 
related myocardial GLS patterns [15, 33]. However, there 
was a number of controversial reports with no detected 
myocardial GLS age change in general or healthy samples 
[34–36]. Additionally, we found that change in myocardial 
GLS by age disappears in men when individuals with echo 
abnormalities were excluded from the “healthy” subgroup.

Mean myocardial GLS ± SD values derived from aver-
aging of endo- mid- and epicardial layer’s GLS values in 
healthy participants in The Tromsø 7 Study sample were 
similar to those published in Dalen et al. work (− 15.9 ± 2.3% 
in men and − 17.4 ± 2.3% in women) based on data of 1266 
healthy individuals participated in HUNT study of Norway 
[37]. However, other authors found significantly higher 
absolute values of mean myocardial GLS in healthy subjects. 
One of the possible reasons of different GLS values found in 
healthy individuals among the studies is the use of the dif-
ferent myocardial layers (endo- midwall or epicardial layer) 
for calculating the GLS since recent reports show endocar-
dial GLS approximately 30% higher than epicardial GLS 
[35]. In the guidelines GLS level of − 20% is considered 
as the borderline in healthy subjects [13]. Guideline based 
GLS LLN values by vendor (GE Software) were higher 
than values we found. It is also important that myocardial 
GLS values of our study were derived using EchoPac ver-
sion (EchoPac ver. 113) which was newer than these listed 
in the guidelines [13]. Castel et al. reported that upgrades 
of speckle tracking software were associated with signifi-
cant changes in GLS values [38]. It is worth to mention 
that sample sizes in HUNT and Tromsø studies were much 
larger than in the other studies. Thus, Alcidi et al. reported 
myocardial GLS ± SD level of − 22.7 ± 1.8% in a sample of 
266 healthy individuals [15]. The authors found significant 
change of myocardial GLS by age even though the partici-
pants age (mean ± SD) was 39.2 ± 17.5 years compared with 
63.0 ± 10.8 in Tromsø 7 population sample.

Taking into the account the small sample size of “healthy” 
individuals in higher age groups, we assessed bootstrapped 
95% CI for myocardial GLS LLN. We found no significant 
change of LLN by age neither in men nor women.

Our results indicate that subclinical myocardial dysfunc-
tion assessment should not be limited to considering hyper-
tension alone, as myocardial GLS is influenced by other 
comorbidities and risk factors as well. We found that BMI 
was associated with presence of myocardial GLS below 
LLN. It was consistent with previous research of Bendiab 
et al. [39] where most of the risk factors were inversely 

correlated with myocardial GLS. The BMI has been 
described as an independent factor for low myocardial GLS, 
previously [39]. However, the associations between myo-
cardial GLS and self-reported dyspnea symptoms are more 
complicated. Relatively low myocardial GLS (SD) − 14.8 
(3.5) % in those with mMRC scale ≥ 2 can be explained by 
the characteristics of the selected sample and association of 
abnormal myocardial GLS with diastolic dysfunction and 
LV filling pressures [40]. Another explanation of the low 
myocardial GLS levels in patients with dyspnea could be the 
unrecognized systolic dysfunction which prevalence accord-
ing to earlier reports reaches 15.7% (95% CI 12.9–19.0) in 
individuals aged 65 years or older [41].

Myocardial GLS and BP

In our study we tried to expand the current knowledge about 
factors contributing to myocardial GLS decline. SBP was 
chosen as such as a factor due to its known association to 
myocardial GLS in different patient groups [16] and the 
high prevalence of arterial hypertension worldwide. Another 
important aspect is that myocardial GLS decline in hyper-
tensives reflects subclinical damage of LV structure and 
function due to early microscarring of the subendocardium, 
especially in the highly hypertrophied muscles [42]. Fur-
thermore, increased afterload is known to prolong contrac-
tion and delay active relaxation [43] and reduce longitudinal 
strain and strain-rate [44].

We have found mean myocardial GLS decline up to 
− 15.9% in patients with arterial hypertension. This value 
was higher than GLS LLN in both men and women with 
the significant difference with those without arterial hyper-
tension (GLS = − 16.6%, p < 0.001). Adjusted for age and 
sex 10 mm Hg SBP increase was responsible for 0.2% of 
myocardial GLS decrease. This confirmed the association 
between SBP and myocardial GLS found in earlier studies 
[39].

We assessed the sex-related LV function in hyperten-
sive individuals. Previous reports have found contradict-
ing results [45]. We found that in women myocardial GLS 
declined from − 18.4% in SBP group of < 120 mm Hg to 
− 17.1% in those within SBP > 180 mm Hg (p < 0.001). We 
revealed a similar decline among men, however without sig-
nificant difference between SBP groups. Presumable cause 
could be the small number of men with the highest SBP lev-
els (only 9 persons in the SBP > 180 mm Hg group). Mean 
myocardial GLS was lower in the high-normal SBP group 
of 130–139 mm Hg compare to normal SBP groups in both 
men and women, showing that longitudinal function of LV 
was already impaired in these groups of study participants. 
The previous report by Tadic et al. showed that myocar-
dial GLS was lower in high-normal BP individuals with 
no such BP effect on radial LV function [46]. We revealed 
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that women have larger values of myocardial GLS in both 
healthy individuals as well as in those with CVD risk factors. 
Partly it could be explained by pathophysiological diversities 
between men and women reflected in complex relationships 
between LV mechanics and sex hormones. Thus, Salem et al. 
showed that higher levels of testosterone in men were associ-
ated with decreased myocardial GLS [47].

It is worth to mention that hypertensive individuals are 
characterized by increased afterload which leads to thicken-
ing of the LV wall and LV hypertrophy development [48] 
as a compensatory mechanism. Some studies demonstrated 
that decreased longitudinal systolic function cannot be 
attributed to the afterload increase in patients with arterial 
hypertension and LV hypertrophy [49], which might be due 
to low effect of increased blood-pressure on the compen-
satory hypertrophied ventricle, where the smaller ventricle 
and thicker walls lead to reduced wall stress. Kim at al. in 
a study of 145 hypertensive patients [11] showed that dif-
ferent ventricular regions have different susceptibility for 
stress induced afterload with inhomogeneous development 
of ventricular hypertrophy. Myocardial GLS has been shown 
to be lower in ventricular regions with more pronounced LV 
hypertrophy. Concerning the fact that in our study sample 
individuals with 70 + years of age had mean LVMMi > 47 g/
m2.7, we assume that arterial hypertension exerts its nega-
tive influence on myocardial GLS through microscarring and 
insufficient myocardial perfusion in LV hypertrophy.

Myocardial GLS and SAHF

Identification of individuals with SAHF who are at risk of 
developing advanced HF stages appears to be a promis-
ing CVD primary prevention strategy. In most of the cases 
patients without symptoms are rarely involved in screen-
ing procedures until development of later HF stages. In our 
study we found that mean GLS (SD) in individuals with 
SAHF − 16.7 (2.5) % was lower compared to those without 
− 17.9 (2.6)% (p < 0.001). The components defining SAHF 
(elevated SBP, diabetes, obesity or atherosclerosis) were 
found to be associated with abnormal GLS, possibly indicat-
ing the presence of subclinical damage of the myocardium 
[20, 21]. It is worth to mention that myocardial GLS may 
have benefits in early HF detection because symptoms of 
HF are not always present in even more advanced HF stages 
(Stage B HF). Thus, Redfield et al. reported that 14% of 
patients with dilated cardiomyopathy and LVEF < 50% had 
never experienced any of HF symptoms [50].

Myocardial GLS and vendor‑specific software

Different vendor-specific image postprocessing algorithms 
were earlier considered as an issue which could potentially 
limit clinical use of the strain imaging [51]. However, 

launching of EACVI/ASE Strain Standardization Task Force 
[30] resulted in increased number of evidence on improve-
ment of concordance in strain imaging between vendors 
[52]. Yingchoncharoen et al. reported no significant dif-
ference of GLS variability in healthy individuals between 
EchoPac and non-EchoPac software (p = 0.98) [16]. Based 
on these findings we assume that values of myocardial 
GLS in healthy population of our study is valid not only for 
EchoPac but also for another vendor’s software.

Strengths and limitations

This is a large population-based study with a large age range 
providing a good power to estimate the normal range of nor-
mal strain values. Strain is reduced with increasing afterload. 
Possible use of afterload adjustment for example, indexing 
myocardial GLS to the population-based average BP may 
solve the issue, however data on SBP and DBP during echo 
examination in The Tromsø 7 Study is lacking. Single center 
study design could be a possible source of reduced validity 
of the findings. Another limitation is the low sample size 
above 80 years of age. Data on use of cardiotoxic drugs 
is not available in The Tromsø Study and accordingly not 
included as risk factor in SAHF definition.

Clinical implications

The results we demonstrated could potentially be used in 
control of the patients with SAHF with help of GLS moni-
toring over time. Age-related GLS LLN is a promising 
parameter for clinical follow-up in group of patients with 
subclinical HF due to its sensitivity for early myocardial 
function impairment.

Conclusions

In large unselected samples from the general population 
myocardial GLS values were found both in the total and 
healthy subsamples. Mean myocardial GLS declined with 
age in both sexes in general and in healthy participants. SBP 
increase was associated with GLS decline in women. GLS 
was decreased in subjects with subclinical HF. The close 
association of GLS to SAHF parameters indicates its impor-
tance for subclinical heart disease diagnostics.
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