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Abstract
The diagnostic imaging techniques currently used to evaluate the arterial atherosclerosis hinge on the manual marking and 
calculation of the stenosis degree. However, the manual assessment is highly dependent on the operator and characterized by 
low replicability. The study aimed to develop a fully-automated tool for the segmentation and analysis of atherosclerosis in 
the extracranial carotid arteries. The dataset consisted of 59 randomly-chosen individuals who had undergone head-and-neck 
computed tomography angiography (CTA), at the Tampere University Hospital, Tampere, Finland. The analysis algorithm 
was mainly based on the detection of carotid arteries, delineation of the vascular wall, and extraction of the atherosclerotic 
plaque. To improve the vascular detection rate, the model-based and volume-wide analytical approaches were deployed. A 
new fully-automated vascular imaging (VASIM) software tool was developed. For stenosis over 50%, the success rate was 
83% for the detection and segmentation. Specificity and sensitivity of the algorithm were 25% and 83%, respectively. The 
overall accuracy was 71%. The VASIM tool is the first published approach for the fully-automated analysis of atherosclerosis 
in extracranial carotid arteries. The tool provides new outputs, which may help with the quantitative and qualitative, clinical 
evaluation of the atherosclerosis burden and evolution. The findings from this study provide a basis for the further develop-
ment of automated atherosclerosis diagnosis and plaque analysis with CTA.
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Abbreviations
CCA   Common carotid artery
CT  Computed tomography
CTA   Computed tomography angiography
CVAs  Cerebrovascular accidents
CVDs  Cardiovascular diseases

ECA  External carotid artery
HU  Hounsfield unit
ICA  Internal carotid artery
MRI  Magnetic resonance imaging
NASCET  North American Symptomatic Carotid Endar-

terectomy Trial
SD  Standard deviation
TAYS  Tampere University Hospital
VASIM  Vascular imaging

Introduction

Cardiovascular diseases (CVDs) are the leading cause of 
death worldwide. According to the World Health Organi-
zation, in 2012, 37% of premature deaths were caused by 
CVDs. This translated to 17.5 million deaths, of which 
6.7 million were due to cerebrovascular accidents (CVAs) 
[1, 2]. Majority of CVAs are ischemic strokes, caused mainly 
by atherosclerosis.
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Existing research recognizes the critical role of early 
diagnosis and treatment of atherosclerosis in CVDs mor-
tality prevention [3]. A considerable amount of literature 
has been published on diagnostic accuracy that has been 
improved by new imaging techniques, image processing, and 
image analysis methods [4, 5].

Computed tomography angiography (CTA), is a common 
modality for imaging the carotid arteries. Currently, evaluat-
ing atherosclerotic lesions is based on the degree of maximal 
luminal stenosis, and the composition and morphology of 
the plaque [6–8]. However, assessment of these parameters 
is performed manually.

The manual assessment has several major limitations, 
including operator dependency, long analysis time, ques-
tionable analysis dependability and repeatability [9]. It has 
been reported that the inter- and intra-operator variability 
(coefficients of variation) for plaque area measurements 
were 19% and 8%, respectively [10]. Despite these major 
limitations, manual stenosis level measurement, e.g., using 
the North American Symptomatic Carotid Endarterectomy 
Trial (NASCET) [11] criterion, remains the main accepted 
metric for determining the urgency of prevention and treat-
ment. There remains a need for a fully-automated method of 
carotid artery analysis, providing both satisfactory running 
time and reliability.

The previous research by the authors has established: (i) 
the initial semi-automated segmentation of the carotid arter-
ies based on manual seeding [6], (ii) the fully automated 
detection of the carotid arteries allowing to avoid manual 
seeding [9], and (iii) the automated carotid walls contour 
segmentation [12].

The main aim of this study was to develop a fully-auto-
mated tool for atherosclerosis segmentation and analysis 
in the carotid arteries. This paper describes the design and 
implementation of a new vascular imaging (VASIM) soft-
ware tool, which is a fully-automated and structured integra-
tion of all methods previously established by the authors.

Materials and methods

Study population

The source population for this study were patients obtained 
from the Tampere University Hospital (TAYS), Tampere, 
Finland, between the January 1st, 2008 and December 
31st, 2015. The study population was recruited retrospec-
tively from the TAYS database. All patients were selected 
randomly.

Inclusion criteria were defined a priori as follows: a 
patient with at least one head-and-neck CTA scan (i.e., aorta 
arch to skull apex). The exclusion criteria were defined as: 
patients with CT scan only (without CTA); patients with 

incomplete medical records, i.e., without sufficient data on 
CTA technical information.

From the TAYS patient’s population, all were randomly 
selected and the final study population consisted of 59 
patients (N = 59): 34 men (58%) and 25 women (42%). The 
mean age was 64 years (standard deviation (SD) 14), ranging 
from 12 to 83 years.

Head-and-neck CTA scans of all 59 individuals were ret-
rospectively reassessed, and the stenosis levels were manu-
ally calculated according to the NASCET criteria. Subse-
quently, based on the level of stenosis, individuals were 
included in one of the two groups—cases or controls. Cases 
were defined as individual carotids with stenosis ≥ 50%. 
Controls were all individual carotids with stenosis < 50%.

The study was approved by the Ethical Committee of 
Pirkanmaa Hospital District, Tampere, Finland (decision 
number R07210).

Imaging

CTAs were performed using helical, 64-slice, multide-
tector CT scanners; either a General Electric LightSpeed 
(slice thickness 1.25 mm; increment 0.5–0.7 mm; pixel size 
0.6–0.7 mm; 120 kVp; 130–327 mAs) or a Philips Brilliance 
CT 64-slice (slice thickness 1 mm; increment 0.5 mm; pixel 
size 0.42–0.49 mm; 120 kVp; 178–243 mAs). All of the 
images were exported in DICOM® standard, as a 512 × 512 
matrix.

To improve carotid artery contrast, one of the follow-
ing CTA contrast media was used: Iomeron® 350 mg/ml, 
Omnipaque® (350 mg/ml; General Electric), and Xenetix® 
(350 mg/ml; Guerbet). They were administered intrave-
nously (ulnar or palmar vein), in accordance with the manu-
facturers’ instructions.

Image analysis

VASIM’s image analysis algorithm was divided into five 
consecutive stages: (i) loading of the patient’s stack; (ii) 
carotid arteries detection, subdivided into airways segmenta-
tion and carotid segmentation; (iii) vascular wall delineation; 
(iv) atherosclerotic plaque extraction; (v) metrics, 2D tissue 
masks, 3D model calculation, and rendering. Figure 1depicts 
the general analysis diagram followed by VASIM.

Automatic detection of carotid arteries

The detection methodology was explained on an example 
of the Patient 3 (75 years-old male). This patient had previ-
ously suffered a transient ischemic attack, and had arterial 
hypertension and hyperlipidemia history. Carotid arteries 
component evaluation detected a plaque of mixed nature 
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(fibrosis, lipid pool, and calcification) located in the right 
internal carotid artery (ICA), causing a 75% stenosis.

Airways segmentation As in the previous study of the 
authors [9], the first step of the carotid arteries detection 
was creating an anatomical landmark, based on the upper 
respiratory tract (i.e., above the sternal angle) (Fig.  1a.1). 
The image analysis was restricted to the level of the auditory 
tube opening, which approximates the carotid canal level.

Airways provided the axis for a cylindrical volume-of-
interest. This enabled the detection of vascular trees rather 
than slice-wise circular structures. To create the airways 
models, a hard threshold of − 500 Hounsfield units was 
applied. To exclude the air surrounding a patient, objects 
connected to the volume borders were discarded. Figure 2 
shows an example of airways model for the Patient 3.

Additionally, the airways landmark enabled normalizing 
the dataset by the patient’s body size.

Automatic segmentation of  the  carotid vessel During the 
automatic analysis of CTA neck cross-sections, several 
structures can be misclassified as the carotid arteries, e.g., 
feeding tubes, needles, and jugular veins.

In the previous study [9], the algorithm identified carotid 
arteries between two anatomical structures: brachiocephalic 
artery bifurcation and circle of Willis. However, that method 
was dependent on manual seeding and parameterization. 
Therefore, here, a new method based on a fully-automated 
volume-of-interest analysis is presented.

In the first stage, a tilted cylinder (radius of 5 cm) was 
created around the airways, on the section between the most 
proximal and distant CTA slices. Subsequently, the result-
ant model was cleaned from lower attenuation tissues (e.g., 
lipid pools), using MATLAB’s native isovalue function. The 
airways divided objects into the right and left side. The divi-
sion enabled estimation of their interconnectivity. Single, 
uncompromised arteries were accepted as the final model. 
In the case of completely occluded arteries, their continuity 
was assessed distantly to the occlusion (Fig. 1a.2).

Sporadically, after thresholding, the algorithm presented 
objects that crossed the sagittal plane of the airways. Exam-
ples of such objects were the mandible and hyoid bone. The 
contrast between arteries and objects mentioned above may 
be insufficient to distinguish these structures. Figure 3 pre-
sents an example of a horizontal object (thyroid cartilage) 
connecting both arterial trees into a single volume.

The separation of the carotids and other objects was 
divided into the following steps: (i) volume skeletonization 
[13], (ii) skeleton nodes (branching points) location and 
removal, (iii) vertical degree evaluation of each resultant 
object, (iv) non-vertical removal, and (v) reconstruction of 
arterial trees using the acquired volume skeleton and the 
original 3D model. The bounding box dimension of each 

object was used to determine the vertical degree. Every 
object with a z/x-axis or z/y-axis ratio < 1.5 was discarded 
from the volume.

Fig. 1  VASIM protocol diagram
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The current methodology and handling of possible hin-
drances resulted in two carotid models. Each artery skel-
eton was recalculated and used to define the carotid area 

perpendicularly to the vascular curvature. This prevented 
incorrect cross-sections, e.g., in horizontal branches of the 
ICA.

To ensure contradistinction between the common carotid 
artery (CCA), ICA, and external carotid artery (ECA), the 
algorithm initially detected the CCA bifurcation. The bifur-
cation location was defined as the most proximal cross-sec-
tion where the number of objects increased from one to two, 
and the distance between their centroids was smaller than 
< 1 cm. The latter rule prevented potential errors caused 
by loops in the distant segment of the artery. The separa-
tion between ECA and ICA was conducted using the verti-
cal degree threshold as previously used in the separation 
between arterial tree and surrounding objects.

Segmentation of the outer carotid wall

To calculate the vascular wall thickness the lumen and 
carotid wall boundaries were delimitated. A method based 
on morphological operators and edge enhancers/detectors 
was used (Fig. 1b) to define the boundary of the carotid wall. 
This method was described in detail in a previous study by 
the group [12].

Fig. 2  Segmented airways for 
Patient 3 (seen from the anterior 
plane)

Fig. 3  Example of thyroid 
region spillage (Patient 3). a 
Two carotids visible with a 
horizontal structure joining both 
arteries into the same volume. 
b Model’s skeleton. c Verti-
cal elements of the skeleton. d 
Resulting model after connect-
ing vertical objects’ centroids in 
the original model
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Plaque volume extraction

For segmenting the carotid plaque and assessing its mor-
phology, a new method was developed. This was accom-
plished similarly to the airways segmentation. However, 
the threshold value was defined using the histogram of the 
maximum-intensity projections on the three axes. In each 
maximum-intensity projection, a threshold value based on 
the Otsu method [14] was calculated. Subsequently, the three 
values were averaged and applied to the 3D volume. The 
automatic threshold was deployed to address high variability 
in patient atherosclerosis level, which demanded a higher 
adaptability from the method. This considerably reduced the 
time required for plaque segmentation compared with the 
previously deployed algorithm [13] (Fig. 1c). Following this 
processing, a 3D rendering of the three major components of 
the carotid was produced. It presented lumen, the vascular 
wall, and any possible atherosclerotic plaque. Example of 
such a presentation is shown in Fig. 4. The plaques were 
poorly visualized as they are always located between the 
lumen and the outer vascular wall. Therefore, they were 
modeled in Fig. 4c with the open lumen path.

Metrics evaluated

The current protocol allows side-wise extraction of the fol-
lowing metrics: the minimum lumen area in the region of 
interest; the maximum area percentage occupied by the arte-
rial wall in a slice; the maximum area percentage occupied 
by the plaque; and the maximum stenosis of the carotid 
artery calculated by the algorithm (Fig. 1d). Moreover, loca-
tion-specific stenosis can be calculated for the CCA, ICA, 
and ECA. In our study, the region of interest was comprised 
of the CCA and ICA models, which were used for stenosis 
calculation. All of the stenosis values are calculated accord-
ing to the NASCET criteria, i.e., one minus the minimum 
lumen area in the region of interest divided by the assumed 
healthy lumen area in the region of interest. Prior to the 
NASCET stenosis calculation, the equivalent diameter of 
the perpendicular-corrected section of the vessel model was 
calculated.

Following the development of the automated stenosis 
assessment with the VASIM methodology, the data on man-
ually calculated stenosis values were obtained from medi-
cal records. The manual assessment was performed by an 
experienced radiologist beforehand, which ensured blinding 
to the VASIM results. Subsequently, the absolute difference 
between the manually and automatically calculated stenosis 
values was computed. Only arteries with both manually- and 
automatically-determined stenosis percentages were taken 
into consideration for the statistical calculations.

The classification as a case or control (binary classifi-
cation test) was based on the manually assessed level of 

stenosis. According to the NASCET, the demonstrated, 
conclusive benefit for carotid endarterectomy is observed 
in patients with symptomatic 70–99% ICA stenosis [11]. 
Notwithstanding, in this study, the cut-off point between 
cases and controls was stenosis of 50%. The justification for 
this cut-off point was the fact, that according to the European 

Fig. 4  Full rendering of the carotid structures (Patient 3). a Carotid 
walls (green). b Overlay of the semi-transparent lumen (red) and 
carotid open pathway (dotted blue line). c Carotid open lumen path-
way (dotted blue line) and calcified plaque elements (blue volumes)
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Association of Vascular Surgery endarterectomy is more 
appropriate for symptomatic 50–99% stenosis patients, and 
for asymptomatic 70–99% stenosis patients [15].

Furthermore, sensitivity, specificity, and accuracy of our 
method were assessed. The VASIM performance was evalu-
ated based on the tissue segmentation success rate, varia-
tion between manually and automatically calculated stenosis 
values, and the total analysis time. The Pearson’s coefficient 
was used for hypothesis test evaluation. The success of the 
segmentation was determined visually by the operator. The 
assessment was based on volume comparison and segmenta-
tion masks with the image stack for the verification of the 
correct tissue detection and segmentation (airway, lumen, 
wall, and plaque).

The atherosclerotic plaque accuracy evaluation based 
on the comparison with histopathology was not performed. 
It was previously demonstrated, that both endarterectomy 
procedure and pre-histopathological preparation affect the 
plaque’s morphology. Hence, the comparison between the 
in-vivo CTA plaque and the ex-vivo sample is impossible 
[16].

Finally, a user-friendly and intuitive graphical interface 
was developed.

VASIM and its underlying algorithms were developed 
and tested on a Lenovo workstation (Lenovo W541, Win-
dows 7 Enterprise, 64 bits, 4 2.80 GHz, 32.0 GB RAM) 
equipped with the MATLAB (version R2017a, Image Pro-
cessing Toolbox version 10.0, Signal Processing Toolbox 
version 7.4, and Statistical Analysis and Machine Learning 
Toolbox version 11.1).

Results

In this study, a new VASIM software tool was designed, 
developed, and used to assess atherosclerosis in the CCA 
and the cervical segment of the ICA.

The overall tissue segmentation (lumen, wall, and plaque) 
success rate was 83%, equivalent to 49 out of 59 correctly 
identified carotids. The average absolute difference between 
the manual and automated stenosis calculations was 37% 
(95% confidence interval 29–46%) (Tables 1, 2). The p-value 
for the automated and manual analysis was 0.2976.

Forty-two atherosclerotic plaques were identified in the 
study population (Table 1). Forty of them were located in 
the ICA, and two in the CCA. Based on the morphology, the 
plaques mentioned above can be classified into the following 
categories: 13 of mixed nature, 23 calcified, two ulcerated, 
two soft tissue, and two irregular.

VASIM’s overall accuracy was 71%. The average time for 
the whole procedure (loading of patient’s volume, airways 
segmentation, carotid detection and segmentation, vascu-
lar wall and plaque segmentation, quantitative results, 3D 

modeling, and saving of results) was 1381 s. The average 
analysis time was 1.62 s per slice. The number of slices 
was different for each patient. Table 2 presents the summary 
statistics for the stenosis metrics.

The detected carotid arteries were subsequently classified 
into two groups, i.e., stenosis < 50% and ≥ 50% (Table 3). 
The 32 manually-detected ≥ 50% stenoses were compared 
with the automated analysis performed with the VASIM.

In cases of stenosis ≥ 50%, the sensitivity and specificity 
were 83% and 25%, respectively. The confusion matrix used 
in the metrics calculation is presented in Table 4.

The VASIM interface provided three main functions 
(Fig. 5a): patient image stack loading, analyzing the data, 
and creating a 3D model. The facultative “Model” function 
allowed to obtain a 3D model, based on current window and 
level values. In Fig. 5a, the “Analyze” button is hidden as the 
analysis of the image was completed.

The user interface presented information on the patient 
and imaging parameters (Fig. 5b). Additionally, it showed 
values of the maximal stenosis for each carotid artery 
(Fig. 5c). Furthermore, the VASIM interface allowed the 
user to create an overlay of the segmented structures (wall 
and plaque) using both 2D and 3D lumen models (Fig. 5d).

The bottom panel of the VASIM interface provided a his-
togram, and image controls, which allowed to change the 
2D image stack visualization (Fig. 5e). The right side of 
the panel D presented a linearized arterial view (Fig. 5d). 
The panel F (Fig. 5f) provided multiple color maps options, 
which enabled tissue contrast regulation.

Discussion

This research aimed to develop a fully-automated tool for 
the segmentation and analysis of atherosclerosis in the CCA 
and ICA cervical segments. The main result of the study is a 
new VASIM software tool. To the authors’ knowledge, the 
VASIM is the first fully-automated, and user-independent 
tool for carotid arteries CTA images analysis.

In this study, the approaches previously presented by 
the authors in [6, 9, 12, 16] were revised, improved, and 
structured. The reliability of the methods mentioned above 
increased and the computational time for VASIM was 
reduced.

The new method presented in the study allows skipping 
the initial and final seed positioning. Unlike in our previ-
ous studies, finding two 3D objects in a given volume was 
unnecessary. This enabled the analysis of images of patients 
with complete occlusion. Also, the 3D object identification 
was improved by removing the need to find similar objects 
bilaterally to the central volume. Contrary to the previous 
methodology, it was possible to include arteries with loops.
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Table 1  Detailed information about age, sex of patients, localization and morphology of atherosclerotic plaque, and VASIM performance com-
pared with manual stenosis calculation

Patient Age Sex Location of the 
plaque

Composition of 
the plaque

Stenosis 
according to 
VASIM (%)

Stenosis 
according to 
the operator 
(%)

Absolute dif-
ference (%)

Plaque volume 
 (mm3)

Time (s)

Left Right Left Right Left Right Left Right Left Right Left Right Total Per slice

1 – F 0 71 122 94 1211 2.3
2 83 M ICA ICA C, Irr C, Irr 83 81 79 76 4 5 2879 1229 2286 3.8
3 75 M ICA ICA C C 0 92 29 75 29 17 0 867 1.9
4 70 M ICA ICA C C 96 76 19 79 77 3 806 880 381 0.6
5 54 M ICA M 0 87 78 78 662 134 0.3
6 72 F ICA ICA S M 0 76 90 58 90 18 22 23 787 1.8
7 79 M ICA M 100 97 70 27 232 260 426 0.7
8 72 M ICA ICA C C 34 65 85 73 51 8 0 0 687 2.3
9 73 M
10 59 M 67 0 707 682 1744 1.8
11 67 F ICA ICA M C 47 97 69 74 22 23 680 762 2185 2.1
12 34 F 60 89 100 40 185 176 1956 1.7
13 49 F 1063 870
14 56 M 100 100 274 138 1403 1.5
15 59 F 91 80 11 1085 277 930 0.9
16 78 F 15
17 50 F 63 89 3926 4048 3133 3.9
18 81 F ICA M 71 100 53 72 18 28 272 630 471 0.5
19 78 F ICA ICA C M 2 36 2 36 261
20 56 M 0 61 553 651 1977 2.2
21 60 M 0 97 459 1381 588 0.5
22 83 M 8
23 71 F ICA ICA C C 99 100 72 74 27 26 2013 1508 948 0.9
24 75 M 65 45 2608 2.9
25 72 M ICA C 100 92 16 76 1007 863 785 0.8
26 62 M CCA ICA C C 96 95 13 82 822 1320 522 0.6
27 77 M ICA S 90 100 40 50 395 659 686 0.7
28 72 F 58 0 839 578 2004 2.2
29 12 F 0 0 222 0.5
30 66 F 64 0 1117 926 2126 1.9
31 72 M 52 94 3385 886 0.9
32 69 F CCA C 100 86 80 20 620 507 1442 2.9
33 56 M 75 100 44 78 391 0.6
34 69 F
35 43 F 96 1244 4266 4.6
36 70 F ICA ICA C C 80 100 80 100
37 55 M ICA ICA M 95 95 83 77 12 18 183 26 387 0.4
38 77 M 100 1234 1174 699 0.7
39 81 F 84 100 1306 0 305 0.3
40 45 M
41 66 M ICA M 100 100 80 20 604 0.6
42 77 M 87 885 0.8
43 58 F 70 73 245 186 392 0.7
44 37 M 1458 1471
45 71 M ICA M 88 90 80 8 91 93 4630 4.7
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The presented research adopted a more extensive study 
population (N = 59). The study population enclosed both 
healthy and diseased patients. The presence of healthy 

patients addresses the importance of early diagnosis as a 
preventive measure. Moreover, the control group enabled 
for the software adaptation to low stenosis values, allow-
ing analysis among patients with greater differentiation of 
atherosclerotic lesions. However, higher stenosis levels pre-
sented a higher divergence.

In our study, the carotid areas were measured as the per-
pendicular cross-sections of the lumen to the carotid vessel 
path. We believe that this gives a more specific indicator 
than the diameter measured on an individual slice, which is 
the clinical routine method in the manual analysis. However, 
this complicates the comparison of the methods, and can 
partially explain the difference, which is reported in this 
paper, for manually and automatically calculated stenosis. 
Other possible reasons are as follows: (i) different locations 
used for the minimum area and diameter measurements; (ii) 
the pre-processing of the data before the manual analysis 
[filtering by radiology workstations and manual improve-
ment performed by an operator (e.g., for partial-volume 
effect)]; (iii) different measuring vectors used for manual 
and automatic measurements of the artery diameter.

The algorithm presented in this manuscript is used to 
assess the severity of atherosclerosis in the CCA and ICA 
cervical segments, i.e., from the carotid bifurcation until 
the carotid canal. The anatomical relationship of the ICA 
to the lateral mass of the atlas (C-1) (the location where 
ICA is closest to bone tissue) was assessed by Hoh et al. 

Table 1  (continued)

Patient Age Sex Location of the 
plaque

Composition of 
the plaque

Stenosis 
according to 
VASIM (%)

Stenosis 
according to 
the operator 
(%)

Absolute dif-
ference (%)

Plaque volume 
 (mm3)

Time (s)

Left Right Left Right Left Right Left Right Left Right Left Right Total Per slice

46 73 M ICA C 99 90 28 71 393 498 0.5
47 55 M ICA U 72 100 42 58 655 565 404 0.4
48 57 M ICA M 81 100 60 21 412 92 553 0.6
49 47 F 79 0 816 215 231 0.3
50 77 F 66 81 2088 343 3375 3.5
51 64 M ICA ICA U M 44 84 44 84 956
52 57 F ICA M 0 30 100 100 1206 1.3
53 73 M ICA 100 61 50 11 4288 543 3911 4.1
54 54 M 74 68 1072 906 3339 3.3
55 47 M ICA ICA C C 0 100 38 63 38 37 143 338 0.4
56 48 F 87 60 2237 2.6
57 76 M 0 63 269 835 1510 1.8
58 75 M ICA M 63 85 80 17 1953 2404 2314 2.3
59 80 F ICA ICA C C 100 100 72 73 28 27 3296 3917 1807 2.2

Sex: M male, F female
Location of the plaque: ICA internal carotid artery, ECA external carotid artery, CCA  common carotid artery
Composition of the plaque: M mixed plaque, C calcified lesion, U ulcerated lesion, S soft lesion, Irr irregular plaques

Table 2  Summary statistics for the stenosis metrics

Mean SD 

St
en

os
is Manual 65% 22 % 

Automatic 74 % 33 % 
Absolute Difference 33% 29% 

Table 3  Data on the number 
of detected carotid arteries, 
classified by stenosis level

< 50%
stenosis

≥ 50%
stenosis

Manual 11 32
Automatic 19 75

Table 4  Confusion matrix for stenosis over 50%

Manual 
Positive Negative 

V
A

SI
M

 

Positive 25 6 

Negative 5 2 
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[17]. The group studied 100 head-and-neck CT scans. The 
shortest distance between the ICA and lateral mass of C-1 
was 3.5 mm (SD 1.5 mm) and 3.9 mm (SD 1.6 mm) for the 
left and the right ICA, respectively. The minimum size of a 
single pixel in CTA scans analyzed by VASIM ranged from 
0.4 to 0.7 mm, and maximum slice thickness ranged from 
1.0 to 1.25 mm. As the scans were analyzed on pixel-basis, 
no difficulties in distinguishing vertebrae or foreign objects 
from the calcified plaque were encountered.

The new metrics reflecting flow dynamics [18–20] and 
plaque stability may be material for both asymptomatic 
and symptomatic atherosclerosis patients. To date, all stud-
ies in carotid artery flow dynamics area have mainly been 
performed with magnetic resonance [20–24]. Although the 
presented study focuses only on CT techniques, the findings 
may well have a bearing on MRI modalities. In the future, 
the methods used for analysis of CT images with VASIM 
could be applied to MRI interpretation, subsequently to 
adapting the software for that modality. One final possible 
future application of VASIM is the ability to perform patient 
follow-up, both for disease progression and after-surgery 
assessment.

The presented methodology could be expanded to auto-
matically classify plaque composition using attenuation dis-
crimination or texture analysis. The composition is usually 

analyzed by evaluating the plaques’ components, such as 
the lipid pool or the calcified cap. Information on the mor-
phology of the plaque is a factor that modulates urgency for 
surgical treatment. As MRI techniques provide greater soft 
tissue contrast, adapting VASIM algorithm to this modality 
would produce better results in the analysis of the plaque 
composition. Furthermore, because of the more and more 
pervasive role of artificial intelligence in medicine, VASIM 
can have a more prominent role in the fusion of image pro-
cessing and machine learning in medical imaging report-
ing [25–29]. Such developments can lead not only to full 
automation of the analysis but also increasing the feasibility 
of applying such methods in low resource settings, where 
specialists are less frequent or even inexistent. The fusion of 
VASIM with artificial intelligence also has potential in the 
growing field of telemedicine, where it can be applied as a 
preliminary assessment before operator evaluation.

The presented study was characterized by the following 
limitations: dependence on the prior stage of the analysis; 
possible ICA misclassification in case of its total occlusion; 
manual assessment performed by only one operator; improv-
able analysis time; unsatisfactory algorithm specificity.

The main study limitation was dependence on the prior 
stage of the analysis, e.g., if the carotid model was not properly 
acquired, accurate vascular wall segmentation was impossible. 

Fig. 5  VASIM interface (example of Patient 3). a VASIM controls. b Patient’s information. c Stenosis level. d Patient stack, renderings, and lin-
earizations. e Histogram-based window and level controls. f Overlay masks’ control
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Moreover, in the case of total stenosis, the correct determina-
tion of the segment distant to the occlusion was challenging. 
It sometimes resulted in misclassification of the ECA’s distant 
section as the ICA.

Another study limitation was the fact, that the manual ste-
nosis degree evaluation was performed by only one trained 
radiologist, hindering any inter- and intra-operator variability 
assessment. In addition, we did not have an actual gold stand-
ard to check which measurement (manual vs. automatic) was 
the most accurate. Therefore, the only feasible comparison was 
between the manually and automatically measured degrees of 
stenosis.

The average analysis time of 1381 s per patient (1.62 s 
per slice) remains still long. The carotid path tracking was 
the most time-consuming step of the analysis. Moreover, the 
presented methodology involved saving intermediate results, 
which was critical to the time efficiency. Designing a more 
efficient algorithm architecture and coding it in a more efficient 
programming language is crucial. Nevertheless, usually, the 
radiological analysis of images is not performed in real-time, 
allowing the VASIM to be run beforehand.

The VASIM algorithm was somehow oversensitive. 
Although the algorithm sensitivity was 83%, its specificity was 
only 25%. A possible explanation of the oversensitivity could 
be the VASIM’s tendency to force the segmentation of full 
arteries. This might cause occluded arteries to be neglected, or 
misclassification of fibrosis-calcification plaque tissues as the 
lumen. Notwithstanding these limitations, the overall VASIM 
accuracy was 71%.

Despite its limitations, the study certainly adds to the rap-
idly expanding field of automatic CTA image analysis. The 
aim of the study, i.e., creating a software tool that could be 
used for carotid arteries automated analysis, with an emphasis 
on atherosclerosis, was mostly met.

The present research enhanced our previous efforts and 
produced higher success rates, both in carotid tree 3D volume 
detection and segmentation (73% vs. 83%) [9]. Besides, this 
updated version of VASIM was able to detect single carotid 
arteries, without the need to detect arteries bilaterally [9]. The 
software was tested in challenging datasets with different tis-
sues and anomalous structures (e.g., plaques, intima-media 
thickening, and lipid pools) produced by different CT equip-
ment and imaging parameters. Despite improving these areas, 
there is a need for further development to ensure robustness 
for use in patients with a wide range of artifacts, clinical and 
imaging setups, atherosclerotic burden, and anatomy.

Conclusions

The authors designed and presented the VASIM, a tool for 
detection, segmentation, and analysis of atherosclerosis in 
the CCA and the cervical segment of the ICA. The VASIM 

is the first comprehensive, fully-automated, and user-inde-
pendent tool for carotid arteries CTA images analysis.

The VASIM achieved a performance of 83%. The aver-
age processing time was 1381 s per patient. The accuracy, 
sensitivity, and specificity values were 71%, 83%, and 25%, 
respectively.

The findings from this study contribute in several ways 
to the field of methods for arterial assessment and provide a 
basis for the further development of automated atheroscle-
rosis diagnosis and plaque analysis with CTA.
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