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Abstract
To explore the diagnostic performance of a machine-learning-based (ML-based) computed fractional flow reserve (cFFR) 
derived from coronary computed tomography angiography (CCTA) in identifying ischemia-causing lesions verified by 
invasive FFR in catheter coronary angiography (ICA). We retrospectively studied 117 intermediate coronary artery lesions 
[40–80% diameter stenosis (DS)] from 105 patients (mean age 62 years, 32 female) who had undergone invasive FFR. CCTA 
images were used to compute cFFR values on the workstation. DS and the myocardium jeopardy index (MJI) of coronary 
stenosis were also assessed with CCTA. The diagnostic performance of cFFR was evaluated, including its correlation with 
invasive FFR and its diagnostic accuracy. Then, its performance was compared to that of combined DS and MJI. Of the 117 
lesions, 36 (30.8%) had invasive FFR ≤ 0.80; 22 cFFR were measured as true positives and 74 cFFR as true negatives. The 
average time of cFFR assessment was 18 ± 7 min. The cFFR correlated strongly to invasive FFR (Spearman’s coefficient 
0.665, p < 0.01). When diagnosing invasive FFR ≤ 0.80, the accuracy of cFFR was 82% with an AUC of 0.864, which was 
significantly higher than that of DS (accuracy 75%, AUC 0.777, p = 0.013). The AUC of cFFR was not significantly different 
from that of combined DS and MJI (0.846, p = 0.743). cFFR ≤ 0.80 based on CCTA showed good diagnostic performance for 
detecting ischemia-producing lesions verified by invasive FFR. The short calculation time required renders cFFR promising 
for clinical use.

Keywords Coronary computed tomographic angiography · Fractional flow reserve · Invasive coronary angiography · 
Diagnostic performance · Machine-learning-based cFFR

Introduction

Invasive fractional flow reserve (FFR) is a well-established 
clinical standard for identifying ischemia-causing lesions to 
guide revascularization for better prognosis [1–3]. Recently, 
the application of computational fluid dynamics (CFD) to 
coronary computed tomography angiography (CCTA) 
allowed for CT-FFR  (FFRCT of HeartFlow and cFFR of 
Siemens) to be calculated noninvasively, achieving satis-
factory diagnostic performance, using invasive FFR as the 
reference standard [4–9]. However, the CFD-based model, 
especially the three-dimensional  FFRCT, has high compu-
tational demands, which limits on-site clinical use [10]. 
Recently, a new version of cFFR based on machine learning 
was introduced after being trained on a large database gen-
erated from CCTA anatomies and CFD-base computation 
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[11]. The trained model provides computational FFR values 
at all locations along the coronary arteries, correlating excel-
lently (0.9994, p < 0.001) with CFD-based cFFR and well 
(0.729, p < 0.001) with invasive FFR. Most importantly, the 
machine-learning model reduces the execution time by more 
than 80 times compared with the CFD-based method, allow-
ing for almost real-time assessment of cFFR [11].

Before machine-learning training, the coronary stenosis 
parameters are considered as follows: (1) 0–3 stenosis on 
main branches and 0–2 stenosis on side branches, (2) the 
maximum degree of radius stenosis, (3) the total length, 
(4) the location of the stenosis center, (5) the length of the 
segment with minimum radius, (6) the overall degree of 
tapering along the stenosis, and (7) bifurcation stenosis. By 
applying these parameters, 12,000 coronary geometries are 
generated, covering many common characteristics of path-
ological situations encountered in clinical practice, except 
for rare coronary anomalies and aneurysm [11]. The cFFR 
value (target value in the training step) for the 12,000 coro-
nary geometries is finally computed throughout the entire 
coronary artery tree using a reduced-order computational 
blood-flow model [12].

The machine-learning model maps the coronary anatomy 
to the computed value of cFFR. It is trained using a deep 
neural network with four hidden layers. The input layer has 
28 neurons corresponding to the different features computed 
from the coronary anatomy, including local geometric fea-
tures and upstream and downstream geometric features. 
The four hidden layers contain 256, 64, 16, and 4 neurons, 
respectively, and use the sigmoidal activation function. 
Finally, the output layer has a single neuron with the linear 
activation function. The entire network is optimized using 
a mean-squared loss function with a stochastic gradient 
descent algorithm. The generated 12,000 coronary anato-
mies and corresponding cFFR values are used to train the 
model. After the model is trained, it can be used to compute 
the cFFR value along the coronary tree from the coronary 
anatomy according to CCTA images [11].

The validation of ML-based cFFR was carried out on 
synthetic-anatomical and patient-specific models. As a 
result, the ML-based cFFR was confirmed to have excellent 
correlation to CFD-based FFR in both models (r = 0.9998, 
p < 0.001, and p = 0.9994, p < 0.001). At the same time, the 
ML-based cFFR proved to have good diagnostic accuracy 
at 83.2% against the invasive FFR measurement [11]. Lim-
ited independently-verified data have been reported so far. 
Here, a group of 105 cases with invasive FFR measurement 
was employed to assess the diagnostic performance of the 
ML-based cFFR.

On the other hand, several previous studies have found 
that the performance of identifying lesion-specific ischemia 
could be improved by considering the amount of myocar-
dium at risk based on invasive catheter angiography (ICA) 

and CCTA data [13–16]. Similarly, the subtended myocar-
dial mass defined by CCTA has been confirmed to enhance 
the ability of intravenous ultrasound or qualitative coronary 
angiography to identify lesions that need revascularization 
[17–19]. The coronary stenosis and myocardium at risk are 
considered the two most important factors in predicting FFR. 
Therefore, the diagnostic performance of ML-based cFFR is 
compared to that of the combination of DS and myocardium 
at risk.

Materials and methods

Study population

Between September 2013 and December 2017, 156 consecu-
tive patients were reviewed retrospectively from the elec-
tronic patient-record system of the hospital. These patients 
had undergone both CCTA and invasive FFR measurements 
within 60 days (mean 15 ± 13 days). The study included 
intermediate stenosis (40–80% DS on visual estimation) of 
the coronary artery. 51 patients with the following condi-
tions were excluded: (1) > 30% stenosis in left main coronary 
artery lesions (n = 12), (2) occlusion in any major coronary 
artery (n = 7), or > 80% stenosis in FFR-measured coronary 
arteries (n = 16); (3) significant motion or blurring artifact in 
CCTA (n = 5), (4) prior coronary stenting in any major coro-
nary artery (n = 11). No coronary arteries with anomalous 
origin and coronary aneurysm were included. Finally, a total 
of 105 patients with 117 intermediate coronary lesions were 
included in the study analysis. This retrospective observa-
tional study was approved by the Institutional Review Board 
of the hospital, and the requirement for written informed 
consent was waived.

CCTA imaging and diameter‑stenosis estimation

CCTA was performed using a second-generation dual-source 
128-slice CT scanner (SOMATOM Definition FLASH, Sie-
mens Healthineers, Forchheim, Germany). Patients with 
heart rate > 70 bpm were treated with oral beta-blockers. 
Sublingual sprayed nitroglycerin was routinely administered 
before contrast-material injection. A 60- to 70-ml bolus of 
iodinated contrast (370 mgI/ml, Ultravist, Bayer Schering 
Pharma, Berlin, Germany) was injected at a rate of 4.0- to 
4.5-ml/s, followed by 20 ml saline chaser. Prospectively 
ECG-triggered axial acquisition was used in patients with 
regular heart rate (HR) between 65 and 90 bpm. Retrospec-
tively ECG-gated spiral acquisition was applied when HR 
was higher than 90 bpm or the HR was irregular with a 
standard deviation ≥ 5 bpm. Prospectively ECG-triggered 
high-spiral acquisition was applied in patients with regu-
lar HR ≤ 65 bpm. The tube voltage and tube current were 



1989The International Journal of Cardiovascular Imaging (2018) 34:1987–1996 

1 3

set based on the body mass index (BMI) of the patients: 
BMI ≤ 22.5 kg/m2, 80 kV/400 ref. mAs; BMI > 22.5 kg/m2 
or < 27.5 kg/m2, 100 kV/370 ref. mAs; BMI ≥ 27.5 kg/m2, 
120 kV/370 ref. mAs, using automatic tube current modu-
lation. All CT images were reconstructed with slice thick-
ness of 0.75 mm and increment of 0.5 mm, using a medium/
soft kernel of B26. Two radiologists with 13 and 5 years of 
experience, respectively, visually estimated the DS of all 
coronary arteries. At first, they judged the DS independently. 
Then, they discussed differences in the results and reached 
a consensus. The Agatston scores of the diseased and total 
coronary arteries were recorded to assess the coronary cal-
cification load.

Calculation of the myocardium jeopardy index (MJI)

The MJI was introduced initially based on the coronary 
size and the location in ICA images [14, 20] to estimate the 
percentage of the left ventricular myocardium subtended to 
a coronary lesion. It was calculated based on high-quality 
CCTA images in this study according to the following rules. 
A score of 1–3 was assigned to all visible coronary arter-
ies in CCTA images, including the left anterior descending 
artery (LAD), left circumflex (LCX), right coronary artery 
(RCA), ramus, diagonal artery (D), obtuse marginal (OM), 
posterior descending artery, and posterolateral artery. In 
visual assessment on curved planar reformat and volume 
rendering images, a score of 3 represented a large artery with 
a length greater than two-thirds of the distance between the 
cardiac base and the apex. A small vessel, less than one-third 
the distance, was assigned a score of 1. A middle artery with 
a length of one-third to two-thirds the distance was assigned 
a score of 2. The total score of septal branches was 3. The 
MJI was the ratio of the sum of the artery scores distal to the 
target lesion to the overall sum of all artery scores. The two 
radiologists who assessed coronary-DS defined the scores 
by consensus.

On‑site ML‑based cFFR measurement

Measurement of cFFR was performed using a workstation-
based software (cFFR prototype version 3.0 on syngo.via 
Frontier, Siemens Healthineers) by two independent radiolo-
gists with 5 and 2 years, respectively, of experience in coro-
nary diagnosis. They were informed of the exact position of 
the measured invasive FFR in the coronary arteries but were 
blinded to the FFR values. After loading the diastolic CCTA 
data, the centerlines of each coronary artery, coronary artery 
lumen, and endocardial and epicardial myocardial borders 
were generated semi-automatically. Then, manual adjust-
ment was performed to confirm the correct contour. The 
cFFR values were computed automatically afterward and 
were color coded along the coronary arteries. The specific 

cFFR values appeared when moving the mouse on the coro-
nary artery. All cFFR values were tabbed at the exact posi-
tion of measured invasive FFR. In addition, the cFFR values 
were also tabbed when color coding changed significantly 
along the coronary trees. The time needed for image process-
ing and cFFR calculation and tabbing was recorded.

Statistical analysis

Continuous variables were described using mean ± SD, and 
counts and percentages were used for categorical variables. 
The cFFR and invasive FFR values were not normally dis-
tributed (as assessed with the Shapiro–Wilk test). Therefore, 
Spearman’s correlation was used to assess the correlations 
of cFFR and invasive FFR (0.00–0.19 very weak, 0.20–0.39 
weak, 0.40–0.59 moderate, 0.60–0.79 strong, 0.80–1.0 very 
strong). Univariate regression analysis was used to judge 
if the calcification affected the diagnostic performance of 
cFFR.

The area under the curve (AUC) was determined using 
a receiver operator characteristic curve with 95% confident 
interval (CI) to detect an FFR of ≤ 0.8 in univariate and mul-
tivariate analyses. The results of these analyses were used 
to identify the optimal cutoff point of the scoring scheme 
to determine the sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) with 
95% CI. P ≤ 0.05 was considered to suggest statistical sig-
nificance. Bonferroni correction was used to adjust the p 
value in multiple comparisons. All analyses were performed 
using R software, version 3.3.2 (R Foundation for Statistical 
Computing, Vienna, Austria).

Results

Characteristics of patients and lesions

The mean age of the 105 patients was 62 (44–80) years, 
including 32 female patients with an average age of 61 
(48–80) years. The interval time between the CCTA and 
invasive FFR was 0–60 days, with an average of 15 ± 13 days 
and a median of 10 days. Among the 117 coronary arter-
ies, 36 vessels (30.8%) were identified as hemodynamically 
significant with invasive FFR of ≤ 0.8. Among these 117 
vessels, 88 (75.2%) LAD were found, in which four vessels 
were accompanied by left main lesions (≤ 30% stenosis). 
Other vessels consisted of 11 RCA, 12 LCX, five diagonal 
arteries, and one OM. The total coronary Agatston score of 
the 105 patients was 116 ± 194. The Agatston score of the 
117 coronary arteries was 72 ± 118. Patient baseline char-
acteristics are summarized in Table 1.

Among all 105 patients, 64 were scanned with the pro-
spectively ECG-triggered sequence mode with an estimated 
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effective dose of 3.12 ± 0.84 mSv and 29 were scanned with 
the retrospectively ECG-gated spiral mode with a dose of 
6.23 ± 2.89 mSv. The remaining 12 patients were scanned 
with the prospectively ECG-triggered high-spiral mode with 
a dose of 0.93 ± 0.33 mSv. The overall average effective radi-
ation dose of CCTA was 3.65 ± 2.18 mSv. The mean time 
of cFFR assessment was 18 ± 7 (12–30) min including the 

3-dimensional model of coronary tree generation and cFFR 
calculation for each patient.

Diagnostic performance of cFFR

When cFFR ≤ 0.8 was used to diagnose invasive FFR ≤ 0.8, 
the sensitivity, specificity, PPV, and NPV were 61% (95% CI 
44–78%), 91% (95% CI 85–98%), 76% (95% CI 63–91%), 
and 84% (95% CI 79–90%), respectively (Table 2). The diag-
nostic accuracy was 82% (95% CI 75–88%), with an AUC of 
0.864 (95% CI 0.788–0.932). The diagnostic performance 
was much better than that for DS, with an 11.5% increase in 
AUC from 0.775 (p = 0.013, Table 2; Fig. 1). The average 
calculated cFFR was 0.82 ± 0.086, while the average inva-
sive FFR was 0.82 ± 0.096. Spearman’s correlation analysis 
showed that cFFR values correlated well to invasive FFR 
with a coefficient of 0.665 (p < 0.01).

Compared to invasive FFR values, when cFFR ≤ 0.80, 
22/29 (75.86%) lesions were true positive (Fig. 2). Eight 
lesions were false negative within 22 cFFR of 0.81–0.83. 
While cFFR ≥ 0.84, only 6/68 lesions were confirmed as 
false negatives. Among all 117 cFFR measurements, there 
were 14 false negative values, including four 0.81 and four 
0.82. On the other hand, there were seven false positive 
cFFR values, including two at 0.80 (Table 3). The charac-
teristics of lesions or causes of false results are summarized 
in Table 3. The most common lesion feature was diffuse or 
long lesions (11/21), (Figs. 3, 4). Other features included 
calcification (8/21), ostial lesion (3/21), myocardial bridge 
(2/21), and impaired image quality (2/21). However, univari-
ate regression analysis showed that the calcification load was 
not the significant factor of measurement accuracy for cFFR.

Diagnostic ability comparison between cFFR 
and combined DS and MJI

When using MJI to diagnose invasive FFR ≤ 0.8, the short-
coming was low specificity at 56% and unsatisfactory 
accuracy at 60% (Table 2). However, the combined diag-
nostic accuracy of DS and MJI was increased significantly 
to 79%, with an AUC of 0.846 (95% CI 0.755–0.922). It 

Table 1  Baseline characteristics of the study patients (n = 105)

Values are mean ± SD or n (%)
FFR fractional flow reserve, LAD left anterior descending coronary 
artery, RCA  right coronary artery, LCX left circumflex coronary 
artery, D diagonal artery, OM obtuse marginal artery
a Receiving antihypertensives or having systolic blood pres-
sure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg
b Total cholesterol > 200 mg/dl or receiving antilipidemic treatments

Characteristic Value

Gender M:F 73:32
Age (range) 62 (44–80) years old
Body mass index 24.9 ± 2.6 kg/m2

Diabetes mellitus 69 (65.7%)
Hypertensiona 30 (28.6%)
Hyperlipidemiab 73 (69.5%)
Clinical presentation
 Atypical chest pain 51 (48.6%)
 Stable angina pectoris 33 (31.4%)
 Unstable angina pectoris 21 (20%)

Total Coronary Agatston Score 116 ± 194
Diseased Coronary Agatston Score 72 ± 118
Effective radiation dose 3.65 ± 2.18 mSv
 Prospective ECG-triggered sequence 

model
64/105 (3.12 ± 0.84 mSv)

 Retrospective ECG-gated spiral model 29/105 (6.23 ± 2.89 mSv)
 FLASH model 12/105 (0.93 ± 0.33 mSv)

Overall: 117 vessels FFR ≤ 0.8: 36 vessels
 LAD: 88 29
 RCA: 11 0
 LCX: 12 4
 D: 5 2
 OM: 1 1

Table 2  Per-vessel diagnostic performance of CCTA for identifying invasive FFR ≤ 0.8

FFR fractional flow reserve, cFFR computed fractional flow reserve, DS diameter stenosis in visual assessment, MJI myocardial jeopardy index, 
FP false positive, FN false negative, PPV positive predictive value, NPV negative positive value, AUC  Area under the receiver operating charac-
teristic curve

Optimal cutoff FP/FN Sensitivity 
(%)

Specificity 
(%)

PPV (%) NPV (%) Accuracy (%) AUC (95% CI)

cFFR 0.80 7/14 61 91 76 84 82 0.864
DS 0.68 18/11 69 78 58 85 75 0.775
MJI 0.70 36/11 69 56 41 80 60 0.609
DS + MJI 0.67 16/8 78 80 64 89 79 0.846



1991The International Journal of Cardiovascular Imaging (2018) 34:1987–1996 

1 3

was significantly increased from AUCs of DS (0.775 vs. 
0.846, p = 0.028), and MJI (0.609 vs. 0.846, p = 0.013). This 
integrated diagnostic performance was at the same level 
with that of cFFR (AUC 0.846 vs. AUC 0.864, p = 0.572) 
(Table 2).

DS and MJI did not provide additional information 
to enhance the diagnostic ability of cFFR. The AUC of 

cFFR + DS was 0.882 (95% CI 0.804–0.941) (0.882 vs. 
0.864, p = 0.457), and the AUC of cFFR + MJI was 0.868 
(95% CI 0.789–0.931) (0.868 vs. 0.864, p = 0.671). The 
combination of cFFR and DS + MJI achieved a higher AUC 
of 0.916 (95% CI 0.844–0.967), but with no significant 
increase compared to that of cFFR alone (0.916 vs. 0.864, 
p = 0.117) (Fig. 5).

Discussion

After a decade of clinical use of CCTA to evaluate the ana-
tomic severity of coronary lesions, new methods of com-
puted FFR from computed fluid dynamics based on CCTA 
images are being developed. A three-dimensional CT-FFR 
modeling technique (HeartFlow,  FFRCT) requiring off-site 
supercomputer analysis has good correlations to invasive 
FFR ranging between 0.63 and 0.82, with AUCs ranging 
from 0.81 to 0.90 [4–6]. More recently, a one-dimensional 
computational analysis technique (Siemens cFFR) was 
developed and can be performed on on-site workstations. 
The correlation of cFFR and invasive FFR varies from 0.59 
to 0.75. The AUC of cFFR in identifying ischemic-causing 
lesions ranges from 0.83 to 0.92 [7–9]. The ML-based cFFR 
is the latest advanced version of the one-dimensional CFD-
based cFFR. This algorithm learns the output of a computed 
fluid dynamic model through the methods of feature extrac-
tion and model training using CCTA images. Although 
almost perfect results were obtained from its verification 
test [11], further studies are required for extensive validation 
of clinical use. In our study, this on-site and rapid computing 

Fig. 1  Comparison of receiver operating characteristic curves of 
cFFR, DS, myocardial jeopardy index (MJI), and DS + MJI. The 
AUC of cFFR, which was the largest, was not significantly different 
from the AUC of MJI + DS

Fig. 2  A true positive cFFR of left anterior descending coronary artery (LAD) with proximal lesion. The curved planar reconstruction image of 
the LAD showed that the DS was estimated at 55% (a) with an invasive FFR of 0.73 (b). The measurement of cFFR value was 0.72 (c)
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Table 3  The causes of false 
positives and false negatives

FFR fractional flow reserve, cFFR computed fractional flow reserve, DS diameter stenosis, LAD left ante-
rior descending coronary artery, RCA  right coronary artery
*No significant difference

FFR cFFR Characteristics of lesions or causes of false results DS (%)

False negative cases
 1 0.6 0.88 Middle-distal diffuse lesion in LAD, no calcification 50
 2 0.68 0.88 Proximal stenosis in a large LAD 70
 3 0.74 0.83 Ostial stenosis with calcification 75
 4 0.69 0.82 Diffuse lesion in middle segment in LAD with myocardial bridge 40
 5 0.73 0.82 Proximal-middle long lesion 60
 6 0.74 0.88 Proximal-middle long lesion with large calcification 70
 7 0.8 0.81 * 70
 8 0.54 0.82 Long lesion in middle LAD, with small calcification 80
 9 0.79 0.81 * 60
 10 0.73 0.81 Small atheromatous plaque with localized stenosis 70
 11 0.68 0.87 Irregular long lesion in middle LAD, about 3 cm 60
 12 0.79 0.91 Ostial long lesion, about 2.5 cm 65
 13 0.8 0.81 * 70
 14 0.69 0.82 Mid-distal diffuse lesion, with long myocardial bridge 40

False positive cases
 1 0.82 0.8 Proximal-middle long lesion with calcification 50
 2 0.81 0.72 Proximal-middle multiple calcified lesions 70
 3 0.84 0.64 Ostial stenosis with calcification 60
 4 0.85 0.68 Unsatisfied contrast filling in mid-distal LAD 60
 5 0.85 0.72 Proximal-middle multi-segmental lesions in LAD, with calcification 50
 6 0.83 0.76 Middle long lesion, with several calcification 60
 7 0.84 0.8 Mid-distal multiple lesions in RCA, with an artifact 65

Fig. 3  A false negative cFFR of left anterior descending coronary artery (LAD) with diffuse lesion, no calcification. In the curved planar recon-
struction image of the LAD (a), with the DS estimated at 40%. Invasive FFR of 0.69 (b), and the measured cFFR value was 0.82 (c)
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method displayed a comparative performance with almost 
the same accuracy at 82% and slightly lower correlation at 
0.665 with invasive FFR. Our results are not on par with 
those of a recent new study, in which only third-generation 

dual-source CCTA images were used [21]. Previous stud-
ies have shown that CFD-based cFFR had different diag-
nostic performance in different studies [7–9, 22]. This can 
be explained by diverse samples and different CT scanners. 
The higher image quality shortened calculation time and 
achieved better diagnostic performance. Therefore, it can 
be affirmative that ML-based cFFR has comparable accu-
racy with CFD-based cFFR in identifying ischemic-causing 
coronary stenosis.

DS is the main criterion in present clinical practice using 
CCTA because it has excellent performance in assessing 
coronary stenosis. Although CCTA-based assessments of 
anatomy stenosis correlate well with ICA assessments [23, 
24], intermediate stenosis indicated by CCTA does not nec-
essarily cause real myocardial ischemia [25, 26]. Therefore, 
a non-invasive method is required to judge the hemodynamic 
significance of coronary lesions. Compared to DS in our 
study, ML-based cFFR gained more than 10% accuracy 
increase in diagnostic ability. Of note, it improved specific-
ity from 78 to 91%, which can reduce the false-positive rate 
and potentially avoid unnecessary ICA.

Besides DS, the other important factor affecting FFR is 
myocardium at risk subtended to coronary stenosis, which 
can be estimated by CCTA [19, 22]. MJI showed a modest 
correlation to FFR in an invasive coronary angiography study 
[27]. In addition, cardiac MR imaging verified that MJI accu-
rately estimated the amount of threatened myocardium [27]. 
In this study, we also proved that the diagnostic accuracy was 

Fig. 4  A false positive cFFR of left anterior descending coronary 
artery (LAD) with a 5-cm long lesion with multiple calcification. In 
the curved planar reconstruction image (a), the DS was estimated at 

50% at the maximum, with a distal invasive FFR value of 0.85 (b), 
the measured cFFR value before the distal mixed plaques was 0.85, 
but it was reduced to 0.72 afterward (c)

Fig. 5  DS and the MJI did not help enhance the diagnostic ability of 
cFFR. The area under the curve values were as follows: cFFR, 0.864; 
cFFR + DS, 0.882 (vs. cFFR, p = 0.457), cFFR + MJI, 0.868 (vs. 
cFFR, p = 0.671), cFFR + DS + MJI, 0.916 (vs. cFFR, p = 0.117)
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increased from 75 to 79% with an AUC increase from 0.775 
to 0.846 when adding MJI and DS. The diagnostic accuracy 
of the combination was not significantly different from that of 
ML-based cFFR alone.

On the other hand, the results of our study showed that nei-
ther DS nor MJI helped increase the diagnostic performance 
of ML-based cFFR. When designing the ML-based cFFR, the 
designer included comprehensive anatomical information of 
the stenotic region and the entire coronary arterial tree. Dur-
ing the training phase of the ML algorithm, the computational 
blood-flow model was simulated to match anatomical features 
[11]. The endocardial and epicardial contours were depicted 
to estimate left ventricle (LV) myocardial volume. Only the 
myocardium at risk was not considered in the cFFR computa-
tion. We surmise that the negative result of the MJI effect on 
cFFR in this study derives from sampling error or disturbance 
of the whole LV myocardial volume.

Based on detailed analysis of FP and FN cases, it was found 
that the most common causes of misinterpretations are diffuse 
or long lesions (11/21) and calcification (8/21). This may be 
partially explained by the fact that although many features of 
the stenosis was used in the ML-based cFFR model, some 
complex configurations of diffuse or tandem diseases were 
not included [11]. In terms of coronary calcification, previ-
ous studies have suggested that three-dimensional  FFRCT 
maintains high diagnostic compatibility in patients with high 
calcification [5, 28–30]. A recently reported ML-based cFFR 
study also showed good performance in calcified lesions [21]. 
In this study, the results also revealed that the performance of 
ML-based cFFR was not affected by coronary calcification.

Finally, some limitations of this study should be men-
tioned. Because of the retrospective design, selection bias 
may have occurred, as FFR measurements were performed 
depending on cardiologist judgment. Several patients did 
not accept to undergo invasive FFR measurement after the 
detection of suspicious lesions in CCTA. As a result, only 
105 patients with 117 vessels were included in the study, 
despite the long-term study period from 2013 to 2017, and 
most of the included diseased arteries were LAD. Moreover, 
because of the low-level calcification load in this group (dis-
eased coronary-artery Agatston score 72 ± 118), the results 
of this study cannot be generalized to the diagnostic perfor-
mance of cFFR in patients with high coronary-calcification 
load. Finally, because all our patients underwent CCTA with 
a second-generation dual-source CT scanner, the results of 
this study may not be directly applied to other CT scanners.

Conclusion

ML-based cFFR ≤ 0.80 computed from CCTA shows bet-
ter diagnostic performance for detecting ischemia-produc-
ing coronary lesions than coronary DS. Its performance is 

comparative to the ability of combination of DS and MJI. 
This on-site and near real-time method is looking forward 
to further clinical investigation.
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