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Introduction

As the number of implanted biventricular pacemakers and 
defibrillators have increased, the coronary sinus (CS) has 
evoked much interest amongst cardiologists. Transthoracic 
echocardiography (TTE) is the simplest and quickest tech-
nology by which to evaluate the CS. A dilated CS leads 
to many diseases, such as a persistent left superior vena 
cava, an anomalous pulmonary venous connection, and an 
unroofed CS [1–3]. For example, varying degrees of CS 
dilatation serve as important clues in the diagnosis of differ-
ent types of unroofed CS [3]. Previous studies have shown 
that measurement of the CS diameter using M-mode echo-
cardiography in 133 healthy adults is actually an oblique 
diameter [4]. No studies have shown the normal range of 
CS diameters in children. Indeed, the normal CS diameter is 
unknown, especially in children.

Methods

Study subjects

All subject children were referred to the Pediatric Cardiology 
Outpatient Clinics of Shengjing Hospital and First Affiliated 
Hospital of China Medical University between May 2014 
and January 2016. Most of the children were evaluated by 
physicians in our hospital for systolic murmurs, chest pain, 
or shortness of breath, and those who underwent complete 
TTE were considered for inclusion. Some of the children 
were considered healthy at the time of birth in the Depart-
ment of Obstetrics. Subjects were included if the physical 
examination, electrocardiogram, and echocardiographic 
results were normal. Subjects were excluded if they had a 
fever, cough, other respiratory disease, and/or evidence of 
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used. If the distribution of these parameters was normal, 
independent t tests were used. If the distribution was non-
normal, the rank-sum test with the Mann–Whitney U test 
were used.
Due to the lack of recognition with the best-fit BSA for-

mula for Chinese children, seven formulae were used in this 
study, as follows:

BSADuBois [10]: height 0.725 × weight 0.425 × 0.007184
BSADreyer [11]: weight 0.6666 × 0.1
BSABoyd [12]: �0.0003207× (1000 × weight)[0.7285−0.0188  

× log(1000 × weight)] × height 0.3

BSAHaycock [13]: weight 0.5378 × height 0.3964 × 0.024265
BSAMosteller [14]:√[(height × weight)/3,600]
BSAGehan [15]:0.0235 × height0.42246 × weight0.51456

BSAStevenson [16]: �0.0061 × height + 0.0128 × weight-
0.1529

Seven models were tested to determine the relation-
ships between parameters of body size and CS diameter, 
including linear (y = a + bx), logarithmic (y = a + b × ln[x], 
ln(y) = a + bx), exponential (ln(y) = a + b × ln[x]), and square 
root equations (y = a + b×√x, √y = a + bx, √y = a + b×√x). To 
determine whether or not there was heteroscedasticity, the 
White and the Breusch-Pagan tests were used to describe 
the behavior of variance of the residuals. Among the mod-
els, the best-fit formula was the model with the highest R2 
and homoscedasticity [17]. Scatter plot graphs of the BSA 
were drawn to compare the best-fit formula with others.

To test the normality of the BSAbest−fit, the Kolmogorov–
Smirnov and Shapiro–Wilk tests were used. If the distribu-
tion of the parameters was normal, independent t tests were 
used between the male and female children groups. If the 
distribution of the parameters was non-normal, the rank-
sum with Mann–Whitney U tests were used.

Regression was used to model the relationship of the CS 
diameter with three different independent variables (height, 
weight, and BSAbest−fit). The seven models were re-tested. 
Among the models, the best-fit formula was the model with 
the highest R2, homoscedasticity, and a normal distribution 
of residuals. Then, the Z-score was calculated, as follows: 
Z = [observed CS-mean CS]/SE; Z = [observed CS-mean 
CS]/√MSE.

To assess inter- and intra-observer agreement with echo-
cardiographic measurements, we used the method described 
by Bland and Altman. Forty subjects were randomly selected 
for the analyses. For the inter-observer agreement assess-
ment, the first observer performed the analyses. The second 
observer repeated the analyses within 24 h. For assessment 
of the intra-observer agreement, the analyses were repeated 
twice by the first observer within 1 week.
We used Eview 7.0 and SPSS 17.0 to analyze the data. 

We used GraphPad Prism 5 and Matlab 2014 to depict the 

any structural anomaly, ventricular hypertrophy [5], body 
mass index ≥95th percentile for children ≥2 years of age, 
or weight-for-length Z-score ≥2 on the basis of the World 
Health Organization’s Child Growth Standards for children 
<2 years of age [6, 7]. Heights and weights of all subjects 
were measured. This study was approved by the Ethics 
Committee of China Medical University. Written informed 
consent was obtained from legal guardians of all subjects for 
the publication of this study and any accompanying images.

Echocardiographic measurements

Echocardiography was performed using a Philips iE33 sys-
tem (Philips Medical Systems, Bothell, WA, USA) and a 
1.5/5 or 4/12  MHz phased array probe. All images were 
obtained from standard views according to the recommen-
dations for quantification methods during the performance 
of a pediatric echocardiogram [8]. All images were digi-
tally stored and analyzed offline using customized software 
(Qlab; Philips Medical Systems).

CS measurements are routinely obtained for all new 
pediatric subjects in our department. In the standard apical 
4-chamber view, we tilt the probe down into the short view 
and acquire the modified apical 4-chamber view. The modi-
fied apical 4-chamber view shows the long axis of the CS. 
The superior and inferior diameter of the CS was measured 
from the CS ostium 1 cm from the end of ventricular systole 
[9] (Fig. 1).

Statistical analysis

To test the normality of age, height, weight, and CS diame-
ter, the Kolmogorov–Smirnov and Shapiro–Wilk tests were 

Fig. 1  The superior and inferior CS diameter was measured from the 
CS ostium 1 cm from the end of ventricular systole in the modified 
apical 4-chamber view
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homoscedasticity (White test, P > 0.05). Thus, the Steven-
son formula was selected as the best-fit formula.

BSADuBois, BSAHaycock, and BSAMosteller were also shown 
to be the most similar formulae to BSAStevenson (−5 to 5 %), 
followed by BSABoyd and BSAGehan (−5 to 10 %), then 
BSADreyer (−15 to 15 %) (Fig. 2).

Gender

BSA was normally distributed in the combined male and 
female group and the male group. BSA had a near-normal 
distribution in the female group (P = 0.017). The difference 
in BSA between the male and female groups were not statis-
tically significant (P = 0.079 > 0.05) (Table 3).
To evaluate the influence of gender on the measurements, 

we used a multiple linear regression model with gender as a 
covariate along with BSA based on the Stevenson formula.
Based on the multiple linear regression equation, 

CS = 3.402 + 1.934 × BSA + 0.008 × Gender, while the P 
value of gender was 0.8668 > 0.05. Thus, there was no sig-
nificant effect of gender on the model for measurement of 
the CS diameter.

Final models

Regression was used to model the relationship between 
the CS diameter with three different independent variables 
(height, weight, and BSAStevenson). The best-fit model for 
the CS diameter measurement was the exponential model 
(ln(y) = a + b × ln[x]) because the exponential model satis-
fied the assumption of homoscedasticity and normality of 
residuals and had the highest R2 (Table 4).

The CS diameter had a heteroscedastic positive relation-
ship with BSA (White test, P = 0.042 < 0.05).

results in the figures. A P value <0.05 was considered sta-
tistically significant.

Results

Population

Four hundred forty-six consecutive children, including 
neonates and infants (233 males and 213 females), met the 
inclusion and exclusion criteria. Age, height, and weight 
had a non-normal distribution in the three groups (Table 1). 
The differences between the male and female groups with 
respect to age, height, and weight were not statistically sig-
nificant (P = 0.503, 0.218, and 0.572 > 0.05, respectively).

CS diameter distribution

The CS diameter was 5.49 ± 0.90 mm and normally distrib-
uted in the combined male and female groups (Kolmogorov–
Smirnov, P = 0.061; Shapiro–Wilk, P = 0.151). The CS 
diameter was 5.50 ± 0.91  mm and normally distributed in 
the male group (Kolmogorov–Smirnov, P = 0.055; Shap-
iro–Wilk, P = 0.167). The CS diameter was 5.46 ± 0.90 mm 
and normally distributed in the female group (Kolmogorov–
Smirnov, P = 0.097; Shapiro–Wilk, P = 0.148). The differ-
ence in CS diameters between the male and female groups 
was not statistically significant (t = 0.639, P = 0.523 > 0.05).

Preliminary models

The results suggested that the highest R2 was the 
ln(y) = a + b × ln[x] model [Stevenson formula (R2 = 0.693, 
SE = 0.094); Table  2]. The residual variance had 

Table 1  Clinical characters of all children

Mean value Standard 
deviation

Median Minimum Maximum Kolmogorov–
Smirnov  
P value

Shapiro–
Wilk  
P value

Age (year)
Combined 7.80 4.59 8.00 0.01 18.00 < 0.001 < 0.001
Male 7.90 4.58 8.00 0.02 18.00 0.011 < 0.001
Female 7.69 4.61 7.00 0.01 18.00 0.001 < 0.001
Height (cm)
Combined 130.10 29.15 132.50 48.00 188.00 0.002 < 0.001
Male 131.97 29.64 134.00 48.00 188.00 0.062 0.005
Female 128.06 28.52 130.00 51.00 174.00 0.016 < 0.001
Weight (Kg)
Combined 33.60 16.69 31.90 3.55 90.00 0.001 < 0.001
Male 34.35 17.57 31.50 6.40 90.00 0.004 < 0.001
Female 32.78 15.67 32.00 3.55 68.00 0.021 0.001
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BSA formula Model SE(√MSE) R2 White P value Breusch–Pagan 
P value

BSADuBois y = a + bx 0.512 0.672 0.074 0.024
y = a + b × ln[x] 0.526 0.661 0.002 < 0.001
ln(y) = a + bx 0.097 0.669 0.001 0.004
ln(y) = a + b × ln[x] 0.094 0.692 0.209 0.738
y = a + b×√x 0.514 0.677 0.006 0.002
√y = a + bx 0.111 0.673 0.661 0.819
√y = a + b×√x 0.109 0.685 0.411 0.358

BSADreyer y = a + bx 0.531 0.655 0.162 0.056
y = a + b × ln[x] 0.531 0.654 0.007 0.002
ln(y) = a + bx 0.100 0.650 < 0.001 0.003
ln(y) = a + b × ln[x] 0.096 0.680 0.109 0.385
y = a + b×√x 0.525 0.663 0.018 0.008
√y = a + bx 0.114 0.655 0.545 0.624
√y = a + b×√x 0.112 0.669 0.573 0.673

BSABoyd y = a + bx 0.522 0.666 0.098 0.031
y = a + b × ln[x] 0.528 0.658 0.005 0.001
ln(y) = a + bx 0.098 0.663 0.001 0.004
ln(y) = a + b × ln[x] 0.094 0.689 0.151 0.609
y = a + b×√x 0.518 0.671 0.009 0.003
√y = a + bx 0.112 0.667 0.712 0.766
√y = a + b×√x 0.110 0.679 0.430 0.456

BSAHaycock y = a + bx 0.521 0.667 0.098 0.031
y = a + b × ln[x] 0.527 0.661 0.004 0.001
ln(y) = a + bx 0.098 0.663 0.001 0.004
ln(y) = a + b × ln[x] 0.094 0.689 0.151 0.601
y = a + b×√x 0.517 0.673 0.009 0.003
√y = a + bx 0.112 0.667 0.597 0.755
√y = a + b×√x 0.110 0.681 0.474 0.462

BSAMosteller y = a + bx 0.520 0.669 0.087 0.027
y = a + b × ln[x] 0.526 0.661 0.004 0.001
ln(y) = a + bx 0.098 0.666 0.001 0.004
ln(y) = a + b × ln[x] 0.094 0.691 0.167 0.657
y = a + b×√x 0.516 0.675 0.008 0.003
√y = a + bx 0.112 0.670 0.629 0.784
√y = a + b×√x 0.110 0.683 0.448 0.421

BSAGehan y = a + bx 0.520 0.668 0.088 0.027
y = a + b × ln[x] 0.526 0.661 0.004 0.001
ln(y) = a + bx 0.098 0.665 0.001 0.004
ln(y) = a + b × ln[x] 0.094 0.690 0.156 0.626
y = a + b×√x 0.516 0.674 0.008 0.003
√y = a + bx 0.112 0.669 0.668 0.792
√y = a + b×√x 0.110 0.682 0.445 0.434

Table 2  Regression results with different BSA formulae
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The residual had a normal distribution, of which the mean 
value was 0.0003 and the standard deviation was 0.094.

Z ln observedCS ln meanCS

ln observedCS

= ( ) − ( ) 
= ( ) −

/ .

.

0 094

1 691−− × ( ) 0 339 0 094. / .ln BSA

The regression equation for the CS diameter and BSA 
was as follows:

ln CS ln BSA( ) = + × ( )1 691 0 339. .

CS BSA= ×5 425 0 339. .

Fig. 2  Relationship between BSAStevenson with six other formulae

 

BSA formula Model SE(√MSE) R2 White P value Breusch–Pagan 
P value

BSAStevenson y = a + bx 0.516 0.675 0.042 0.012
y = a + b × ln[x] 0.528 0.659 0.004 0.002
ln(y) = a + bx 0.097 0.672 0.003 0.012
ln(y) = a + b × ln[x] 0.094 0.693 0.271 0.716
y = a + b×√x 0.513 0.678 0.005 0.001
√y = a + bx 0.111 0.676 0.745 0.931
√y = a + b×√x 0.131 0.688 < 0.001 < 0.001

SE standard error, MSE mean square error

Table 2  (continued) 
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Discussion

CS dilatation is an imaging finding which may be caused 
by a persistent left superior vena cava, elevated right atrial 
pressure disease, anomalous pulmonary venous connec-
tion, and unroofed CS. The prevalence of CS dilatation was 
0.294 % (295/100,180) in our 15-year study, exceeding the 
prevalence of Kawasaki disease (0.134 % [134.4/100,000]) 
in 2011 [18]. Indeed, some physicians may not pay suffi-
cient attention to this finding.

Determining the normal range of the CS diameter is a 
prerequisite for diagnosing diseases which cause CS dil-
atation. The ranges of normal values of hearts and great 

The predicted values and Z-score boundaries for measure-
ment of the CS diameter are presented in Fig. 3 and Table 5. 
The predicted values and Z-score boundaries (Z = 2 and 
Z = − 2) for the CS diameter with the best-fit model were 
based on the BSA (Fig. 4).
The Z-score is a normal distribution, of which the mean 

value was −0.003 and the standard deviation was 0.999.

Reproducibility

The Bland–Altman plot regression showed that the 95 % 
limits of agreement for inter- and intra-observer measure-
ments were not significantly different (Fig. 5).

Table 3  BSA in different groups

Mean value Standard 
deviation

Median Minimum Maximum Kolmogorov–Smirnov 
P value

Shapiro–Wilk 
P value

BSA (m2)
Combined 1.07 0.38 1.07 0.21 2.15 0.200 0.062
Male 1.09 0.40 1.08 0.22 2.15 0.200 0.083
Female 1.05 0.37 1.05 0.21 1.75 0.200 0.017

Table 4  Preliminary regression results for CS diameter

Model SE(√MSE) R2 White P value Breusch–Pagan 
value

Kolmogorov–Smirnov 
P value

Shapiro–Wilk 
P value

Height
y = a + bx 0.525 0.662 0.003 < 0.001 0.047 0.123
y = a + b × ln[x] 0.544 0.638 0.001 0.001 0.068 0.178
ln(y) = a + bx 0.096 0.679 0.383 0.178 0.050 0.047
ln(y) = a + b × ln[x] 0.097 0.675 0.707 0.862 0.096 0.048
y = a + b×√x 0.531 0.654 0.002 < 0.001 0.167 0.186
√y = a + bx 0.111 0.673 0.378 0.211 0.070 0.122
√y = a + b×√x 0.112 0.670 0.185 0.084 0.140 0.144

Weight
y = a + bx 0.546 0.635 0.068 0.158 0.030 0.076
y = a + b × ln[x] 0.531 0.654 0.007 0.002 0.084 0.149
ln(y) = a + bx 0.105 0.618 < 0.001 0.003 0.030 0.330
ln(y) = a + b × ln[x] 0.096 0.680 0.109 0.385 0.015 0.156
y = a + b×√x 0.527 0.661 0.061 0.023 0.016 0.023
√y = a + bx 0.119 0.629 0.004 0.398 0.200 0.483
√y = a + b×√x 0.113 0.664 0.993 0.934 0.022 0.052

BSAStevenson

y = a + bx 0.516 0.675 0.042 0.012 0.049 0.043
y = a + b × ln[x] 0.528 0.659 0.004 0.002 0.023 0.160
ln(y) = a + bx 0.097 0.672 0.003 0.012 0.035 0.118
ln(y) = a + b × ln[x] 0.094 0.693 0.271 0.716 0.178 0.070
y = a + b×√x 0.513 0.678 0.005 0.001 0.017 0.055
√y = a + bx 0.111 0.676 0.745 0.931 0.077 0.053
√y = a + b×√x 0.131 0.688 < 0.001 < 0.001 0.034 0.062

SE standard error, MSE mean square error
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addressed by various investigators, with recommenda-
tions to use Z-scores for various reasons [19, 20]. To date, 
there are no published studies regarding the CS diameter in 
healthy children.

Although calculate the parameter of children is an ardu-
ous work due to growth and other factors, previous stud-
ies have summarized a relatively mature statistical method 
using multiple regression models of BSA to fit normal val-
ues. Then, residual associations, residual heteroscedasticity, 
and distribution of residual or normalized values were ana-
lyzed one-by-one [21]. We designed our research according 
to the above statistical method.

vessels have been one of the hot spots in recent years, 
especially with respect to the coronary artery. The impor-
tance of accurate pediatric nomograms has recently been 

Table 5  CS Z-score boundaries according to BSAStevenson

BSA (m2) CS Z-score boundaries (mm)

− 3 − 2 − 1 0 1 2 3

0.10 1.9 2.1 2.3 2.5 2.7 3.0 3.3
0.20 2.4 2.6 2.9 3.1 3.5 3.8 4.2
0.30 2.7 3.0 3.3 3.6 4.0 4.4 4.8
0.40 3.0 3.3 3.6 4.0 4.4 4.8 5.3
0.50 3.2 3.6 3.9 4.3 4.7 5.2 5.7
0.60 3.4 3.8 4.2 4.6 5.0 5.5 6.0
0.70 3.6 4.0 4.4 4.8 5.3 5.8 6.4
0.80 3.8 4.2 4.6 5.0 5.5 6.1 6.7
0.90 3.9 4.3 4.8 5.2 5.8 6.3 6.9
1.00 4.1 4.5 4.9 5.4 6.0 6.5 7.2
1.10 4.2 4.6 5.1 5.6 6.2 6.8 7.4
1.20 4.4 4.8 5.3 5.8 6.3 7.0 7.7
1.30 4.5 4.9 5.4 5.9 6.5 7.2 7.9
1.40 4.6 5.0 5.5 6.1 6.7 7.3 8.1
1.50 4.7 5.2 5.7 6.2 6.8 7.5 8.3
1.60 4.8 5.3 5.8 6.4 7.0 7.7 8.4
1.70 4.9 5.4 5.9 6.5 7.1 7.8 8.6
1.80 5.0 5.5 6.0 6.6 7.3 8.0 8.8
1.90 5.1 5.6 6.1 6.7 7.4 8.1 8.9
2.00 5.2 5.7 6.2 6.9 7.5 8.3 9.1
2.10 5.3 5.8 6.4 7.0 7.7 8.4 9.2
2.20 5.3 5.9 6.5 7.1 7.8 8.6 9.4
2.30 5.4 6.0 6.5 7.2 7.9 8.7 9.5
2.40 5.5 6.0 6.6 7.3 8.0 8.8 9.7
2.50 5.6 6.1 6.7 7.4 8.1 8.9 9.8

Fig. 3  Z-score boundaries for measurement of the CS diameter

 

Fig. 4  Predicted values and Z-score boundaries (Z = 2 and Z = − 2) for 
CS with a best-fit model according to BSAStevenson
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mean value of −0.003 and the standard deviation was 0.999. 
This Z-score indicates that our calculation was relatively 
accurate.

Reproducibility tests showed that echocardiography is a 
reliable imaging tool for the measurement of CS diameter, 
and echocardiography has been shown not only to be effica-
cious for the diagnosis of persistent left superior vena cava 
or unroofed CS, but to evaluate the pulmonary artery pres-
sure in pediatric patients [27].

Limitations

This research was designed to measure the CS diameter of 
Chinese children. Thus, the study lacked data from subjects 
of different races. The equation and Z-score boundaries may 
need to be slightly adjusted to apply to different races.

The total number of healthy children was small [28]. Due 
to the rapid change in infancy and small infant sample of our 
study (including 42 infants), it was difficult to obtain normal 
values in very young children. The equation and Z-score 
boundaries may need further investigation [29].

Conclusions

BSAStevenson may be more appropriate than other traditional 
formulae for Chinese children. New, reliable echocardio-
graphic Z scores of the CS diameter derived from a large 
population of healthy Chinese children are reported. The Z 
scores can be used in echocardiographic examinations.
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that BSAStevenson provides the best fit for most cardiac struc-
tures. No research, however, has demonstrated that this 
formula is suitable for Chinese children. The results of our 
study showed that BSAStevenson is the best-fit formula for 
Chinese children. At a BSA <0.5 m2 when compared with 
the BSAStevenson, all other formulae overestimated the BSA. 
At a BSA >0.5 m2 when compared with the BSAStevenson, 
the BSADuBois, BSABoyd, BSAMosteller, and BSAGehan over-
estimated the BSA, while the BSADreyer underestimated the 
BSA. BSAHaycock is similar to BSAStevenson. These results are 
similar to a previous study [23]. In Chinese children, the 
BSA is overestimated when traditional formulae (BSADuBois, 
BSABoyd, BSAGehan, and BSAHaycock) are used based on Yu 
et al. [24].

BSA is a function of both weight and height. We must 
ascertain whether or not a model including weight and 
height as independent predictors would be a better fit than 
BSA alone. We tried these models in preliminary analy-
ses. Height and weight do not have a higher R2 than the 
BSA. Computation of the Z-score using two independent 
variables is more complex because the Z-score cannot be 
displayed in a 2-dimentional figure or table for clinical use.

Although we showed that the exponential model 
(ln(y) = a + b × ln[x]) was best for the calculation, similar 
cardiac parameters were used in previous studies [17, 22, 
25]. In fact, there was virtually no difference when Z-score 
equations were derived from BSA estimated with different 
equations, and misclassification was rare [5]. The exponen-
tial model was selected because it is homoscedasticity and 
convenient for fitting with the BSA [26].
The Z-score is a standardized score that indicates how 

many standard deviations a value is above or below the 
mean in a normally distributed population. By definition, Z 
scores must also be normally distributed with a mean value 
of zero and a standard deviation of one [5]. According to 
our study results, the Z-score is normally distributed with a 

Fig. 5  a Inter-observer mea-
surements of CS diameter, b 
Intra-observer measurements of 
CS diameter
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