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Introduction

As the number of implanted biventricular pacemakers and 
defibrillators	 have	 increased,	 the	 coronary	 sinus	 (CS)	 has	
evoked much interest amongst cardiologists. Transthoracic 
echocardiography	(TTE)	is	the	simplest	and	quickest	tech-
nology by which to evaluate the CS. A dilated CS leads 
to many diseases, such as a persistent left superior vena 
cava, an anomalous pulmonary venous connection, and an 
unroofed CS [1–3]. For example, varying degrees of CS 
dilatation serve as important clues in the diagnosis of differ-
ent types of unroofed CS [3]. Previous studies have shown 
that measurement of the CS diameter using M-mode echo-
cardiography	 in	 133	 healthy	 adults	 is	 actually	 an	 oblique	
diameter [4]. No studies have shown the normal range of 
CS diameters in children. Indeed, the normal CS diameter is 
unknown, especially in children.

Methods

Study subjects

All subject children were referred to the Pediatric Cardiology 
Outpatient	Clinics	of	Shengjing	Hospital	and	First	Affiliated	
Hospital of China Medical University between May 2014 
and January 2016. Most of the children were evaluated by 
physicians in our hospital for systolic murmurs, chest pain, 
or shortness of breath, and those who underwent complete 
TTE	were	 considered	 for	 inclusion.	Some	of	 the	 children	
were considered healthy at the time of birth in the Depart-
ment of Obstetrics. Subjects were included if the physical 
examination, electrocardiogram, and echocardiographic 
results were normal. Subjects were excluded if they had a 
fever, cough, other respiratory disease, and/or evidence of 
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used. If the distribution of these parameters was normal, 
independent t tests were used. If the distribution was non-
normal, the rank-sum test with the Mann–Whitney U test 
were used.
Due	to	the	lack	of	recognition	with	the	best-fit	BSA	for-

mula for Chinese children, seven formulae were used in this 
study, as follows:

BSADuBois [10]: height 0.725 × weight 0.425 × 0.007184
BSADreyer [11]: weight 0.6666 × 0.1
BSABoyd [12]:  0.0003207×	(1000	×	weight)[0.7285−0.0188  

×	log(1000	×	weight)] × height 0.3

BSAHaycock [13]: weight 0.5378 × height 0.3964 × 0.024265
BSAMosteller [14]:√[(height	×	weight)/3,600]
BSAGehan [15]:0.0235 × height0.42246 × weight0.51456

BSAStevenson [16]:  0.0061 × height + 0.0128 × weight-
0.1529

Seven models were tested to determine the relation-
ships between parameters of body size and CS diameter, 
including	 linear	 (y	= a +	bx),	 logarithmic	 (y	= a + b × ln[x], 
ln(y)	= a +	bx),	exponential	(ln(y)	= a + b ×	ln[x]),	and	square	
root	equations	(y	= a + b×√x,	√y	= a +	bx,	√y	= a + b×√x).	To	
determine whether or not there was heteroscedasticity, the 
White and the Breusch-Pagan tests were used to describe 
the behavior of variance of the residuals. Among the mod-
els,	the	best-fit	formula	was	the	model	with	the	highest	R2 
and homoscedasticity [17]. Scatter plot graphs of the BSA 
were	drawn	to	compare	the	best-fit	formula	with	others.

To test the normality of the BSAbest−fit, the Kolmogorov–
Smirnov and Shapiro–Wilk tests were used. If the distribu-
tion of the parameters was normal, independent t tests were 
used between the male and female children groups. If the 
distribution of the parameters was non-normal, the rank-
sum with Mann–Whitney U tests were used.

Regression was used to model the relationship of the CS 
diameter	with	three	different	independent	variables	(height,	
weight, and BSAbest−fit).	The	seven	models	were	re-tested.	
Among	the	models,	the	best-fit	formula	was	the	model	with	
the highest R2, homoscedasticity, and a normal distribution 
of	residuals.	Then,	the	Z-score	was	calculated,	as	follows:	
Z	=	[observed	 CS-mean	 CS]/SE;	 Z	= [observed CS-mean 
CS]/√MSE.

To assess inter- and intra-observer agreement with echo-
cardiographic measurements, we used the method described 
by Bland and Altman. Forty subjects were randomly selected 
for the analyses. For the inter-observer agreement assess-
ment,	the	first	observer	performed	the	analyses.	The	second	
observer repeated the analyses within 24 h. For assessment 
of the intra-observer agreement, the analyses were repeated 
twice	by	the	first	observer	within	1	week.
We	used	Eview	7.0	and	SPSS	17.0	to	analyze	the	data.	

We used GraphPad Prism 5 and Matlab 2014 to depict the 

any structural anomaly, ventricular hypertrophy [5], body 
mass index ≥95th percentile for children ≥2 years of age, 
or	weight-for-length	Z-score	≥2 on the basis of the World 
Health Organization’s Child Growth Standards for children 
<2 years of age [6, 7]. Heights and weights of all subjects 
were	 measured.	 This	 study	 was	 approved	 by	 the	 Ethics	
Committee of China Medical University. Written informed 
consent was obtained from legal guardians of all subjects for 
the publication of this study and any accompanying images.

Echocardiographic measurements

Echocardiography	was	performed	using	a	Philips	iE33	sys-
tem	 (Philips	Medical	 Systems,	Bothell,	WA,	USA)	 and	 a	
1.5/5 or 4/12 MHz phased array probe. All images were 
obtained from standard views according to the recommen-
dations	for	quantification	methods	during	the	performance	
of a pediatric echocardiogram [8]. All images were digi-
tally	stored	and	analyzed	offline	using	customized	software	
(Qlab;	Philips	Medical	Systems).

CS measurements are routinely obtained for all new 
pediatric subjects in our department. In the standard apical 
4-chamber view, we tilt the probe down into the short view 
and	acquire	the	modified	apical	4-chamber	view.	The	modi-
fied	apical	4-chamber	view	shows	the	long	axis	of	the	CS.	
The superior and inferior diameter of the CS was measured 
from the CS ostium 1 cm from the end of ventricular systole 
[9]	(Fig.	1).

Statistical analysis

To test the normality of age, height, weight, and CS diame-
ter, the Kolmogorov–Smirnov and Shapiro–Wilk tests were 

Fig. 1 The superior and inferior CS diameter was measured from the 
CS	ostium	1	cm	from	the	end	of	ventricular	systole	 in	 the	modified	
apical 4-chamber view
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homoscedasticity	(White	 test,	P >	0.05).	Thus,	 the	Steven-
son	formula	was	selected	as	the	best-fit	formula.

BSADuBois, BSAHaycock, and BSAMosteller were also shown 
to be the most similar formulae to BSAStevenson	(−5	to	5	%),	
followed by BSABoyd and BSAGehan	 (−5	 to	 10	%),	 then	
BSADreyer	(−15	to	15	%)	(Fig.	2).

Gender

BSA was normally distributed in the combined male and 
female group and the male group. BSA had a near-normal 
distribution	in	the	female	group	(P =	0.017).	The	difference	
in BSA between the male and female groups were not statis-
tically	significant	(P = 0.079 >	0.05)	(Table	3).
To	evaluate	the	influence	of	gender	on	the	measurements,	

we used a multiple linear regression model with gender as a 
covariate along with BSA based on the Stevenson formula.
Based	 on	 the	 multiple	 linear	 regression	 equation,	

CS = 3.402 + 1.934 × BSA + 0.008 × Gender, while the P 
value of gender was 0.8668 > 0.05. Thus, there was no sig-
nificant	effect	of	gender	on	the	model	for	measurement	of	
the CS diameter.

Final models

Regression was used to model the relationship between 
the CS diameter with three different independent variables 
(height,	 weight,	 and	 BSAStevenson).	 The	 best-fit	 model	 for	
the CS diameter measurement was the exponential model 
(ln(y)	= a + b ×	ln[x])	 because	 the	 exponential	model	 satis-
fied	 the	 assumption	of	homoscedasticity	 and	normality	of	
residuals and had the highest R2	(Table	4).

The CS diameter had a heteroscedastic positive relation-
ship	with	BSA	(White	test,	P = 0.042 <	0.05).

results	in	the	figures.	A	P value <0.05 was considered sta-
tistically	significant.

Results

Population

Four hundred forty-six consecutive children, including 
neonates	and	infants	(233	males	and	213	females),	met	the	
inclusion and exclusion criteria. Age, height, and weight 
had	a	non-normal	distribution	in	the	three	groups	(Table	1).	
The differences between the male and female groups with 
respect to age, height, and weight were not statistically sig-
nificant	(P = 0.503, 0.218, and 0.572 >	0.05,	respectively).

CS diameter distribution

The CS diameter was 5.49 ± 0.90 mm and normally distrib-
uted	in	the	combined	male	and	female	groups	(Kolmogorov–
Smirnov, P =	0.061;	 Shapiro–Wilk,	 P =	0.151).	 The	 CS	
diameter was 5.50 ± 0.91 mm and normally distributed in 
the	 male	 group	 (Kolmogorov–Smirnov,	 P =	0.055;	 Shap-
iro–Wilk, P =	0.167).	The	CS	diameter	was	5.46	± 0.90 mm 
and	normally	distributed	in	the	female	group	(Kolmogorov–
Smirnov, P =	0.097;	Shapiro–Wilk,	P =	0.148).	The	differ-
ence in CS diameters between the male and female groups 
was	not	statistically	significant	(t = 0.639, P = 0.523 >	0.05).

Preliminary models

The results suggested that the highest R2 was the 
ln(y)	= a + b ×	ln[x]	model	[Stevenson	formula	(R2 = 0.693, 
SE	=	0.094);	 Table	 2]. The residual variance had 

Table 1 Clinical characters of all children

Mean value Standard 
deviation

Median Minimum Maximum Kolmogorov–
Smirnov  
P value

Shapiro–
Wilk  
P value

Age	(year)
Combined 7.80 4.59 8.00 0.01 18.00 < 0.001 < 0.001
Male 7.90 4.58 8.00 0.02 18.00 0.011 < 0.001
Female 7.69 4.61 7.00 0.01 18.00 0.001 < 0.001
Height	(cm)
Combined 130.10 29.15 132.50 48.00 188.00 0.002 < 0.001
Male 131.97 29.64 134.00 48.00 188.00 0.062 0.005
Female 128.06 28.52 130.00 51.00 174.00 0.016 < 0.001
Weight	(Kg)
Combined 33.60 16.69 31.90 3.55 90.00 0.001 < 0.001
Male 34.35 17.57 31.50 6.40 90.00 0.004 < 0.001
Female 32.78 15.67 32.00 3.55 68.00 0.021 0.001
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BSA formula Model SE(√MSE) R2 White P value Breusch–Pagan 
P value

BSADuBois y = a + bx 0.512 0.672 0.074 0.024
y = a + b × ln[x] 0.526 0.661 0.002 < 0.001
ln(y)	= a + bx 0.097 0.669 0.001 0.004
ln(y)	= a + b × ln[x] 0.094 0.692 0.209 0.738
y = a + b×√x 0.514 0.677 0.006 0.002
√y	= a + bx 0.111 0.673 0.661 0.819
√y	= a + b×√x 0.109 0.685 0.411 0.358

BSADreyer y = a + bx 0.531 0.655 0.162 0.056
y = a + b × ln[x] 0.531 0.654 0.007 0.002
ln(y)	= a + bx 0.100 0.650 < 0.001 0.003
ln(y)	= a + b × ln[x] 0.096 0.680 0.109 0.385
y = a + b×√x 0.525 0.663 0.018 0.008
√y	= a + bx 0.114 0.655 0.545 0.624
√y	= a + b×√x 0.112 0.669 0.573 0.673

BSABoyd y = a + bx 0.522 0.666 0.098 0.031
y = a + b × ln[x] 0.528 0.658 0.005 0.001
ln(y)	= a + bx 0.098 0.663 0.001 0.004
ln(y)	= a + b × ln[x] 0.094 0.689 0.151 0.609
y = a + b×√x 0.518 0.671 0.009 0.003
√y	= a + bx 0.112 0.667 0.712 0.766
√y	= a + b×√x 0.110 0.679 0.430 0.456

BSAHaycock y = a + bx 0.521 0.667 0.098 0.031
y = a + b × ln[x] 0.527 0.661 0.004 0.001
ln(y)	= a + bx 0.098 0.663 0.001 0.004
ln(y)	= a + b × ln[x] 0.094 0.689 0.151 0.601
y = a + b×√x 0.517 0.673 0.009 0.003
√y	= a + bx 0.112 0.667 0.597 0.755
√y	= a + b×√x 0.110 0.681 0.474 0.462

BSAMosteller y = a + bx 0.520 0.669 0.087 0.027
y = a + b × ln[x] 0.526 0.661 0.004 0.001
ln(y)	= a + bx 0.098 0.666 0.001 0.004
ln(y)	= a + b × ln[x] 0.094 0.691 0.167 0.657
y = a + b×√x 0.516 0.675 0.008 0.003
√y	= a + bx 0.112 0.670 0.629 0.784
√y	= a + b×√x 0.110 0.683 0.448 0.421

BSAGehan y = a + bx 0.520 0.668 0.088 0.027
y = a + b × ln[x] 0.526 0.661 0.004 0.001
ln(y)	= a + bx 0.098 0.665 0.001 0.004
ln(y)	= a + b × ln[x] 0.094 0.690 0.156 0.626
y = a + b×√x 0.516 0.674 0.008 0.003
√y	= a + bx 0.112 0.669 0.668 0.792
√y	= a + b×√x 0.110 0.682 0.445 0.434

Table 2 Regression results with different BSA formulae
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The residual had a normal distribution, of which the mean 
value was 0.0003 and the standard deviation was 0.094.

Z ln observedCS ln meanCS

ln observedCS

= ( ) − ( ) 
= ( ) −

/ .

.

0 094

1 691−− × ( ) 0 339 0 094. / .ln BSA

The	 regression	 equation	 for	 the	CS	 diameter	 and	BSA	
was as follows:

ln CS ln BSA( ) = + × ( )1 691 0 339. .

CS BSA= ×5 425 0 339. .

Fig. 2 Relationship between BSAStevenson with six other formulae

 

BSA formula Model SE(√MSE) R2 White P value Breusch–Pagan 
P value

BSAStevenson y = a + bx 0.516 0.675 0.042 0.012
y = a + b × ln[x] 0.528 0.659 0.004 0.002
ln(y)	= a + bx 0.097 0.672 0.003 0.012
ln(y)	= a + b × ln[x] 0.094 0.693 0.271 0.716
y = a + b×√x 0.513 0.678 0.005 0.001
√y	= a + bx 0.111 0.676 0.745 0.931
√y	= a + b×√x 0.131 0.688 < 0.001 < 0.001

SE standard error, MSE	mean	square	error

Table 2	 (continued) 
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Discussion

CS	dilatation	 is	 an	 imaging	finding	which	may	be	caused	
by a persistent left superior vena cava, elevated right atrial 
pressure disease, anomalous pulmonary venous connec-
tion, and unroofed CS. The prevalence of CS dilatation was 
0.294	%	(295/100,180)	in	our	15-year	study,	exceeding	the	
prevalence	of	Kawasaki	disease	(0.134	%	[134.4/100,000])	
in 2011 [18].	 Indeed,	 some	physicians	may	not	pay	 suffi-
cient	attention	to	this	finding.

Determining the normal range of the CS diameter is a 
prerequisite	 for	 diagnosing	 diseases	which	 cause	CS	 dil-
atation. The ranges of normal values of hearts and great 

The	predicted	values	and	Z-score	boundaries	for	measure-
ment of the CS diameter are presented in Fig. 3 and Table 5. 
The	 predicted	 values	 and	 Z-score	 boundaries	 (Z	= 2 and 
Z	= −	2)	 for	 the	CS	diameter	with	 the	best-fit	model	were	
based	on	the	BSA	(Fig.	4).
The	Z-score	is	a	normal	distribution,	of	which	the	mean	

value was −0.003 and the standard deviation was 0.999.

Reproducibility

The Bland–Altman plot regression showed that the 95 % 
limits of agreement for inter- and intra-observer measure-
ments	were	not	significantly	different	(Fig.	5).

Table 3 BSA in different groups

Mean value Standard 
deviation

Median Minimum Maximum Kolmogorov–Smirnov 
P value

Shapiro–Wilk 
P value

BSA	(m2)
Combined 1.07 0.38 1.07 0.21 2.15 0.200 0.062
Male 1.09 0.40 1.08 0.22 2.15 0.200 0.083
Female 1.05 0.37 1.05 0.21 1.75 0.200 0.017

Table 4 Preliminary regression results for CS diameter

Model SE(√MSE) R2 White P value Breusch–Pagan 
value

Kolmogorov–Smirnov 
P value

Shapiro–Wilk 
P value

Height
y = a + bx 0.525 0.662 0.003 < 0.001 0.047 0.123
y = a + b × ln[x] 0.544 0.638 0.001 0.001 0.068 0.178
ln(y)	= a + bx 0.096 0.679 0.383 0.178 0.050 0.047
ln(y)	= a + b × ln[x] 0.097 0.675 0.707 0.862 0.096 0.048
y = a + b×√x 0.531 0.654 0.002 < 0.001 0.167 0.186
√y	= a + bx 0.111 0.673 0.378 0.211 0.070 0.122
√y	= a + b×√x 0.112 0.670 0.185 0.084 0.140 0.144

Weight
y = a + bx 0.546 0.635 0.068 0.158 0.030 0.076
y = a + b × ln[x] 0.531 0.654 0.007 0.002 0.084 0.149
ln(y)	= a + bx 0.105 0.618 < 0.001 0.003 0.030 0.330
ln(y)	= a + b × ln[x] 0.096 0.680 0.109 0.385 0.015 0.156
y = a + b×√x 0.527 0.661 0.061 0.023 0.016 0.023
√y	= a + bx 0.119 0.629 0.004 0.398 0.200 0.483
√y	= a + b×√x 0.113 0.664 0.993 0.934 0.022 0.052

BSAStevenson

y = a + bx 0.516 0.675 0.042 0.012 0.049 0.043
y = a + b × ln[x] 0.528 0.659 0.004 0.002 0.023 0.160
ln(y)	= a + bx 0.097 0.672 0.003 0.012 0.035 0.118
ln(y)	= a + b × ln[x] 0.094 0.693 0.271 0.716 0.178 0.070
y = a + b×√x 0.513 0.678 0.005 0.001 0.017 0.055
√y	= a + bx 0.111 0.676 0.745 0.931 0.077 0.053
√y	= a + b×√x 0.131 0.688 < 0.001 < 0.001 0.034 0.062

SE standard error, MSE	mean	square	error
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addressed by various investigators, with recommenda-
tions	to	use	Z-scores	for	various	reasons	[19, 20]. To date, 
there are no published studies regarding the CS diameter in 
healthy children.

Although calculate the parameter of children is an ardu-
ous work due to growth and other factors, previous stud-
ies have summarized a relatively mature statistical method 
using	multiple	regression	models	of	BSA	to	fit	normal	val-
ues. Then, residual associations, residual heteroscedasticity, 
and distribution of residual or normalized values were ana-
lyzed one-by-one [21]. We designed our research according 
to the above statistical method.

vessels have been one of the hot spots in recent years, 
especially with respect to the coronary artery. The impor-
tance of accurate pediatric nomograms has recently been 

Table 5	 CS	Z-score	boundaries	according	to	BSAStevenson

BSA	(m2) CS	Z-score	boundaries	(mm)

− 3 − 2 − 1 0 1 2 3

0.10 1.9 2.1 2.3 2.5 2.7 3.0 3.3
0.20 2.4 2.6 2.9 3.1 3.5 3.8 4.2
0.30 2.7 3.0 3.3 3.6 4.0 4.4 4.8
0.40 3.0 3.3 3.6 4.0 4.4 4.8 5.3
0.50 3.2 3.6 3.9 4.3 4.7 5.2 5.7
0.60 3.4 3.8 4.2 4.6 5.0 5.5 6.0
0.70 3.6 4.0 4.4 4.8 5.3 5.8 6.4
0.80 3.8 4.2 4.6 5.0 5.5 6.1 6.7
0.90 3.9 4.3 4.8 5.2 5.8 6.3 6.9
1.00 4.1 4.5 4.9 5.4 6.0 6.5 7.2
1.10 4.2 4.6 5.1 5.6 6.2 6.8 7.4
1.20 4.4 4.8 5.3 5.8 6.3 7.0 7.7
1.30 4.5 4.9 5.4 5.9 6.5 7.2 7.9
1.40 4.6 5.0 5.5 6.1 6.7 7.3 8.1
1.50 4.7 5.2 5.7 6.2 6.8 7.5 8.3
1.60 4.8 5.3 5.8 6.4 7.0 7.7 8.4
1.70 4.9 5.4 5.9 6.5 7.1 7.8 8.6
1.80 5.0 5.5 6.0 6.6 7.3 8.0 8.8
1.90 5.1 5.6 6.1 6.7 7.4 8.1 8.9
2.00 5.2 5.7 6.2 6.9 7.5 8.3 9.1
2.10 5.3 5.8 6.4 7.0 7.7 8.4 9.2
2.20 5.3 5.9 6.5 7.1 7.8 8.6 9.4
2.30 5.4 6.0 6.5 7.2 7.9 8.7 9.5
2.40 5.5 6.0 6.6 7.3 8.0 8.8 9.7
2.50 5.6 6.1 6.7 7.4 8.1 8.9 9.8

Fig. 3	 Z-score	boundaries	for	measurement	of	the	CS	diameter

 

Fig. 4	 Predicted	values	and	Z-score	boundaries	(Z	=	2	and	Z	= −	2)	for	
CS	with	a	best-fit	model	according	to	BSAStevenson
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mean value of −0.003 and the standard deviation was 0.999. 
This	 Z-score	 indicates	 that	 our	 calculation	was	 relatively	
accurate.

Reproducibility tests showed that echocardiography is a 
reliable imaging tool for the measurement of CS diameter, 
and	echocardiography	has	been	shown	not	only	to	be	effica-
cious for the diagnosis of persistent left superior vena cava 
or unroofed CS, but to evaluate the pulmonary artery pres-
sure in pediatric patients [27].

Limitations

This research was designed to measure the CS diameter of 
Chinese children. Thus, the study lacked data from subjects 
of	different	races.	The	equation	and	Z-score	boundaries	may	
need to be slightly adjusted to apply to different races.

The total number of healthy children was small [28]. Due 
to the rapid change in infancy and small infant sample of our 
study	(including	42	infants),	it	was	difficult	to	obtain	normal	
values	 in	 very	 young	 children.	The	 equation	 and	 Z-score	
boundaries may need further investigation [29].

Conclusions

BSAStevenson may be more appropriate than other traditional 
formulae for Chinese children. New, reliable echocardio-
graphic	Z	scores	of	 the	CS	diameter	derived	 from	a	 large	
population	of	healthy	Chinese	children	are	reported.	The	Z	
scores can be used in echocardiographic examinations.
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