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were in concordance. However, differences between respi-
ration state and 2D-1dir and 2D-3dir measurements indi-
cate that reference values should be established according 
to the PC-MRI sequence, especially for the widely used net 
flow (e.g. stroke volume in the AA).
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Aortic hemodynamics · 4D flow MRI

Introduction

The evaluation of cardiovascular hemodynamics is crucial 
for diagnosis and management of patients with valvular 
anomalies [1], congenital heart disease [2] as well as cardio-
myopathies [1]. Time-resolved (CINE) phase-contrast (PC) 
MRI sequences, in which velocity is encoded in one direc-
tion through a 2D plane (2D-1dir) are used in clinical rou-
tine, usually during breath-holding, for quantifying blood 
flow and peak flow velocities [3]. However, placement of 
the acquisition plane remains challenging, and can lead to 
the underestimation of peak velocities if misplaced or not 
orthogonal to the flow of interest. This is a common occur-
rence in cases involving complex flow and where changes 
in flow direction occur throughout the cardiac cycle, such 
as with valvular stenosis, valvular regurgitation, or complex 
congenital heart disease. These underestimations can be 
improved by taking into account all flow directions, which 
is achieved by three-directional encoding of all three prin-
cipal velocity directions inside a slice of interest (2D-3dir) 
[4]. Alternatively, 4D flow MRI (3D CINE PC-MRI with 
three-directional velocity encoding) enables post-hoc time-
resolved three-dimensional visualization of blood flow and 
retrospective quantification at any location in a 3D volume 
[5]. The usefulness of the technique has been increasingly 

Abstract The purpose of this study was to compare aortic 
flow and velocity quantification using 4D flow MRI and 2D 
CINE phase-contrast (PC)-MRI with either one-directional 
(2D-1dir) or three-directional (2D-3dir) velocity encod-
ing. 15 healthy volunteers (51 ± 19 years) underwent MRI 
including (1) breath-holding 2D-1dir and (2) free breath-
ing 2D-3dir PC-MRI in planes orthogonal to the ascend-
ing (AA) and descending (DA) aorta, as well as (3) free 
breathing 4D flow MRI with full thoracic aorta coverage. 
Flow quantification included the co-registration of the 2D 
PC acquisition planes with 4D flow MRI data, AA and DA 
segmentation, and calculation of AA and DA peak systolic 
velocity, peak flow and net flow volume for all sequences. 
Additionally, the 2D-3dir velocity taking into account the 
through-plane component only was used to obtain results 
analogous to a free breathing 2D-1dir acquisition. Good 
agreement was found between 4D flow and 2D-3dir peak 
velocity (differences = −3 to 6 %), peak flow (−7 %) and net 
volume (−14 to −9 %). In contrast, breath-holding 2D-1dir 
measurements exhibited indices significantly lower than 
free breathing 2D-3dir and 2D-1dir (differences = −35 to 
−7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were 
obtained for indices estimated with or without eddy cur-
rent correction, with the lowest correlation observed for net 
volume. 4D flow and 2D-3dir aortic hemodynamic indices 
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2. Three-directional velocity encoding using a 2D CINE 
PC-MRI sequence (2D-3dir) during free breathing, at 
the same location as for 2D-1dir measurements.

3. Three-directional velocity encoding using a 4D flow 
PC-MRI sequence during free breathing, in a sagit-
tal oblique volume which included the thoracic aorta 
(number of slices = 24–30).

Acquisitions were not performed in the same order for all 
subjects in order to avoid potential effects such as a decrease 
in heart rate and cardiac output with scan time as they lie 
in the magnet. For all acquisitions, prospective ECG gat-
ing with a similar covered fraction (~80 %) of the cardiac 
cycle, as well as segmented k-space, were used. Acquisition 
parameters are provided in Table 1. Respiration navigator 
gating was used for acquisition of 4D flow and 2D-3dir data, 
while positioning the acceptance window at the end-expira-
tion phase with an efficiency of 80 %, which was previously 
shown to correct for respiratory motion while providing 
the best trade-off between scan time and measurement of 
peak systolic maximal velocity magnitude when compared 
to other schemes [28]. Of note, our 4D flow protocol is in 
agreement with the 4D flow consensus statement [29].

MRI data analysis

The data analysis workflow is schematically illustrated in 
Fig. 1. For each subject, the three acquired datasets (2D-1dir, 
2D-3dir, 4D flow MRI) were preprocessed (Fig. 1a) using a 
tool programmed in Matlab (The Mathworks, USA) which 
was previously described [30]. Preprocessing included the 
suppression of noise by masking pixels with a low mag-
nitude signal intensity and also those with a high velocity 
standard deviation throughout the cardiac cycle [27]. Then, 
an automated unwrapping filter was applied to correct for 
velocity aliasing in voxels with a velocity shift above the 
Venc, as compared to the velocity of spatially and tempo-
rally neighboring pixels. Finally, eddy current correction 
was performed by a least squares plane first-order fit to 
the velocity images separately for each velocity direction, 
applied slice by slice to static regions at end-diastole, as 
identified by a low velocity standard deviation across the 
cardiac cycle [27], while excluding areas with spatial fold-
over [31]. Eddy current correction was achieved by sub-
tracting, for each time frame, separately for each velocity 
direction, the fitted plane from the original velocity image.

The slice location used for 2D-1dir and 2D-3dir measure-
ments was automatically co-registered in the thoracic aortic 
volume based on DICOM location and orientation informa-
tion, to extract using EnSight (CEI, Apex, North Carolina, 
USA), at the same level in the AA and DA and using the 
same orientation, 2D magnitude and velocity images from 
4D flow measurements (Fig. 1b).

demonstrated for the assessment of blood flow hemodynam-
ics in diverse cardiovascular territories such as the aorta [6], 
ventricles [7], atria [8], pulmonary arteries [9], intracranial 
arteries [10], portal [11] and splanchnic arteries [12].

Several previous works have focused on the comparison 
of 2D and 4D flow MRI for flow quantification, involving in 
vitro experiments [13] and in vivo in healthy subjects [13–
22] or patients with congenital heart disease [17, 20, 22–24], 
dilated cardiomyopathy [15], valve stenosis [18], suspected 
intracardiac shunts [25], and other miscellaneous popula-
tions [26]. However, in these latter studies, either 2D-1dir 
or 2D-3dir measurements were used. In addition, the studied 
indices were either velocity, peak flow or flow volume. Our 
aim in this study is to investigate the effect of encoding 1 vs. 
3 velocity directions and of acquiring data through a 2D plane 
vs. a 3D volume, by reporting a systematic and comprehen-
sive comparison of 2D-1dir, 2D-3dir and 4D flow MRI for 
the quantification of peak systolic velocity, peak flow as well 
as net flow volume in the ascending (AA) and descending 
(DA) aorta in healthy subjects. Finally, the impact of eddy 
current correction, as proposed by Walker et al. [27], was 
assessed for the estimation of each hemodynamic parameter.

Materials and methods

Population

Sixteen healthy volunteers [age 51 ± 18 (19–78) years; 
11 men] with no history of cardiovascular disease were 
recruited between March and May 2014, with the approval 
of Northwestern University institutional review board and 
informed consent. Each subject underwent an MRI exam, 
which included acquisition of velocity-encoded data in the 
thoracic aorta using 3 sequences (2D-1dir, 2D-3dir, 4D flow 
MRI). All studies were performed in the morning between 
7:30 and 10am after fasting and the instruction to avoid caf-
feine. Weight was recorded before the exam and brachial 
blood pressures monitored in real time and recorded every 
10 min during the exam.

MRI acquisition protocol

Aortic PC-MRI data were acquired for each subject on a 
1.5T MAGNETOM Aera scanner (Siemens Medical Sys-
tems, Erlangen, Germany), without the use of any contrast 
agent, using the three following techniques:

1. One-directional velocity encoding in the through-plane 
direction with a 2D CINE PC-MRI sequence (2D-1dir) 
during breath-holding at end-expiration, in an axial 
slice placed perpendicular to the mid-AA, at the level of 
the right pulmonary artery center.
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The next step consisted of segmenting both the AA and 
DA lumen borders (Fig. 1c). The segmentation was per-
formed on 2D-1dir and 2D-3dir PC-MRI data using the 
Segment software version 1.9 R4040 (Medviso AB, Lund, 
Sweden; http://segment.heiberg.se) [32], which provided 
an automated time-resolved detection of aortic contours on 
modulus images, based on the level set method, from a man-
ual initialization of a circular region of interest (ROI) on a 
single cardiac phase. A custom software [19] was used for 
segmentation of 2D images extracted from 4D flow data that Ta
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Fig. 1 Analysis workflow of 2D one-directional (2D-1dir), three-
directional (2D-3dir) and 4D flow phase-contrast (PC) MRI data: pre-
processing (a), coregistration of the 2D slice location on 4D flow data 
(b), as well as 2D segmentation of ascending (AA) and descending 
(DA) aortic borders (c), used for the estimation of peak through-plane 
velocity (peak Vzmax), peak velocity magnitude (peak Vmagmax), peak 
flow (peak Q) and net flow volume (Qnet)
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analyses. Mean bias, limits of agreement, along with rela-
tive difference expressed in percentage of the mean value, 
were reported. Linear regression was used to study the rela-
tionship between peak Vzmax and Vmagmax as well as peak 
Q and Qnet, as estimated with and without eddy current cor-
rection. Slopes, Pearson correlation coefficients r, as well as 
biases and limits of agreement were provided. Finally, sig-
nificant differences between hemodynamic indices obtained 
using 2D-1dir and 2D-3dir, 4D flow and 2D-3dir, as well as 
with and without correcting for eddy currents, were assessed 
using a Wilcoxon signed-rank test. A p value <0.05 was con-
sidered as statistically significant. Statistical analyses were 
performed using Matlab (MathWorks, Natick, MA, USA).

Results

Population description

One female subject (6 % of the subjects) was excluded 
because of severe aliasing artifacts on PC-MRI data, which 
could not be fixed using the dedicated software nor manual 
correction. Mean age of the resulting 15 healthy volunteers 
was 51 ± 19 [19–78] years; mean weight was 192 ± 34 [130–
206] lbs and systolic/diastolic blood pressures were 126 ± 25 
[92–167]/76 ± 17 [30–105] mmHg.

Comparison between 2D-1dir, 2D-3dir and 4D flow 
MRI

Figure 2 illustrates examples of velocity profiles inside the 
AA and DA ROIs as obtained using 2D-1dir, 2D-3dir PC-
MRI and 4D flow during systole in a healthy subject. While 
systolic velocity profiles look similar between 2D-3dir and 
4D flow both in the AA and DA, velocities were lower when 
using 2D-1dir data at both locations.

Figure 3 shows maximal through-plane velocity Vzmax, 
maximal velocity magnitude Vmagmax and flow rate Q for 
2D-1dir, 2D-3dir PC-MRI and 4D flow in the AA and DA 
over the cardiac cycle averaged over the group of healthy 
volunteers. While no significant differences were observed 
for DA Vzmax and Vmagmax as well as for AA and DA Q 
throughout most of cardiac phases, systolic Vmagmax and 
Vzmax in the AA were significantly different across the three 
sequences. Of note, a shorter averaged systolic duration 
time was observed for 2D-1dir breath-hold data, when com-
pared to 2D-3dir or 4D flow MRI data.

Results for the quantification of peak Vzmax and Vmagmax, 
peak Q, Qnet and systolic area in the AA and the DA for all 
three sequences are summarized in Table 2. We found no 
significant differences between 4D flow and 2D-3dir indi-
ces in the AA nor in the DA. However, both in the AA and 
the DA, for all parameters, the breath-hold 2D-1dir resulted 

were lower in contrast than the 2D-1dir or 2D-3dir images, 
which hindered the use of level set algorithms. The software 
allowed for manual drawing of ROI and ROI fitting based 
on cubic B-splines using both the magnitude and velocity 
images.

AA and DA systolic maximal area was extracted for 
2D-1dir, 2D-3dir PC-MRI and 4D flow data. Furthermore, 
after applying a median filter on boundary pixels to reduce 
the effect of noise in velocity images, the AA and DA con-
tours were used to estimate, for each cardiac time frame t, 
the following hemodynamic indices, from each sequence:

1. cross-sectionally averaged over the pixels [Vzavg(t)] and 
maximal [Vzmax(t)] through-plane velocity;

2. maximal velocity magnitude Vmagmax t( ) =


  
 
max Vx Vy Vzt t t( ) + ( ) + ( )










2 2 2
;

3. flow rate [Q(t) = cross-sectional area(t) × Vzavg(t)].

Note that Vzmax and Vmagmax are identical for the 2D-1dir 
data. Also note that the through-plane Vzmax estimated 
using the free breathing 2D-3dir data is equivalent to 
Vzmax that would be obtained using a fourth free breathing 
through-plane 2D-1dir sequence. The peak systolic maxi-
mal through-plane velocity (peak Vzmax, cm/s), peak sys-
tolic maximal velocity magnitude (peak Vmagmax, cm/s), 
peak systolic flow (peak Q, ml/s) and net flow volume (Qnet, 
ml), as obtained by integrating flow rate throughout systole, 
were further computed.

To test the effect of eddy current correction on hemody-
namic measurements for each sequence, the data analysis 
workflow was additionally performed without correcting for 
eddy currents.

Statistical analysis

For global qualitative visualization and comparison, maxi-
mal through-plane velocity Vzmax, maximal velocity mag-
nitude Vmagmax and flow rate Q waveforms in the AA and 
DA provided by each MRI velocity-encoded sequence were 
interpolated using a 39 ms time step for each healthy vol-
unteer, then averaged over the whole group and reported as 
mean waveforms with standard deviation bars for each car-
diac time frame. Quantitative differences across the three 
MRI sequences at each cardiac time frame were assessed 
using one-way Kruskal–Wallis. Normal distribution of aor-
tic indices was tested using the Kolmogorov–Smirnov test. 
AA and DA peak systolic Vzmax and Vmagmax, peak sys-
tolic Q, Qnet volume and systolic area were reported as mean 
values ± standard deviations. Paired comparison between 
2D-1dir and 2D-3dir as well as between 4D flow and 
2D-3dir measurements was achieved using Bland–Altman 
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Fig. 2 Examples of velocity profiles obtained in the AA (a) and DA (b) using 2D-1dir (top row), 2D-3dir (middle row) PC-MRI and 4D flow (bot-
tom row) data throughout the systolic period in a healthy volunteer

 

Fig. 3 Group-averaged maximal through-plane velocity Vzmax (left), 
maximal velocity magnitude Vmagmax (middle) and flow rate Q (right) 
throughout the cardiac cycle as estimated in the AA (a) and DA (b), 
using 2D-1dir (dashed blue lines), 2D-3dir (dotted grey lines) PC-MRI 

and 4D flow (solid red lines) data. Standard deviations over the whole 
group are represented as bars for each cardiac phase. *Indicates 
p < 0.05 for comparison across the three sequences
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2D-3dir and 4D flow measurements, both in the AA and DA 
(p < 0.0005 for all).

Effect of eddy current correction on measurement of 
hemodynamics indices

No significant differences were observed in peak Vzmax and 
Vmagmax as well as peak Q and Qnet in neither the AA nor 
the DA using the three PC-MRI sequences, with or with-
out eddy current correction (p ≥ 0.77). Figure 6 shows the 
results of linear regression analysis for the comparison of 
hemodynamic indices with and without eddy current correc-
tion. Overall, the obtained correlation coefficients were high 

in significantly reduced measurements when compared to 
2D-3dir. These findings were confirmed by Bland–Alt-
man analysis for comparisons between 2D-1dir, 2D-3dir 
PC-MRI and between 4D flow, 2D-3dir PC-MRI (Figs. 4, 
5 respectively). Overall, mean biases, limits of agreement 
and relative percentage differences obtained for peak Vzmax, 
calculated when considering only the through-plane com-
ponent, were lower than those obtained for peak Vmagmax, 
which takes into account all three velocity components. 
However, peak Vzmax estimated using 2D-1dir data was 
still significantly lower than 2D-3dir peak Vzmax (Table 2). 
Note that, as expected, Vzmax was significantly lower than 
Vmagmax when compared within the same sequence for the 

Table 2 AA and DA peak Vzmax, Vmagmax and Q, Qnet and systolic area mean values

Location Sequence Peak Vzmax (cm/s) Peak Vmagmax (cm/s) Peak Q (ml/s) Qnet (ml) Systolic 
area (mm2)

AA 2D-1dir 85 ± 19* 85 ± 19* 384 ± 85* 68 ± 21* 866 ± 247*
2D-3dir 97 ± 17 115 ± 22 420 ± 76 83 ± 13 976 ± 234
4D flow 96 ± 24 121 ± 34 396 ± 99 77 ± 21 944 ± 255

DA 2D-1dir 72 ± 22* 72 ± 22* 243 ± 55* 49 ± 14* 482 ± 137*
2D-3dir 79 ± 24 80 ± 25 261 ± 45 56 ± 10 502 ± 138
4D flow 84 ± 26 85 ± 26 245 ± 52 49 ± 12 505 ± 122

Peak Vzmax peak through-plane velocity, peak Vmagmax peak velocity magnitude, peak Q peak flow, Qnet net volume, AA ascending aorta, DA 
descending aorta, 2D-1dir 2D one-directional PC-MRI, 2D-3dir 2D three-directional PC-MRI
*Indicates p < 0.05 between 2D-1dir and 2D-3dir

Fig. 4 Bland–Altman diagrams for comparison between 2D-1dir and 
2D-3dir PC-MRI peak systolic maximal through-plane velocity (peak 
Vzmax), peak systolic maximal velocity magnitude (peak Vmagmax), 
peak systolic flow (peak Q) and net flow volume (Qnet), in the AA (a) 

and DA (b). Solid red line indicates mean bias while dashed red lines 
indicate limits of agreement. Mean values of the relative difference in 
percentage of the averaged value are provided
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Table 4 summarizes findings previously reported in the 
literature for the comparison of flow measurements between 
2D PC-MRI and 4D flow, while focusing on the aorta in 
healthy subjects. The corresponding findings obtained in 
our study are summarized at the bottom of the table for 
comparison.

(r = 0.97–0.999, p < 0.0001). The lowest correlations (r = 0.98 
and r = 0.97 in the AA and DA, respectively, p < 0.0001) were 
obtained when considering Qnet. Table 3 reports results of 
the Bland–Altman analysis, separately for each of the three 
PC-MRI sequences. The lowest biases and narrowest limits 
of agreement were obtained with the 2D-1dir sequence.

Fig. 5 Bland–Altman diagrams for comparison between 2D-3dir PC-
MRI and 4D flow peak through-plane velocity (peak Vzmax), peak 
velocity magnitude (peak Vmagmax), peak flow (peak Q) and net flow 
volume (Qnet), in the AA (a) and DA (b). Solid red line indicates mean 

bias while dashed red lines indicate limits of agreement. Mean val-
ues of the relative difference in percentage of the averaged value are 
provided

 

Fig. 6 Linear regressions for comparison between peak through-plane 
velocity (peak Vzmax), peak velocity magnitude (peak Vmagmax), 
peak flow (peak Q) and net flow volume (Qnet), in the AA (a) and  

DA (b) estimated with and without performing eddy current correction 
(ECC), while pooling the three PC-MRI sequences. Slopes and Pear-
son correlation coefficients (r) are provided
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2D-3dir temporal resolution twice as high as their 4D flow 
temporal resolution. Interestingly, in our study, only four 
volunteers had AA 2D-3dir flow volume and peak lower 
than 4D flow measurements. This could be explained by the 
fact that, from what we observed retrospectively on 4D flow 
data, the 2D slice used for 2D-1dir and 2D-3dir measure-
ments was not placed exactly orthogonal to the AA axis in 
these subjects (and thus partial volume effects associated 
with anisotropic voxels common to the 2D acquisitions may 
play role).

We further compared the two 2D PC-MRI sequences, 
and found that all 2D-1dir velocity and flow indices were 
significantly lower than 2D-3dir indices both in the AA 
and DA. The underestimation of peak velocity using a 
2D through-plane velocity-encoded sequence when the 
acquisition plane is not positioned exactly orthogonal to 
the direction of flow is widely known [33], although its 
effect on the flow calculation should be minor. Indeed, in 
our study, peak through-plane velocity was significantly 
lower than peak velocity magnitude both estimated using 
the 2D-3dir data. In addition, 2D-1dir aortic peak veloc-
ity was still significantly lower than 2D-3dir peak veloc-
ity calculated while taking into account the through-plane 
component only, albeit to a lesser extent than when com-
pared to 2D-3dir peak velocity magnitude calculated using 
the three principal components. Since data were acquired at 
the same location with the same slice orientation, both with 
prospective ECG gating and with the same range of pixel 
spacing, slice thickness, temporal resolution and encoding 
velocity, this discrepancy might be due to the differences 
in the employed number of segments and, importantly, 
in physiological conditions between acquisitions, specifi-
cally breath-holding vs. free breathing. Indeed, it was pre-
viously shown that cardiac output measured in the aorta 
was significantly lower during breath-holding than during 

Discussion

This is the first study systematically assessing differences 
in peak velocity, peak flow and volume estimated in the AA 
and DA of healthy volunteers, based on three flow-sensitive 
MRI techniques that are currently used in clinical routine and 
research settings. Our main findings were that: (1) breath-
hold 2D-1dir measurements were significantly lower than 
the free breathing 2D-3dir and the synthetic free breathing 
2D-1dir measurements (i.e. the through-plane ‘Vz’ veloc-
ity component extracted from the 2D-3dir data); (2) good 
agreement was observed for the comparison between the 
free breathing 2D-3dir and 4D flow sequences; (3) the high-
est sensitivity to eddy current correction was observed for 
the integrated flow indices.

Several studies previously focused on the comparison of 
hemodynamic indices estimated using 4D flow MRI com-
pared to standard 2D velocity-encoded sequences [13–26]. 
When comparing our findings with those previously reported 
in the literature, focusing on proximal aorta studies includ-
ing healthy volunteers (Table 4), we found that, to the best 
of our knowledge, only one compared 4D flow and 2D-3dir 
sequences. First, our AA and DA net flow volume mean 
values obtained using 2D-3dir and 4D flow data are within 
the ranges reported in this study on 19 healthy volunteers 
(AA 2D-3dir = 74.4 ± 16.2 ml and 4D flow = 73.9 ± 18.9 ml; 
DA 2D-3dir = 61.6 ± 13.0 ml and 4D flow = 45.4 ± 11.7 ml) 
[19]. In further concordance with this previous work [19], 
we found that the net volumes were lower when calculated 
from 4D flow than 2D-3dir data, which might be due to the 
lower 4D flow spatial resolution in one dimension, although 
the difference was not significant. Finally, the mean abso-
lute bias (2D-3dir − 4D flow Qnet = 8.88 ± 7.02 ml) and 
median relative difference (2D-3dir − 4D flow Qnet ~12 %) 
obtained by the authors [19] were close to ours, despite their 

Location and index 2D-1dir 2D-3dir 4D flow

Bias [limits of agreement] With-without eddy current correction
AA
Peak Vzmax (cm/s) 0.31 [−0.84; 0.22] 0.41 [−0.27; 1.10] 0.85 [−1.94; 0.24]
Peak Vmagmax (cm/s) 0.31 [−0.84; 0.22] 0.05 [−4.10; 4.00] 0.91 [−1.82; 0.01]
Peak Q (ml/s) 2.79 [−7.35; 1.78] 4.19 [−2.99; 11.4] 7.73 [−17.5; 2.00]
Qnet (ml) 2.18 [−5.80; 1.43] 2.99 [−1.86; 7.84] 4.89 [−10.4; 0.58]

DA
Peak Vzmax (cm/s) 0.15 [−0.37; 0.67] 0.99 [−1.75; −0.22] 0.95 [−0.49; 2.39]
Peak Vmagmax (cm/s) 0.15 [−0.37; 0.67] 1.19 [−2.39; 0.01] 0.93 [−0.47; 2.33]
Peak Q (ml/s) 0.73 [−1.84; 3.29] 4.79 [−9.60; 0.02] 4.63 [−1.86; 11.1]
Qnet (ml) 0.53 [−1.59; 2.65] 3.69 [−7.32; −0.06] 2.70 [−0.87; 6.26]

Means bias and limits of agreement (in brackets) are provided
2D-1dir 2D one-directional PC-MRI, 2D-3dir 2D three-directional PC-MRI, peak Vzmax peak through-
plane velocity, peak Vmagmax peak velocity magnitude, peak Q peak flow, Qnet net volume, AA ascending 
aorta, DA descending aorta

Table 3 Bland–Altman analy-
sis for comparison between 
indices estimated with and 
without performing eddy cur-
rent correction
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Studied population MRI acquisitions Reported findings

Stalder, MRM2008 [19]
n = 19 3T 4D flow AA peak Q slightly lower than 2D-3dir
Mean age 23 

[20–34] years
2D-3dir: SR = 1.24–1.82 × 1.25–1.82 × 5 mm3 AA 2D-3dir Qnet = 74.4 ± 16.2 ml

TRes = 24.4 ms, 28–40 cardiac phases AA 4D flow Qnet = 73.9 ± 18.9 ml
FB with navigator, prospective gating DA 2D-3dir Qnet = 61.6 ± 13.0 ml
4D flow: SR = 2.71–2.93 × 1.58–1.69 × 2.6–3.5 mm3 DA 4D flow Qnet = 45.4 ± 11.7 ml
13–15 cardiac phases Mean absolute difference 2D-3dir − 4D flow Qnet (8 aortic 

locations) = 8.88 ± 7.02 ml
FB, prospective gating Median relative error 2D-3dir  − 4D flow Qnet (8 aortic loca-

tions) ~12 %
Brix, JCMR2009 [13]
n = 9 1.5T AA 2D-1dir Qnet = 89.5 ± 13.5 ml
Mean age 29 ± 7 years 2D-1dir: SR = 1.41 × 1.41 × 5 mm3, TRes = 36 ± 9 ms AA 4D flow Qnet = 92.7 ± 17.5 ml

29.7 ± 3.7 cardiac phases, FB with navigator, prospec-
tive gating

Mean absolute difference 4D flow − 2D-1dir AA 
Qnet = 4.0 ± 8.8 ml

4D flow: SR = 3 × 3 × 3 mm3, TRes = 55 ± 12 ms No statistical diffences between 2D-1dir and 4D flow AA 
Qnet (p = 0.68)

20 cardiac phases, FB with navigator, prospective 
gating

Hope, JMRI2010 [24]
n = 8 1.5T No comparison between 2D and 4D flow reported in healthy 

volunteers, only vs. patients with aortic coarctation
Mean age 

30.8 ± 5.2 years
2D-1dir: slice thickness = 8 mm, BH

4D flow: SR = 1.17 × 1.56 × 2.6 mm3, 
TRes = 74–77 ms

FB with bellows, retrospective gating
Carlsson, JCMR2011 [14]
n = 13 1.5T 4D flow AA and MPA peak Q significantly lower than 

2D-1dir
Mean age 32 ± 12 years 2D-1dir: SR = 1.2 × 1.2 × 6 mm3 Mean relative error 2D-1dir − 4D flow AA and MPA 

Qnet = −3.6 ± 14.8 % (NS)
35 cardiac phases, FB with no navigator, retrospec-

tive gating
4D flow: SR = 3 × 3 × 3 mm3, TRes = 50–55 ms
40 cardiac phases, FB with navigator, retrospective 

gating
Valverde, JCMR2012 [23]

1.5T No comparison between 2D and 4D flow reported in 
healthy volunteers, only vs. patients with single-ventricle 
physiology

2D-1dir: SR = 1.2 × 1.2 × 7 mm3, 35–40 cardiac phases
FB with no navigator, retrospective gating
4D flow: 1.5 × 1.5 × 2.3 mm3, 22–25 cardiac phases
FB with no navigator, retrospective gating

Nordmeyer, JMRI2013 [18]
n = 7 3T Mean absolute error 2D-1dir − 4D flow AA and MPA 

Vmax = 10 % (NS)
Mean age 34 ± 7 years 2D-1dir: SR = 1.1–2.2 × 1.1–2.2 × 7 mm3 AA 2D-1dir Qnet = 89 ± 10 ml

35 cardiac phases, FB, retrospective gating AA 4D flow Qnet = 88 ± 10 ml

Table 4 Previous comparisons in the literature between aortic 2D PC-MRI and 4D flow in healthy populations
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previous observations [37], and highlights that in-plane 
velocity components should not be neglected in this region.

When referring to previous literature for the compari-
son between 2D-1dir and 2D-3dir measurements, we found 
that most studies compared 4D flow and 2D-1dir, thereby 
confounding the ability to understand the separate contri-
bution of different number of velocity encoding directions 
and volumetric coverage. As previously reported (Table 4), 
we found that flow volume [14–16, 21, 25, 26] and peak 
flow [14] were lower and that peak velocities were higher 
[18] when estimated using 4D flow in comparison with 
2D measurements. Of note, our net volume measurements 
were lower than those previously reported both at 3T 
(2D-1dir = 89 ± 10 ml [18] or 100.6 ± 27.8 ml [16] and 4D 
flow = 88 ± 10 ml [18] or 95.9 ± 19.1 ml [16] in the AA). This 
could be due to the differences in the studied populations, 
spatial resolution and gating of MRI data, but also field 
strength or method used for eddy current correction. Indeed, 
it was previously demonstrated that flow indices estimated 

free breathing [34]. This can be related to changes in sys-
tolic duration time and more generally heart rate, as previ-
ously shown between free breathing and breath-hold MRI 
acquisitions in patients after acute ST-segment elevation 
myocardial infarction [35]. In our study, we tried to avoid 
potential systematic changes in physiological conditions 
over scan time by acquiring the 3 PC MRI sequences in a 
different order for all subjects. Furthermore, we acquired 
breath-hold 2D-1dir data during end-expiration and free 
breathing data while positioning the respiratory navigator 
acceptance window at the end-expiration phase, as a recent 
non-electrocardiographic triggered real-time PC-MRI 
study further exhibited differences in flow throughout the 
respiratory cycle and between normal and forced breathing 
[36]. Of note, mean biases, limits of agreement and relative 
percentage differences for comparison between 2D-1dir 
peak through-plane velocity and 2D-3dir velocity magni-
tude were lower in the DA. This finding suggests that com-
plex flow is more prominent in the AA, in agreement with 

Studied population MRI acquisitions Reported findings

4D flow: SR = 1.5–2.1 × 1.5-2 × 2.5 mm3 Good agreement between 2D-1dir and 4D flow AA and 
MPA Qnet

24 cardiac phases, FB with no navigator, retrospec-
tive gating

Frydrychowicz, InvestRadiol2013 [16]
n = 18 3T AA 2D-1dir Qnet = 100.6 ± 27.8 ml
Mean age 41.6 ± 16.21 

[22.5–73.5] years
2D-1dir: SR = 1.45 × 1.45 × 7 mm3 AA 4D flow Qnet = 95.9 ± 19.1 ml

19.7 ± 4.7 [13–37] cardiac phases, BH, prospective 
gating

Mean relative difference 2D-1dir − 4D flow AA 
Qnet = −12.0 ± 24.1 ml

4D flow: SR = 1.4 × 1.4 × 1.4 mm3

24 cardiac phases, FB with bellows, retrospective 
gating

Current study
n = 15 1.5T AA 2D-1dir Qnet = 68 ± 21 ml/DA 2D-1dir Qnet = 49 ± 14 ml
Mean age 51 ± 18 

[19–78] years
2D-1dir: SR = 1.8–1.9 × 2.1–2.5 × 6 mm3, 

TRes = 39.2 ms
AA 2D-3dir Qnet = 83 ± 13 ml/DA 2D-1dir Qnet = 56 ± 10 ml

[13–31] cardiac phases, BH, prospective gating AA 4D flow Qnet = 77 ± 21 ml/DA 4D flow Qnet = 49 ± 12 ml
2D-3dir: SR = 1.8–1.9 × 2.4–2.6 × 6 mm3, 

TRes = 38.4 ms
2D-1dir AA and DA Qnet significantly lower than 2D-3dir

[16–27] cardiac phases, FB with navigator, prospec-
tive gating

Good agreement between 2D-3dir and 4D flow AA and DA 
Qnet

4D flow: SR = 3.0–3.4 × 2.3–2.5 × 2.5–2.7 mm3, 
TRes = 39.2 ms

Mean absolute/relative difference 2D-1dir − 2D-3dir AA 
Qnet = −16 ml/−23 ± 24 %

[17–30] cardiac phases, FB with navigator, prospec-
tive gating

Mean absolute/relative difference 2D-1dir − 2D-3dir DA 
Qnet = −7 ml/−15 ± 22 %

Mean absolute/relative difference 4D − 2D-3dir AA 
Qnet = −6 ml/−9 ± 16 %

Mean absolute/relative difference 4D − 2D-3dir DA 
Qnet = −7 ml/−14 ± 12 %

SR spatial resolution, TRes acquired temporal resolution, FB free breathing, MPA main pulmonary artery, NS non-significant difference, BH 
breath-holding

Table 4 (continued) 
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it would require to interrupt the data acquisition during late 
diastole to insert the navigator pulse and thus forward esti-
mation of RR-interval duration. This option was not avail-
able in our 4D flow sequence and all data were thus acquired 
using prospective ECG gating, including for 2D PC-MRI 
data in order to be consistent with 4D flow acquisition and 
allow for a more direct comparison between hemodynamic 
indices to overcome the effect of using either retrospective or 
prospecting gating. Quantitative comparison of velocity pro-
files as well as more sophisticated indices such as wall shear 
stress or vortices obtained using different sequences could 
also be studied. Another limitation is the use of two different 
algorithms for 2D PC-MRI and 4D flow image segmenta-
tion. However, the aortic systolic area was similar between 
2D-3dir and 4D flow data, but different between 2D-3dir 
and 2D-1dir for which the same segmentation method was 
applied, probably due to different physiological conditions 
when acquiring data under free breathing or breath-holding. 
Finally, it should be underlined that the present study aimed 
at evaluating the effect of encoding velocity in either 1 or 3 
directions and of acquiring data either in a 2D plane or in 
a 3D volume. To achieve this objective, we tried to match 
temporal and spatial resolutions between the three MRI 
techniques. Accordingly, different results might be obtained 
when using the 2D-1dir PC-MRI sequence used in clinical 
routine with a better achievable temporal resolution (as low 
as 10 ms using k-space segmentation factor = 1).

In conclusion, we found a good agreement between the 
two three-directional velocity-encoded sequences (dif-
ferences within 10 %). However, aortic flow and velocity 
indices were significantly lower when measured during 
breath-hold than during free breathing. Differences obtained 
using the clinically used 2D-1dir PC-MRI sequence high-
light the need to standardize acquisition protocols and to 
establish hemodynamic reference values specific to a given 
technique. In particular, care should be taken when report-
ing the widely used stroke volume.
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