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Abstract Ascending aortic blood flow characteristics are

altered after aortic valve surgery, but the effect of tran-

scatheter aortic valve implantation (TAVI) is unknown.

Abnormal flow may be associated with aortic and cardiac

remodeling. We analyzed blood flow characteristics in the

ascending aorta after TAVI in comparison to conventional

stented aortic bioprostheses (AVR) and healthy subjects

using time-resolved three-dimensional flow-sensitive car-

diovascular magnetic resonance imaging (4D-flow MRI).

Seventeen patients with TAVI (Edwards Sapien XT), 12

with AVR and 9 healthy controls underwent 4D-flow MRI

of the ascending aorta. Target parameters were: severity of

vortical and helical flow pattern (semiquantitative grading

from 0 = none to 3 = severe) and the local distribution of

systolic wall shear stress (WSSsystole). AVR revealed sig-

nificantly more extensive vortical and helical flow pattern

than TAVI (p = 0.042 and p = 0.002) and controls

(p\ 0.001 and p = 0.001). TAVI showed significantly

more extensive vortical flow than controls (p\ 0.001).

Both TAVI and AVR revealed marked blood flow eccen-

tricity (64.7 and 66.7 %, respectively), whereas controls

showed central blood flow (88.9 %). TAVI and AVR

exhibited an asymmetric distribution of WSSsystole in the

mid-ascending aorta with local maxima at the right anterior

aortic wall and local minima at the left posterior wall. In

contrast, controls showed a symmetric distribution of

WSSsystole along the aortic circumference. Blood flow was

significantly altered in the ascending aorta after TAVI and

AVR. Changes were similar regarding WSSsystole distri-

bution, while TAVI resulted in less helical and vortical

blood flow.
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valve replacement � Shear stress � Transcatheter aortic
valve implantation � 4D-flow

Introduction

Transcatheter aortic valve implantation (TAVI) has

become an accepted method for treating patients with

severe aortic stenosis who are not eligible or at high risk for

conventional surgical aortic valve replacement (AVR)

[1–3]. Previous studies have demonstrated that changes in

the geometry of the aortic valve such as bicuspid valves or

AVR result in altered blood flow patterns and parameters

[4, 5]. These abnormalities may be associated with aortic

remodeling and increased cardiac afterload [6, 7]. As there

is little knowledge about the effect of TAVI on the global

patterns of blood flow in the ascending aorta, the aim of

this study was to analyze the blood flow characteristics in

the ascending aorta after TAVI in comparison to AVR with

a stented aortic bioprosthesis and healthy controls using
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Max-Delbrueck Center for Molecular Medicine, Charité
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time-resolved, three-dimensional, flow-sensitive magnetic

resonance (4D-flow MRI). This technique allows for the

visualization of vortical and helical blood flow patterns as

well as quantifying local flow velocities and WSS [8]. We

hypothesize that both AVR and TAVI will result in altered

hemodynamics compared to controls.

Materials and methods

Study sample

The local ethics committee approved the study. Inclusion

criteria to enter the study were either carrier of any stented

aortic bioprosthesis or an Edwards Sapien XT TAVI valve,

or a healthy status with no signs or history of a heart dis-

ease. Exclusion criteria were common contraindications for

MRI, atrial fibrillation, and concomitant aortic surgery.

Written informed consent was obtained from all individu-

als. Twenty-three consecutive patients with TAVI with an

Edwards Sapien XT� prosthesis were prospectively

enrolled. This study focused on the Edwards Sapien XT�

as at the time of study enrollment this was the preferred

device in the cooperating TAVI center. Six patients were

excluded from further analysis due to extensive respiratory

motion and thus inefficient respiratory navigator. The data

of 12 patients with stented bioprosthesis and 9 healthy

controls were retrospectively analyzed from a previous

study [5]. Two cases with stented bioprosthesis of the

previous study were not included due to technical incom-

patibility of the data with the present analysis software. All

TAVI patients had severe symptomatic aortic stenosis as

the main diagnosis leading to the intervention. In AVR, 2

had severe aortic regurgitation and 10 had severe aortic

stenosis. The characteristics of the study participants are

summarized in Table 1.

Image acquisition protocol

Images were acquired in a high-volume clinical and research

CMRcenter (3000 exams/year) by specialized technicians as

previously described [5]. All subjects underwent a CMR

examination at a 1.5 Tesla MR scanner (Magnetom Avanto,

Siemens Healthcare, Erlangen, Germany). A 12-channel

anterior body array coil was used for signal reception and the

body coil for signal transmission. 4D-flow was acquired

using a sagittal oblique volume covering the thoracic aorta.

Prospective ECG gating was used with a respirator navigator

placed on the lung-liver interface. The following scan

parameterswere chosen for the healthy controls and theAVR

group: echo time [TE] = 2.3 ms, repetition time [TR] =

4.8 ms, bandwith = 440 Hz/pixel, acceleration mode

GRAPPA with factor 2 to 5, reference lines = 24, flip angle

a = 9�, temporal resolution = 38.4 ms, voxel size = 2.1 9

2.4 9 2.2 mm3, velocity encoding = 1.5–2.5 m/s. For the

TAVI sample, an improved technique to accelerate image

acquisition was used. Previous studies have demonstrated

that the results of both techniques are interchangeable [9].

[TE] = 2.6 ms, [TR] = 4.8 ms, bandwith = 401 Hz/pixel,

acceleration mode GRAPPA with factor 5, reference

lines = 24, flip angle a = 9�, temporal resolution =

42.0 ms, voxel size = 1.8 9 1.8 9 2.6 mm3, velocity

encoding = 1.5–2.5 m/s.

Conventional ECG-gated, breath-held steady-state free-

precession (SSFP) cine imaging was performed to quantify

left ventricular function and the geometric orifice area

(GOA) of the aortic valve and bioprostheses, respectively

[10]. The GOA of TAVI could not be determined from

SSFP images due to significant artefacts, but was taken

from the literature [11, 12]. Axial SSFP still images of the

thorax were used to estimate the size of the ascending aorta

at the level of the pulmonary bifurcation [13].

Processing and analysis of the images

All 4D-flow MRI data were processed by an experienced

4D flow reader (M.D., 5 years experiences with 4D flow)

as previously described [8], and supervised by an expe-

rienced SCMR level III reader and instructor. Briefly,

data were corrected for noise, eddy currents and velocity

aliasing (MatLab; The MathWorks, Natick, MA, USA)

[14]. In a second step, a 3D phase contrast MR angio-

gram was calculated based on the flow measurements to

position the analysis planes and to visualize the blood

flow (EnSight, CEI, Apex, NC). Three planes were

positioned perpendicular to the longitudinal axis of the

aortic wall: at the level of the sinotubular junction (S1),

in the ascending aorta at the level of the pulmonary

bifurcation (S2), and proximal to the brachiocephalic

trunk (S3). The position of S1 was selected such that it

was high enough to avoid signal artifact caused by the

presence of the metal in the prosthetic stents. These

analysis planes were exported into previously reported

software for the segmentation and calculation of the

blood flow parameters (MatLab; The MathWorks, Nat-

ick, MA, USA) [14].

Left ventricular function quantification and planimetry

of the GOA were achieved by manual segmentation using

commercial software (CVI42, Circle Cardiovascular Imag-

ing, Calgary, Canada). Assessment of the aortic diameter

was done at the in ascending aorta at the level of the pul-

monary bifurcation [13].
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Helical and vortical blood flow pattern

in the ascending aorta

Blood flow patterns were semi-quantitatively evaluated

using pathline movies and classified as vortical and helical

as previously described [5]. In short, helical and vortical

flow were graded in 4 categories: 0 = none, 1 = mild,

2 = moderate, 3 = severe at the mid-ascending aorta [5].

Blood flow eccentricity in the ascending aorta

Blood flow was semi-quantitatively graded as central or

mild eccentric or marked eccentric as previously described

[5, 15]. A central flow was characterized if the flow

occupied the majority of the vessel lumen. A mild eccentric

flow occupied two-thirds to one-third of the vessel and a

marked eccentric flow occupied one-third or less of the

vessel.

Wall shear stress in the ascending aorta

WSS was computed as previously described [14] by using a

B-spline interpolation model to obtain the velocity

derivatives necessary to compute the deformation tensor at

the wall. WSS was subsequently found via the relation

s~¼ 2l __e � n~, where s~ is WSS, l is the dynamic viscosity

(assumed constant at 4.5 cP), _e is the deformation tensor,

and n~ is the normal unit vector to the vessel wall. Quan-

tification of systolic WSS (WSSsystole; unit N/m2) was

performed for 8 regional segments along the aortic

circumference for each analysis plane S1–S3. Regional

WSS was averaged over three time points.

Statistical analysis

Analysis of the data was performed using SPSS 22 (IBM,

Armonk, US). Graphics were created using PRISM 5

(GraphPad Software Inc, San Diego, California, US) and

plug-in software for MatLab. Categorical data are

expressed as percentages, continuous data as mean ± s-

tandard deviation (SD). The three groups (TAVI, AVR,

controls) were compared using the Kruskal–Wallis test.

Post-hoc analysis included the Mann–Whitney-U test.

Statistical significance was set at a probability level of

\0.05.

Results

Baseline characteristics

Table 1 summarizes the baseline characteristics of the

study participants. Healthy controls were significantly

younger than patients with AVR (p = 0.002) and TAVI

(p = 0.001) and had significantly larger GOA (p\ 0.001)

and GOA index (p\ 0.001). They also had a smaller aortic

diameter than AVR (p = 0.003) and TAVI (p = 0.021).

AVR and TAVI were not different regarding age

(p = 0.347), but AVR hat larger aortic diameter

(p = 0.018) and TAVI had larger GOA (p = 0.027), but

Table 1 Baseline characteristics of the study participants

Parameter TAVI AVR Controls p value

n 17 12 9

Sex (females/males) 8/9 4/8 1/8

Age (years) 77 ± 7 76 ± 4 55 ± 16 0.001

Native valvular lesion Stenosis (n = 10),

mixed (n = 7)

Stenosis (n = 6), regurgitation (n = 2),

mixed (n = 4)

–

Prosthetic types Sapien XT (n = 17), Hancock (n = 4), Labcore (n = 1);

Perimount (n = 2) Mitroflow (n = 2),

unknown (n = 3)

–

Labeled valve size 25.8 ± 2.2 23.2 ± 2.2 – 0.012

Geometric orifice area (cm2) 1.9 ± 0.3 1.5 ± 0.5 4.0 ± 0.8 \ 0.001

Geometric orifice area index (cm2/m2) 0.9 ± 0.3 0.8 ± 0.2 2.0 ± 0.3 \ 0.001

LV enddiastolic volume (ml) 157.0 ± 63.2 149.9 ± 61.8 139.6 ± 41.4 0.870

LV mass (g) 175.7 ± 59.3 165.2 ± 55.1 129.2 ± 25.3 0.079

LV stroke volume (ml) 87.9 ± 33.1 84.9 ± 32.3 91.4 ± 28.2 0.796

LV ejection fraction (%) 57.2 ± 10.1 58.0 ± 10.9 65.9 ± 6.1 0.038

Ascending aortic diameter (mm) 34.8 ± 3.1 38.5 ± 4.4 30.7 ± 4.8 0.002

Results are given as mean ± standard deviation or as frequencies. The p values are tested by the Kruskal–Wallis analysis

LV left ventricular
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did not differ significantly from AVR regarding the GOA

index (p = 0.060).

Blood flow patterns

All examinations resulted in diagnostic image quality. Local

artifacts occurred in the proximity of the prosthetic stents

similarly for TAVI and AVR. The most proximal analysis

plane was therefore positioned at the sinotubular level to war-

rant sufficient distance from the artifact. Representative blood

flow patterns of the three groups are shown in Fig. 1. Figure 2

shows a comparison between the qualitative grades for helical

and vortical flow patterns. AVR revealed significantly more

severe helical andvortical flowpattern thanTAVIand controls,

whereas TAVI had significant more vortical, but not helical

flow pattern than normal subjects. There was no correlation

between vortical and helical flow pattern with GOA (TAVI:

p = 0.737 and p = 0.951; AVR: p = 0.776 and p = 1.000).

Blood flow eccentricity

Figure 3 summarizes the grading of the blood flow

eccentricity. Controls predominantly exhibited central

flow. In contrast, 11/17 TAVI patients had a markedly

eccentric flow and the remaining 6 showed mildly eccentric

flow. Similarly, 8/12 AVR recipients had markedly

eccentric flow and the remaining 4 were mildly eccentric.

AVR and TAVI differed significantly concerning the mean

value of eccentricity from healthy subjects (p\ 0.001).

TAVI and AVR did not differ significantly (p = 0.777).

Wall shear stress

The distribution of WSSsystole in the ascending aorta is

illustrated in Fig. 4. TAVI and AVR exhibited the same

distribution of WSSsystole without relevant regional differ-

ences. Compared to controls, both TAVI and AVR

revealed significantly higher WSSsystole at the right anterior

segment in the mid-ascending aorta (S2). Furthermore,

WSSsystole was significantly lower in TAVI and AVR

compared to controls at the left wall (S1), left-posterior

wall (S2), posterior wall (S2, S3) and right-posterior wall

(S3).

Discussion

In this pilot study, we used 4D-flow MRI to assess the

blood flow in the ascending aorta after TAVI in compar-

ison to AVR with stented bioprostheses as well as healthy

controls. TAVI and AVR revealed significantly abnormal

helical and vortical blood flow as well as WSSsystole and a

more eccentric blood flow than controls.

Both stented bioprostheses and TAVI consist of bio-

logical material mounted on a stent. Despite this similarity,

AVR resulted in more distinct helical and vortical flow

pattern than TAVI. This may be attributed to the lower

GOA of the AVR cohort in this study, but may also reflect

differences in stent design. Whereas the TAVI device is

fixed passively at the calcified aorta wall, stented bio-

prostheses contain a sewing ring that may be an unfavor-

able obstacle within the blood flow, even if the

implantation is done principally completely supra-annu-

larly. The latter aspect is supported by generally lower

pressure gradients of TAVI compared to AVR reported in

the literature [16, 17]. Despite this potential advantage of

TAVI, TAVI—as expected—also led to an abnormal blood

flow pattern compared to healthy controls. At least for

bicuspid aortic valves, a correlation of blood flow pattern

and aortic growth rate has been shown [6]. Furthermore,

Fig. 1 Representative blood

flow patterns in the ascending

aorta as illustrated with

pathlines. TAVI transcatheter

aortic valve replacement, AVR

aortic valve replacement, GOA

effective orifice area, EF

ejection fraction, EDV

enddiastolic volume, AoD

ascending aortic diameter)
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novel studies that link blood flow pattern to energy loss

suppose an association of blood flow pattern and cardiac

afterload [7, 18]. Hence, future studies have to evaluate

whether the altered blood flow of TAVI and AVR has

impact on aortic and left ventricular remodeling as well.

Both TAVI and stented bioprostheses revealed an

eccentric distribution of blood flow velocities in the

ascending aorta compared to healthy controls, who exhib-

ited a physiological central flow. An eccentric flow is

associated with regional elevation of WSS [4, 6, 18]. This

is hypothesized to contribute to an increase of the aortic

diameter and aneurysm formation [6] and may be associ-

ated with a increased viscous and turbulent energy losses

[7, 18].

TAVI and AVR revealed a similar eccentric distribution

of WSS along the aortic circumference, which was sig-

nificantly elevated and depressed in focal regions. This

asymmetry clearly differed from healthy controls. Local

abnormalities in WSS are thought to stimulate aneurysm

formation [6, 19, 20]. In a recent study using computational

fluid-dynamic analysis, WSS has been shown to be

regionally elevated at the site of ascending aortic aneurysm

formation [21]. Hence, it is notable that both TAVI and

AVR lead to a WSS profile that imparts a regional hemo-

dynamic abnormality at the aortic wall, which is suspected

to increase the chance of an adverse vascular event.

Whether the resultant WSS patterns are relevant for

patients with calcified aortic stenosis, who typically have

thickened and stiff aortic walls, is unclear. However, in

patients with aortic regurgitation and thinned aortic wall,

who may receive AVR or in the future even TAVI, this

prior knowledge regarding the impact of AVR and TAVI

may prove useful.

The findings of the present study highlight that 4D-flow

MRI opens the door to a new dimension of information

about hemodynamics. The added clinical value of this

information still has to be proven in future studies. At that

time, we are mainly descriptive and thereby increase the

knowledge about flow patterns in the proximity of aortic

prostheses. These insights may stimulate attempts to con-

struct prosthetic devices with near-normal systolic flow

behavior and to determine the best prosthetic device for the

individual subject.

Limitations

(1) The control group differed from the intervention groups

regarding age, orifice area and aortic dimensions. Age has a

known influence on the hemodynamics in the ascending

aorta as well as the aortic diameter [22, 23, 24]. Therefore,

this study has to be interpreted as a pilot study. (2) Given

the discrete (voxelwise) nature of the velocity data, WSS as

measured by MRI is known to be underestimated.

Fig. 2 Comparison of the severity of vortical (left) and helical (right) blood flow pattern

Fig. 3 Prevalence of blood flow eccentricity
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Nonetheless, the underestimation is mitigated as long as the

scans are kept similar [14]. It is also imperative that careful

segmentation of the vessel wall is performed, as the com-

putation of the velocity gradients are dependent on user

selection of the wall position. Previous studies have

demonstrated robust intra- and inter-observer reliability

and scan-rescan repeatability [25]. (3) Helical and vortical

flow patterns were only assessed qualitatively. Absolute

quantification of flow helicity might be superior and more

objective [26]. The computation of these parameters

requires specialized algorithms and/or volumetric seg-

mentations, neither of which were available for this study.

A quantitative approach should be integrated in future

studies. (4) The orifice area of the TAVI prostheses was

taken from literature, as direct measurement was infeasible

due to artifacts. iv) This cross-sectional study was designed

as a hypothesis generating pilot study, thus the enrollment

was limited to small numbers. To examine the influence of

the blood flow characteristics on the ascending aorta, a

longitudinal study is required.

Conclusion

This pilot study demonstrated that TAVI and AVR with a

stented bioprosthesis lead to altered blood flow character-

istics in the ascending aorta compared to healthy controls,

with more intense flow eccentricity and regional elevation

of wall shear stress.
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