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Abstract To assess the impact of adaptive statistical iter-

ative reconstruction (ASIR) on coronary plaque volume and

composition analysis as well as on stenosis quantification in

high definition coronary computed tomography angiography

(CCTA). We included 50 plaques in 29 consecutive patients

who were referred for the assessment of known or suspected

coronary artery disease (CAD) with contrast-enhanced

CCTA on a 64-slice high definition CT scanner (Discovery

HD 750, GE Healthcare). CCTA scans were reconstructed

with standard filtered back projection (FBP) with no ASIR

(0 %) or with increasing contributions of ASIR, i.e. 20, 40,

60, 80 and 100 % (no FBP). Plaque analysis (volume,

components and stenosis degree) was performed using a

previously validated automated software. Mean values for

minimal diameter and minimal area as well as degree of

stenosis did not change significantly using different ASIR

reconstructions. There was virtually no impact of recon-

struction algorithms on mean plaque volume or plaque

composition (e.g. soft, intermediate and calcified compo-

nent). However, with increasing ASIR contribution, the

percentage of plaque volume component between 401 and

500 HU decreased significantly (p \ 0.05). Modern image

reconstruction algorithms such as ASIR, which has been

developed for noise reduction in latest high resolution

CCTA scans, can be used reliably without interfering with

the plaque analysis and stenosis severity assessment.
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Introduction

Coronary computed tomography angiography (CCTA) has

become an important non-invasive tool for the evaluation of

coronary artery disease (CAD) with high accuracy compared

to invasive coronary angiography in a large variety of

patients [1–3]. In addition to depicting luminal narrowing

CCTA allows early detection of coronary atherosclerotic

lesions [4, 5]. Several attempts have been made to charac-

terize the plaque nature by differentiating non-calcified from

calcified and mixed plaques with CCTA [6, 7].

However, despite encouraging results this was limited to

the most proximal coronary segments and hampered by a

poor reproducibility as documented in studies using intra-

vascular ultrasound (IVUS) as gold standard [8]. Clinically,

accurate and reliable assessment of plaque compositions

would be crucial as low attenuation plaques and positive

vessel remodelling have been identified as key features of

lesions with high risk for rupture causing an acute coronary

syndrome [9]. Currently, a new generation of high definition

CT scanners (Discovery HD 750, GE Healthcare), are being

introduced with substantially improved spatial resolution

(0.23 9 0.23 mm in-plane resolution) complemented by a

new adaptive statistical iterative reconstruction (ASIR, GE

Healthcare) algorithm to compensate for the increased noise

due to the higher resolution [10, 11].
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This may contribute to overcome issues of limited

contrast resolution and blooming artefacts from coronary

calcifications or stents as ASIR was developed to help

reducing noise associated with standard convolution

reconstruction algorithms [12, 13]. The impact of these

technical innovations on calcium detection, plaque

boundary identification, coronary plaque component char-

acterization and luminal narrowing quantification is

unknown. Therefore, the aim of the present study was to

assess the impact of high definition (HD) CCTA combined

with ASIR reconstruction on plaque volume and stenosis

detection with a previously validated computed software

for automated CCTA plaque analysis [14].

Materials and methods

Study population

This retrospective study included twenty-nine consecutive

patients who were referred for the assessment of known

or suspected CAD with contrast-enhanced CCTA on a

64-slice high definition CT scanner (Discovery HD 750,

GE Healthcare). We included patients with at least one

coronary artery segment with an atherosclerotic plaque.

Exclusion criteria were motion artefacts of the plaque or

diffuse coronary atherosclerosis.

The need for informed consent was waived by the

institutional review board (local ethics committee) due to

the purely retrospective nature of this study.

CT acquisition

All patients underwent contrast-enhanced CCTA during

inspiration breath hold with prospective ECG-triggering as

previously reported [15]. Metoprolol (up to 25 mg Beloc,

AtraZeneca, London, UK) was administered intravenously

prior to the examination if beats per minute were higher

than 65 in order to obtain optimal image quality for CCTA.

The patients received 2.5 mg isosorbiddinitrate (Isoket,

Schwarz Pharma, Monheim, Germany) sublingually 2 min

prior to the CCTA scan.

Iodixanol (Visipaque 320, 320 mg/ml, GE Healthcare,

Buckinghamshire, UK) was injected into an antecubital

vein followed by 50 ml saline solution via an 18-cauge

catheter. Volume (40–105 ml) and flow rate (3.5–5 ml/s)

were adapted to body surface area (BSA) [16]. For CCTA

acquisition we used a collimation of 64 9 0.625 mm and

gantry rotation time of 0.35 s, with a field of view of

25 cm. Tube voltage (100–120 kV) and tube current

(450–700 mA) were adapted to body mass index (BMI)

[17]. All scans were acquired in high resolution mode with

an in-plane spatial resolution of 0.23 9 0.23 mm.

CT image reconstruction and analysis

All scans were reconstructed using the ASIR-assisted high-

definition kernel with a display field of view of 25 cm, using

FBP (0 % ASIR) and increasing ASIR blending factors, i.e.

20, 40, 60, 80 and 100 % (no FBP). ASIR is an iterative

reconstruction algorithm, which has been described in details

previously [11]. ASIR is a modified iterative reconstruction

algorithm which models the photon statistics in x-ray atten-

uation, resulting in significant noise reduction, which

potentially improves image quality and allows reduction in

radiation dose. By particular correction for the fluctuations in

projection measurement due to limited photon statistics,

ASIR allows reduction of pixel variance that is statistically

unlikely to represent anatomic structures without trade-off in

spatial resolution. In clinical practice variably blended ima-

ges created with FBP and ASIR to produce different levels of

ASIR can be obtained. However, high levels of ASIR

blending factors may result in a smooth appearance of image

texture and noise characteristic unfamiliar to the observer. In

brief, ASIR reconstructs pictures by comparing measured

projection with a synthesized projection using both statistical

fluctuation calculations and system optics.

Coronary arteries were automatically tracked on a

dedicated workstation (Advantage Workstation 4.6, GE

Healthcare) using CardIQ Xpress software package (GE

Healthcare) and curved-multiplanar-reconstructions were

obtained. Stenosis degree was calculated by using the mean

proximal and distal diameter as reference and plaque

boundaries were automatically detected to asses plaque

volume as previously validated versus IVUS [14]. The

software identified three plaque components: i.e. soft,

intermediate and calcified using a lower threshold (fixed at

30 HU) and a higher threshold at an average of 540 ±

75 HU automatically adapted by the software to each

individual contrast bolus density (Fig. 1).

In order to asses which components of the coronary

plaque are most susceptible to ASIR we have systemati-

cally analyzed the impact of ASIR on the plaque volume

components in different HU strata, i.e.\30 HU, 30–130 HU,

131–200 HU, 201–300 HU, 301–400 HU, 401–500 HU,

501–600 HU and [600 HU.

Radiation dose estimation

Effective radiation dose from CCTA was calculated as the

product of dose-length product (DLP) times a conversion

coefficient for chest (k = 0.014 mSv/(mGy/cm)) [18].

Statistical analysis

Quantitative variables were expressed as mean ± standard

deviation (SD) if not stated otherwise and categorical
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variables as frequencies or percentages. The statistical

software package SPSS 19.0 (SPSS, Chicago, IL) was used

for analysis. Comparisons of continuous variables with

non-normal distributions between groups were performed

with the Kruskual-Wallis test. The data were tested for

normal distribution by Shapiro–Wilk test. P values of less

than 0.05 were considered statistically significant.

Results

Study population

The study population consisted of 29 patients with a mean

age of 58 ± 9 years (Table 1) in whom 50 plaques were

analyzed in the left anterior descending (n = 26), the cir-

cumflex (n = 10) and the right coronary artery (n = 14).

In 7 plaques the edge-detection algorithm of the software

tool failed to correctly identify the plaque boundaries.

Therefore, the final analysis included 43 plaques in 27

patients. Effective radiation dose was 1.68 ± 0.52 mSv.

Lesion quantification

Mean minimal luminal diameters were 2.1 ± 0.7 mm,

2.1 ± 0.7 mm, 2.2 ± 0.7 mm, 2.2 ± 0.7 mm, 2.2 ± 0.7

mm, and 2.3 ± 0.7 mm with 0, 20, 40 60, 80 and 100 %

ASIR without significant difference between the recon-

struction algorithms (p = 0.7; Fig. 2a). The respective val-

ues for mean minimal luminal area were 4.7 ± 2.6 mm2,

4.8 ± 2.4 mm2, 5.1 ± 2.8 mm2, 5.1 ± 2.7 mm2, 5.1 ± 2.7

mm2, and 5.2 ± 2.8 mm2 (p = 0.9; Fig. 2b). The respective

mean percent luminal narrowing values (and ranges) from

the different algorithms were 34 ± 18 % (0–70 %), 33 ±

15 % (0 –67 %), 32 ± 16 % (0–68 %), 29 ± 17 %

(0–68 %), 29 ± 16 % (0–61 %), and 30 ± 16 % (4–57 %)

(p = 0.6; Fig. 2c).

Plaque characterization

Mean plaque volume tended to be higher with increasing

(0, 20, 40, 60, 80, 100 %) ASIR, i.e. 60.4 ± 14 mm3, 63.5 ±

15 mm3, 63.7 ± 15 mm3, 67.8 ± 16 mm3, 66.4 ± 17

mm3, 66.8 ± 16 mm3 (mean ± SEM) although this fell

short of statistical significance (p = 1.0). Similarly, this

holds true for the different plaque components, i.e. soft

(2.1 ± 0.5 mm3, 2.5 ± 0.7 mm3, 2.8 ± 0.8 mm3, 3.3 ±

0.8 mm3, 2.9 ± 0.8 mm3, 3.0 ± 0.8 mm3; mean ± SEM,

p = 1.0) and intermediate (39.6 ± 7.9 mm3, 42.0 ± 8.5

mm3, 41.6 ± 8.7 mm3, 45.3 ± 9.6 mm3, 44.3 ± 10.4

mm3, 45.5 ± 10.3 mm3, mean ± SEM; p = 0.6). Finally,

there was no impact of the reconstruction algorithms on the

volume of the calcified component, i.e. 18.8 ± 6.1 mm3,

18.9 ± 6.0 mm3, 19.4 ± 6.4 mm3, 19.2 ± 6.3 mm3, 19.1

± 6.3 mm3, and 18.3 ± 5.7 mm3 (mean ± SEM; p = 1.0,

Fig. 3). The automatically determined threshold was 544 ±

Fig. 1 Upper row shows cross-sectional CT image of a coronary

artery plaque reconstructed by FBP (0 % ASIR) a 20 % b 40 %

c 60 % d 80 % e and 100 % ASIR f contribution. The plaque is

automatically detected and components are colour illustrated: blue
corresponds to soft, pink to intermediate and yellow to calcified

component (lower row)

Table 1 Patient characteristics

n 29

Age (years) 58 ± 9

Male gender 23 (79 %)

BMI (kg/m2) 27 ± 3

Smoking 11 (38 %)

Diabetes 1 (3 %)

Hypertension 11 (38 %)

Dyslipidemia 15 (52 %)

Positive family history 11 (38 %)

Data are presented as mean ± SD or number and percentage
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66 HU, 550 ± 71 HU, 552 ± 74 HU, 555 ± 77 HU,

534 ± 100 HU, and 549 ± 67 at 0, 20, 40, 60, 80 and 100 %

ASIR. With increasing ASIR the mean percentage of the

plaque volume component at 401-500HU significantly

decreased from 9.4 ± 0.5 % to 8.8 ± 0.5 %, 8.8 ± 0.5 %,

8.1 ± 0.5 %, 7.9 ± 0.5 %, and 7.4 ± 0.5 % (mean ±

SEM; p = 0.03) while there was no significant difference in

all other tissue components throughout all reconstruction

algorithms (Fig. 4).

Discussion

Latest generation CT scanners offer increased spatial res-

olution but require specific post processing methods with

modern reconstruction algorithms (such as ASIR) to

compensate for increased noise. Our results are the first to

document that high resolution CCTA scans can be safely

reconstructed with ASIR without affecting reliability of

coronary plaque analysis.

Non-invasive coronary plaque analysis including plaque

component characterization and luminal narrowing quan-

tification have emerged as important measurements from

CCTA. Several studies have compared CCTA with IVUS

[8, 14, 19] and plaque characterization by CCTA has been

shown to predict outcome in patients with acute coronary

syndrome [9].

The latest generation of HD CT scanner offers an

improved in-plane spatial resolution (0.23 9 0.23 mm)

compared to standard CT (0.64 9 0.64 mm). As this is

paralleled by an increase in noise, this technical refinement

has been complemented by new reconstruction algorithms

such as ASIR to compensate for the noise increase. ASIR

has been shown to improve image quality and to reduce

noise in chest and abdominal CT as well as in CCTA [10].

Proof of reliability in the assessment of stenosis severity

and quantitative plaque component analysis is essential

before introducing ASIR into the daily clinical routine of

CCTA scanning.

It is not yet known which grade of ASIR is the best to

reveal good results. Our results document that the use of

ASIR at any blending factor does not significantly affect

measurements of minimal luminal diameter and area or

lesion severity. So far no standard blending factor for ASIR

has been defined, although 30–40 % has been recommended

by the vendor and confirmed in clinical experience [10, 20].

Consequently total plaque volume measurements did not

differ significantly with increased percentage of ASIR

algorithm. Although this was associated with a tendency of

increased soft and intermediate components of the plaque,

this fell short of statistical significance. Interestingly, the

calcified component of the plaque remained unaffected,

which is in line with a study recently demonstrating that

ASIR is not more effective than FBP in suppression of

blooming artefacts [21].

Fig. 2 Graph shows mean minimal luminal diameter (a), minimal

area (b) and stenosis severity in percent (c) obtained from FBP (0 %

ASIR), 20, 40, 60, 80 and 100 % ASIR contributions

Fig. 3 Soft, intermediate and calcified plaque component as well as

total plaque volume are unchanged throughout all reconstruction

algorithms. Values are given as mean ± SEM
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In an in-depth analysis of the plaque, using several HU

strata, our study revealed significant decrease of plaque

volume components with 401–500 HU. Although these HU

strata seem to be most susceptible for ASIR reconstruc-

tions, further studies will be needed to clearly assess the

effect of ASIR on assessment of plaque composition, i.e.

for example a comparative characterization of atheroma by

CT versus microscopy of plaque specimens either by

simple light microscopy or by more complex methods such

as immuno-fluorescence studies targeting different plaque

structures [22]. This should also help to clarify whether the

component between 401 and 500 HU is indeed negligible

for evaluation of plaque vulnerability. This is important as

it appears that the improved HD image resolution com-

bined with the ASIR technique has a particular impact on

the discrimination of structures with attenuation values

representing the edge of non-calcified versus calcified

structures.

As ASIR has been shown to reduce noise in CCTA as

well as in non-cardiac CT scans, it could emerge as the

preferred reconstruction algorithm in patients with low

image quality and therefore higher noise, due to further

reduced tube voltage and current [23] for dose reduction or

due to obesity. This may pave the way for a broad appli-

cation over a high scale of different ASIR blending factors.

It is, therefore, crucial that our data document the reli-

ability for reconstructions throughout the entire spectrum

of 0 to 100 % ASIR.

Several limitations of this study have to be considered.

The patient number was limited, although this seems jus-

tified due to the pilot nature of the study. Second, the

plaque measurement techniques were based on automati-

cally detection of plaque boundaries. Therefore, plaques

associated with motion artefacts were not measureable as

the tool could not accurately detect plaque boundaries.

However, as there is no operator interaction after defining

the coronary segment of interest, this excludes virtually

any intra- and inter-observer variability which further

strengthens our results. Finally, we did not evaluate the

performance of ASIR compared to FBP in correlation to

other imaging modalities such as for example intravascular

ultrasound or optical coherence tomography. Therefore,

our data do not allow commenting with final certainty on

this, although it appears reasonable to assume that results

would be comparable.

In conclusion this study confirms that ASIR has no

significant influence on measured minimal luminal diam-

eter or area or plaque composition.
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