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UNSTEADY PRESSURE DYNAMICS OF POLYMER FLOODING
RESERVOIRS CONSIDERING CONCENTRATION CHANGES

Qing Xie!, Jianping Xu', and Minjing Chen?

In this paper a model is established for unstable seepage flow with polymer concentration and pressure
diffusion coupling, considering the effects of polymer molecular diffusion, adsorption, and
viscoelasticity of polymer solution in the formation. The factors are close to the actual seepage
parameters of the injected reservoir. For the nonlinear adsorption, the combined variable and the
analytical iterative method are used to obtain the approximate analytical solution of the model.
According to the concentration model, the relationship between concentration and pressure
distribution is obtained. Using the model theory curve to fit the well test data, the seepage parameters
of the formation are obtained, and the reflection characteristics of the unstable wellbore pressure
derivative curve are analyzed.

Keywords: molecular diffusion, nonlinear adsorption, viscoelasticity, combined variables, analytical

solutions.

Introduction

Savins [1] has conducted detailed research on the flow of non-Newtonian fluids such as polymers in
porous media. Van Poolen et al. [2] published a theoretical analysis that discussed the effect of shear rate on
viscosity and considered viscosity as a geometrically distributed function. The partial differential equations

were solved by a finite difference numerical method. The results showed that the transient pressure response
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characteristics of non-Newtonian flow are very different from those of Newtonian flow. Bondor et al. [3] gave a
numerical simulation of polymer flooding in composite reservoirs but did not take into account the transient
flow of the fluid. Odeh and Yang [4] derived the wellbore pressure response solution of the Laplace transform
space of a non-Newtonian power law fluid. Ikoku and Ramey [5] considered the influence of wellbore storage
and the skin effect and obtained the Laplace transform space wellbore pressure response solution of
a non-Newtonian power law fluid. Lund and Ikoku [6] studied the unstable pressure dynamics
of non-Newton/Newtonian fluid reservoirs. Xu et al. [7] proposed the infinite reservoir Laplace space spherical
transient pressure solution and discussed the characteristics of wellbore pressure at an early stage and later
times of flooding. In the above studies, the unstable seepage of the polymer solution in the formation and
establishment of the well test method model considered only the influence of shear rate on viscosity of the
polymer solution, and the influence of viscoelasticity of the polymer and the concentration diffusion were
rarely considered. The diffusion and adsorption of the solution in the formation can cause significant changes
of concentration distribution of the polymer in the formation, resulting in a change in the viscosity of the
polymer. Viscosity degradation and the viscoelastic effects of the polymer solution determine the pressure
distribution in the reservoir and the complexity of the pressure diffusion equation. The concentration distribution
and variation law are the basis for determining the pressure diffusion equation.

In the past, the analytical solution was used for the one-dimensional flow problem of distribution and
variation of polymer concentration. Perkins and Johnston [8] discussed the diffusion and dispersion phenomena
in a porous medium. Coats and Smith [9] studied the relationship between mechanical dispersion and velocity,
and Brigham [10] proposed a correlation model for polymer concentration and diffusion of the constant diffusion
coefficient, and obtained an analytical solution in one-dimensional space. Cheng et al. [11] established a well
test analysis method for polymer flooding composite reservoir and a model considering the influence of shear
rate and polymer concentration on polymer viscosity but did not take into account the effects of polymer
viscoelasticity, adsorption, and formation permeability changes. There are few models for considering molecular
diffusion and nonlinear adsorption in radial systems, usually solved by numerical methods. However, it was
shown [12] that due to the influence of sharp concentration fronts, the numerical solution resulted in serious
numerical divergence. Therefore, establishing a concentration model and accurately determining its distribution
and variation is important for accurately determining the pressure conductivity model.

In this paper, by integrating the influence of various factors, the coupled seepage model of concentration

and pressure is developed to explain the unstable well test data that the traditional model cannot match.

Concentration and pressure coupled seepage model

Assume that the fluid flow and adsorption in the formation are isothermal; fluid and formation pore
media are microcompressible; adsorption is irreversible and complies with the Langmuir isotherm adsorption
model; short-term injection does not cause thermal degradation; the polymer solution flow complies with the
generalized Darcy law; the inaccessible pore volume could be neglected; the formation is isotropic and
homogeneous; the fluid flow is radial flow; the density change caused by the polymer is neglected; and the
effect of the capillary force is ignored.

The convection flux density of the polymer solution in the formation is proportional to the concentration
of the polymer Cp. Polymer molecular diffusion flux is proportional to the polymer solution concentration
gradient Ve,

482



The adsorption of polymer in the formation medium is assumed to be a monolayer single layer adsorption
on the solid surface, assuming ¢ is the ratio of the adsorption area of the solid to the total surface area of the
solid

aC
q=——" 1)
1+5,C, (

To establish the pressure-diffusion equation of the polymer flooding reservoir, as with the Newtonian
fluid, it is necessary to consider the change in permeability due to adsorption, the change in fluid viscosity due
to shear, polymer concentration changes, and polymerization, and also the effect of viscoelasticity of the
solution.

The change in permeability caused by adsorption is expressed by the permeability reduction
coefficient R derived as the ratio of the effective permeability of the formation before and after the injection of

the polymer solution:

(R 1)1,
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Studying the rheological model of different concentrations of polymer solution for practically applicable
ranges of polymer concentration generally shows that the rheological curves in a double logarithmic scale
demonstrate the typical characteristics: when the shear rate is very low, the polymer solution behavior is similar
to that of a Newtonian fluid, and the apparent viscosity does not change with the shear rate. Then, when the
shear rate increases up to a certain extent, the apparent viscosity decreases almost linearly with increase in the
shear rate, which is typical for a pseudoplastic fluid. When the rate continues to rise to a larger value (generally
over 10%s™), the Newtonian fluid characteristics are again displayed. The viscosity at a zero shear rate is
derived as y, apparent viscosity as M, and intrinsic viscosity u,, respectively, and g > > p It can be seen
that the polymer solution exhibits complex rheological properties, and within a certain range the rheological
behavior can be reflected by the power law mode. However, the Meter model can better reflect the relationship
between viscosity and shear rate over the entire shear rate range.

The apparent viscosity M, at a given shear rate can be determined from g, using the Meter formula:
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where

Uy = 1, [1+(A1Cp +4,C; +A3Cf,)] @)

483



In the formula, v,,, and P, are both dependent on the molecular weight, degree of hydrolysis, and

concentration of the polymer and added salts in the solution. However, it can be seen from the experimental

analysis that the parameters in the Meter formula are related to the zero shear viscosity of the polymer. The

parameter P, reflects the structural characteristics of the polymer. For a partially hydrolyzed polyacrylamide of
the linear structure type of the same flexible chain, the parameter P, is insensitive to changes in solution

conditions (such as polymer concentration, solvent, and temperature). The parameter v,,, comprehensively
reflects the pseudoplastic characteristic of the polymer solution.
Considering the viscoelastic properties of the polymer solution, Masuda [13] proposed the Darcy term

to describe the viscosity of the polymer as
Hay = B, + oy =(14CV" ) 1, (5)

where (* is related to the relaxation time of the polymer solution, and m is a constant depending on the
complexity of the pore geometry of the porous medium.
On this basis, based on the principle of material balance, the concentration diffusion equation is

transformed into a dimensionless form:

dc
d\ ¢ d 2 dC dc
SN P L T S ©
¢ ¢ p,) d¢ dg
where the dimensionless concentrations are
C 2 2
Cpp =25 ¢' =2 — =05 4, =aCy; b, =bCy; g =———
C, ADt 4, (1+5,C,,)
. C. . . F= Q . =7/ D =Dt/ 2.
where C|is the initial concentration of the polymer solution, £ = —47rhgoD s 1y =rlr,, tD=Dt/r, isthe molecular
diffusion coefficient, and r is the actual wellbore radius.
The initial and boundary conditions are
CpD = O(é/,) (7)
C,p =1(¢") (&

Since ¢’ contains the function C,p» it is first linearized, so that the concentration loss caused by the

D’

adsorption term is firstly ignored. The initial iteration concentration is obtained:
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where F(?) and 1“(;,{ ) are Gamma functions and incomplete Gamma functions, respectively.

Substituting the initial iteration concentration equation (9) into gto solve Eq. (6), the concentration

distribution and variation can be expressed as

F

C,p=1- fLAIJ‘OgruTI exp(—u)exp(‘[: kq'ds)du (10)

(1-9)
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where k= o - ,AA—D.0 u? exp(—u)exp(jO kqu)du} _

The above integral can be calculated by the Gauss numerical integration method.
The theoretical curve of the concentration diffusion model is shown in Fig.1 (k=5, F=3.0).
Based on the principle of material balance, the dimensionless pressure diffusion equation of the

formation is obtained:

dp,
d|CR, (&)L
{/; (C)d{;} by )

d¢ d¢

The corresponding boundary conditions and initial conditions are as follows:

op, 1
(2e%) -3 )

P =0(¢ > ) (13)

Fig.1. Theoretical curve of polymer concentration distribution change.
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where the dimensionless quantities are defined as follows:

P~ Py nt ’p
Po=Tgu, tTLT T a,
2x Kh
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The pressure transmission coefficient 77 = T , the relationship between @ and @’ in the
concentration model is
R 1 P
. — luw *_om\, _
g:Qg' R:R—', — | (1+Cv"): R, = Ry
n 2 1 1+[vj
VI/Z

The corresponding boundary conditions and initial conditions are as follows:

opp 1
[Ré,zl—»o __E (14)

P =0(¢ > ) (15)

Equation (11) is solved using an iterative method. The effect of shear viscosity is ignored, and the

viscosity change caused by concentration is considered.

1
Assume & = & - Since the concentration is only related to £, then R is only related to ¢, and on both
2

sides of Eq. (11) it can be seen that the pressure is only related to ¢ . Then Eq. (11) is transformed into

S
[4=)

0,0001 0,001 0,01 0,1 1

Fig.2. Semi-logarithmic curve between dimensionless pressure and &
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dp,
d(GR(&)—)
T de (16)
dc dc

Setting , the general solution of the above homogeneous equation is

(17)

The pressure versus e derivative of Eq. (16) is approximated as the pressure derivative of Eq. (11), so

Eq. (11) is written in the form

RY,
|z Y, 9 R, ., (1-R)Y,
0 +_0=tnﬁ=R3(§’tD)=_1YO+¥ (18)
o¢ R, ot og¢ R,
and
r ’ ! ’ ! ’ af Y Y
R(¢. )= {(A1 +24C,, +34C2, ) f = (1+ 4+ 4C, +A3C2D)%}f—‘;+(l—Rl)Ei (19)
where b=5b,C,, 4' = AC,, 4, = 4,C,, 4 = A,C,
The equivalent shear rate of porous media is derived from certain simplification conditions:
v~ DV DO D,
(K¢)1/2 27Z'hr(p(Kg0)l/2 7 (20)
My |
DQ _ M, - _m 2% D Pa—
D :17 f— 1+ 7}7 [1+C (é’tD)ZJ _[ rw 2 C**_C* 2 D m
here 2 2, ] ,and 7. 7| — — ) = Ty
w 2rhp(Kp) 1+7,(¢1,) 2 Viia (2.0.)

Then Eq. (11) is solved regarding pressure distribution and variation in the formation as

x{iexp(—ﬂ%dsj{%—ﬂ& exp[ﬁ%dijds}}du 1)

Pp :L uR

To get the wellbore pressure change, simply bring » = r_into the variable & of Eq. (11).
The above integral can be calculated by high-precision Laguell numerical integration.
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Figures 2 and 3 present the dimensionless pressure and Boltzmann variables, the dimensionless pressure
and dimensionless time under wellbore conditions, and the dimensionless pressure derivative and dimensionless
time curve under wellbore conditions.

Figure 2 is a model curve of the dimensionless pressure corresponding to parameters P = 1.5, b= 1.5,
A4,=1.0,4,=2cm¥/g, 4,= 1.0 cm%g>, m = 1.3, v, ,= 5.0 s, C** = 0.2, n/D = 100, Rk6q= 2.0, and ¢ in
semi-logarithmic coordinates. Figure 3 is the model curve of the corresponding dimensionless wellbore pressure
derivative and dimensionless time in double logarithmic coordinates.

It can be seen from Fig. 3 that the pressure increases with increase in e. As shown in Fig. 3, there is a
peak in the early stage of the pressure derivative curve, and then it upturns, but the increase becomes more and
more slow. At the early stage of injection, the seepage resistance is smaller. As the polymer injection time
increases, the seepage resistance becomes larger and larger, showing the radial seepage characteristics of a
non-Newtonian flow. The slower amplitude is the viscosity shear reduction and viscoelastic effect. It is caused

by the increase in distance.

Fitting analysis of well test data in injection wells

The GX15-13 polymer daily injection quantity is Q = 1331cm?/s, pressure is recorded for more
than 20 h using a small-diameter storage pressure gauge, initial pressure is p,= 1.2 x 10°Pa, and the
main parameters of well and stratum are as follows: water viscosity u = 1.2 x 107 Pa-s, effective
thickness 4 = 1500 cm, formation porosity ¢ = 0.21, comprehensive compression coefficient C,= 1200 Pa”',
wellbore radius = 10 cm, injected polymer concentration C; = 0.85 g/cm*, 4,=1.2,4,=2.3,4,=0.8, b= 1.6,
and R = 1.9.

By fitting the measured pressure data to the above theoretical curve, the double logarithmic fitting of
the wellbore pressure derivative is shown in Fig.4, where square points represent actual test data and graphs
represent model theoretical curves. The calculated formation permeability is K = 0.665 um?, the Meter viscosity
model index is P, = 1.65, and the elastic viscosity index is m = 1.45. It can be seen that the measured curve is

basically consistent with the theoretical curve. From the logarithmic curve of the pressure derivative, the early

10
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Fig.3. Double logarithmic curve between dimensionless wellbore pressure derivative and time.
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Fig. 4. Measured pressure derivative double logarithmic fitting.

stage is almost straight up, showing the reflection characteristics of a non-Newtonian fluid flow. The viscosity
of the polymer solution is small due to shearing around the wellbore. As the distance increases, the shearing
effect is weakened, the viscosity of the polymer solution increases, the flow capacity decreases, and the shear
and viscoelasticity play a major role; but in the middle and late stages, the pressure derivative upset becomes
slower, indicating that the farther away from the well, the smaller the local polymer concentration, the smaller
the viscosity, and the higher the permeability. When the flow capacity increases, the non-Newtonian effect is
weakened, and the pressure derivative curve is slowed down. From this, it can be seen that the pressure
derivative characteristics are different from the power law fluid pressure derivative characteristics, and the

pressure derivative of the power law fluid is always up-lined.

Conclusions

The coupling equation of concentration diffusion and pressure diffusion in polymer flooding reservoir
is established, which overcomes the error caused by the assumption that the polymer concentration is constant
in the unstable pressure diffusion model of a power law fluid.

Nonlinear adsorption of polymer solutions is considered in the polymer concentration diffusion. An
iterative method is used to find an approximate analytical solution for the pressure diffusion model.

In the pressure diffusion model parameters, the influence of various factors, including the concentration
change, the permeability change, and the variable model of the viscosity function affecting the viscoelasticity
and the concentration function of the broad shear rate range are fully considered. The resulting model theoretical
curve is closer to the reservoir pressure dynamics, and the well and formation parameters calculated by fitting

the well test data are more accurate.
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NOMENCLATURE

D — molecular diffusion coefficient, cm?/s;

10} — formation porosity, fraction;

Cp — polymer solution concentration, g/cm?;

C, — initial concentration of polymer solution, g/cm’;

vV — apparent flow rate, cm/s;

q — the adsorption rate, dimensionless;

a_, b, — Langmuir isotherm adsorption coefficient, cm*/g;

r — radial distance, cm;

r, — wellbore radius, cm;

P, — polymer solution density, g/cm?;

P, — rock density, g/cm?;

(0] — injection amount of polymer solution, cm?/s;

h — effective thickness of the formation, cm;

R, — permeability reduction coefficient, dimensionless;

R., — maximum permeability reduction coefficient, dimensionless;

b, — parameters in the permeability reduction coefficient formula, cm?/g;

ip — apparent viscosity of the polymer solution, PaRs;

i, — zero shear viscosity of the polymer solution, PaRs;

u, — water viscosity, PaRs;

M, viscosity of the polymer solution as it flows through the pores considering the effect of
viscoelasticity, PaRs;

p — pressure, Pa;

D, — initial pressure, Pa;

t — injection time, s;

v — shear rate, s’

v,, — shear rate corresponding to the average of zero and infinite shear viscosity, s™';

P, — Meter viscosity model index, dimensionless;

4, ~— viscoelastic viscosity of the polymer solution, PaRs;

N,, — Deborah number, dimensionless;

C* — coefficient in the viscoelastic expression, dimensionless;

m — elastic viscosity index, dimensionless;

Lp t, — respectively the relaxation time of the fluid and the characteristic time of the flow, s;

K — effective permeability of the formation before injection of polymer solution, cm?;

n — pressure transmission coefficient, cm?/s;

C, — formation comprehensive compression coefficient, Pa';

D, — coefficient of the relationship between the equivalent shear rate and the apparent velocity,

dimensionless;

4,, 4,, and 4,— influence coefficients of concentration on viscosity, cm*/g, cm®g?, cm?/g’.
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SUBSCRIPTS

D — dimensionless;

p — polymer solution.
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