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Abstract
Background Racial and socio-economic status (SES) disparities exist in prostate cancer (PrCA) incidence and mortality. Less 
is known regarding how geographical factors, including neighborhood social vulnerability and distance traveled to receive 
care, affect PrCA risk. The purpose of this research was to use the Veterans Administration Medical System, which provides 
a unique means for studying PrCA epidemiology among diverse individuals with ostensibly equal access to healthcare, to 
determine whether area-level characteristics influence PrCA incidence while accounting for individual-level risk factors.
Methods From the US Veteran’s Health Administration (VHA) electronic medical records (EMR) database from January 
1999 to December 2015, we identified 3,736 PrCA patients and 104,017 cancer-free controls from South Carolina (SC). 
The VHA EMRs were linked to the US census which provided area-level factors. US census data were used to construct the 
Social Vulnerability Index which is a continuous composite measure of area-level vulnerability and was divided into tertiles 
for modeling purposes. Data were analyzed using a Bayesian multivariate conditional autoregressive model (CAR) which 
accounted for individual-level factors, area-level factors, spatial random effects, and autocorrelation, which were used to 
identify areas of higher- or lower-than-expected PrCA incidence after controlling for risk factors.
Results As expected, after accounting for age (sixfold and 13-fold increases in men 40–50 years and > 50 years, respectively), 
race was an important risk factor, with threefold higher odds among Blacks in the fully adjusted model  [ORadj 2.98 (2.77, 
3.20)]. After accounting for all other factors, residing in a ZIP code tabulated areas (ZCTA) with the greatest level social 
vulnerability versus the lowest, least vulnerable ZCTA’s, increased PrCA risk by 39%  [ORadj 1.39 (1.11, 1.75)].
Conclusions While accounting for known risk factors for PrCA, including age, race, and marital status, we found geographic 
areas in SC characterized by higher than average social vulnerability with higher rates of incident PrCA among veterans. 
Outreach for screening, education, and care coordination may be needed for veterans in these areas.
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Introduction

Prostate cancer (PrCA) is the most common cancer in men, 
accounting for 22% of all new cancer cases in American 
men [1]. Identifying novel risk factors associated with 
PrCA risk beyond established risk factors has been met 
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with little success. Established and actively researched risk 
factors include race, education, marital status, family his-
tory, diet, and age [1–6].

In the general United States (US) population, PrCA 
incidence displays a non-uniform geographical distribu-
tion, where in 2015 the national average was 99.1 with 
new PrCA cases per 100,000 [7]. The variation in PrCA 
incidence by state can be clearly seen by comparing the 
three highest states for PrCA incidence [i.e., New Jersey 
(127.4.7 per 100,000), Mississippi (126.7 per 100,000), 
and Louisiana (125.7 per 100,000)] to the three states 
with the lowest PrCA incidence [i.e., Alaska (61.0 per 
100,000), Nevada (69.5 per 100,000), and New Mexico 
(72.6 per 100,000)] [7]. These differences across states 
may be potentially associated with macro-level factors 
such as area-level income, educational attainment, rurality, 
and environmental factors [8–10]. Examining these poten-
tial area-level differences while accounting for individual-
level risk factors for PrCA may provide invaluable insight 
into better identifying individuals at higher than normal 
risk just by knowing where they live.

Epidemiologic research is focused on evaluating putative 
disease risk factors through the generation and testing of 
hypotheses related to risk factors across the socioecologi-
cal spectrum including environmental exposures and social 
determinants of health. Social determinants of health are 
defined as factors measured at the community level, but 
impact the health outcomes of individuals [11]. Identifying 
areas with higher- or lower-than-expected numbers of PrCA 
cases using spatial techniques [12–16], employing spatial 
nested models [8–10] or autoregressive models [17, 18], and 
using ecological factors of the geographical unit of investi-
gation [8–10] can provide a more thorough understanding 
of PrCA by identifying the expanded universe of risk factors 
associated with PrCA [17–20]. In addition, accounting for 
spatial autocorrelation may allow researchers to improve on 
model fit, which in turn will allow them to determine geo-
graphical regions that are at increased or decreased risk for 
PrCA [21].

The goal of this study is to identify the impact of area-
level characteristics including social vulnerability on inci-
dent PrCA diagnosis while controlling for established indi-
vidual-level risk factors among veterans who receive care 
in the VA health care system, the largest universal access, 
integrated delivery system in the nation. We limited our 
analysis to veterans with PrCA cancer who were diagnosed 
and treated at a VA facility, who reside in South Carolina, a 
state with a PrCA incidence that is higher than the national 
average [22]. This is a small geographical area as compared 
to other states, and the veteran population is broadly dis-
tributed throughout the state. A key consideration is that 
while the majority of men who receive care in the VA are 
of lower socioeconomic status, all have guaranteed access 

to PrCA screening and treatment in particular and health 
care in general.

Methods

Study population

This study employed a retrospective nested case–control 
design. The timeframe was from 01 January 1999 to 31 
December 2015. The unit of investigation was the US Cen-
sus Bureau-defined ZIP code tabulation areas (ZCTA) which 
consists of aggregated ZIP codes developed by the US Postal 
Service [23].

Data were obtained from the United States Department 
of Veteran Affairs and the United States Census Bureau. 
From the United States Department of Veteran Affairs, the 
following datasets were used: all  MedSAS® datasets, Mas-
ter Vital Status dataset, Mini Vital Status dataset, and Pri-
mary Oncology dataset from the VA Cancer Registry [24, 
25]. The VA Master Vital Status and VA Mini Vital Status 
datasets provided patient-level information (i.e., each unique 
VA patient is listed only once in these files), while the VA 
 MedSAS® datasets provided visit-level information (i.e., 
with ≥ 1 record/subject) [24, 25]. From the United States 
Census Bureau, the following datasets were used: United 
States 2010 Decennial Census, the 2007–2011 Five-Year 
American Community Survey, and the 2015 ZCTA shape-
file for the US [26–28]. All geographical related information 
was either linked to the shapefile (i.e., ZIP code patient-
level information linked to ZCTA’s in the shapefile), directly 
obtained at the ZCTA level (i.e., ecology-level information), 
or directly obtained from the 2015 ZCTA shapefile from the 
US Census Bureau (i.e., individual ZCTA boundaries) [28].

All data elements were screened to exclude females. 
Subjects were excluded based on the following criteria (see 
Fig. 1 for the STROBE diagram establishing the analytic 
cohort): data in the Primary Oncology Dataset from the VA 
Cancer Registry could not be linked to  MedSAS® datasets 
[24], a non-PrCA diagnosis in the Primary Oncology Data-
set from the VA Cancer Registry, PrCA diagnosis in the 
Primary Oncology Dataset from the VA Cancer Registry 
prior to 1 January 1999, date of birth differs by more than 
365 days between VA  MedSAS® datasets [24] and VA Vital 
Status datasets [25], age during the timeframe did not wholly 
or partially fall between 40 and 70 years old, missing ZIP 
code information, racial classification other than White or 
Black, and not residing in a South Carolina ZIP code.

Overall, 964,047 unique subjects from a total of 
1,159,188 (83.17%) unique cancer diagnoses were 
included in the Primary Oncology Dataset. Of these sub-
jects, 80.47% could be linked to unique patients in the 
 MedSAS® datasets [24]. There were 235,782 unique PrCA 
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cases in the Primary Oncology Dataset that could be 
linked to the VA  MedSAS® Files [24]. There were 230,401 
(97.72%) PrCA cases that were excluded due to not resid-
ing in a South Carolina ZIP code. Of the 5,384 PrCA cases 
residing in a South Carolina ZIP code, 1,648 (30.61%) 
were ineligible due to diagnosis prior to 1 January 1999, 
date of birth discrepancy, age at first VA visit not satis-
fied, missing ZIP code, and/or not being White or Black. 
There were 9,976,241 unique subjects in the VA  MedSAS® 
datasets that were not linked to any subjects in the VA 
Cancer Registry [24]. These subjects were classified as 
not having cancer. There were 9,798,934 (98.22%) non-
cancer cases that were excluded due to not residing in a 
South Carolina ZIP code. Of the 177,306 non-cancer cases 
residing in a South Carolina ZIP code, 73,289 (41.33%) 
were ineligible due to date of birth discrepancy, age at first 
VA visit not satisfied, missing ZIP code, and/or not being 
White or Black.

The final South Carolina analytical level cohort consisted 
of 3,736 subjects with PrCA and 104,017 non-cancer sub-
jects (Fig. 1). South Carolina veterans receiving care at VHA 
facilities resided in 413 of South Carolina’s 424 ZIP codes 
(97.41%). There were 67 (16.2%) ZIP codes without PrCA 
cases among the 413 South Carolina ZIP codes with veterans 
receiving care at VHA facilities in South Carolina.

Primary outcome variables

Primary PrCA patients between 1 January 1999 and 31 
December 2015 were identified from the VA Primary Oncol-
ogy Dataset [24, 25]. Non-cancer controls were identified by 
removing all cancer patients in the VA Primary Oncology 
Dataset from the VA  MedSAS® Files [24, 25]. Non-cancer 
controls were then limited to those patients whose first VA 
visit occurred between 1 January 1999 and 31 December 
2015.

Individual‑level variables

The date of the first VA visit for each subject was obtained 
from the  MedSAS® datasets and the date of birth (DOB) 
was obtained from the VA Mini Vital Status dataset [24, 25]. 
Four age strata variables were created: age < 40, age from 
40 to 50, age from > 50 to 60, age from > 60 to 70 years. 
The information located within the VA Master Vital Status 
file for race and ethnicity were classified into White, Black, 
Hispanic, Asian, Hawaiian/Pacific Islander, and Native/Alas-
kan America, Other, and Unknown [25]. Subjects other than 
White or Black racial category were excluded because they 
accounted for 0.68% of the PrCA and non-cancer patients. 
The marital status field at the time of diagnosis in the 

10,752,010 Pa�ents in VA MedSAS® 964,047 Unique Pa�ents in VA Cancer Registry

9,976,241 non-Cancer Pa�ents

9,798,934 non-Cancer 
Pa�ents not in South Carolina

177,306 non-Cancer Pa�ents in South Carolina

104,017 Eligible non-Cancer Pa�ents in South Carolina

775,769 Unique Pa�ents in both VA Cancer Registry and VA MedSAS® Files

235,782 Prostate Cancer Pa�ents 539,987 non-Prostate Cancers Pa�ents

230,401 Prostate Cancer Pa�ents not in South Carolina

5,384 Prostate Cancer Pa�ents in South Carolina

3,736 Eligible Prostate Cancer Pa�ents in South Carolina

917 Prostate Cancer Diagnosis before 1/1/1999

6 Date of Birth difference greater than 1 year between datasets

1,178 Age out of range

103 not White or Black

139 Date of Birth difference greater 
than 1 year between datasets

60,314 Age out of range

19,588 not White or Black

Fig. 1  STROBE diagram for the generation of the analytical cohort 
comparing prostate cancer patients to non-cancer patients among 
the South Carolina veteran population who seek healthcare at Vet-

eran Health Administration facilities between 1 January 1999 and 31 
December 2015 and meet the study inclusion criteria
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Primary Oncology Dataset was used for PrCA cases, while 
marital status field in the  MedSAS® Outpatient dataset was 
used for controls to determine marital status for the cohort 
[24]. Marital status was categorized as married, previously 
married (divorced, widowed, and separated), and never mar-
ried/unknown. The unique VA facility numerical codes in 
the  MedSAS® datasets were used to identify which facility 
a subject visited [24]. The number of different VA facilities, 
the most frequented VA facility, and the number of times 
each subjected visited their most visited VA facility were 
determined.

ZIP code‑related Information

The ZIP code listed the most number of times for each 
subject’s total visits in the  MedSAS® datasets was used for 
all ZIP code-related information for each subject [24]. For 
PrCA cases, the ZIP code at diagnosis was obtained from the 
Primary Oncology dataset. For PrCA cases, the ZIP code at 
diagnosis was used for cases without ZIP code information 
from the  MedSAS® datasets (n = 6,784) [24].

There were 131 unique VA facilities (i.e., VA hospitals 
and VA Community-Based Outpatient Clinics) determined 
from VA  MedSAS® datasets [24]. The distance between 
the most frequented VA facility and ZCTA-linked ZIP code 
listed the most times it was represented as a continuous 
variable and obtained using the  MedSAS® datasets [24]. 
This ZIP code information was linked to the 2015 ZCTA 
shapefile from the US Census Bureau [28]. Using the shape-
file, a contiguity straight line origin-to-destination distance 
matrix between VA facilities and ZCTA code centroids 
was used to determine the distance traveled by a veteran to 
his most frequented VA facility. The distance between the  
most-frequented VA facility and the ZCTA-linked ZIP code 
listed the most times it was categorized into: 0–25 miles, 
> 25–55 miles, and > 55 miles [24, 28].

Area‑level variables

The Social Vulnerability Index  (SoVI®): The  SoVI®, ini-
tially developed by the Hazards and Vulnerability Research 
Institute (HVRI) at the University of South Carolina, is a 
composite measure of neighborhood-level factors obtained 
from publicly available population-based datasets of factors 
associated with the health of individuals within those neigh-
borhoods [29, 30].

The  SoVI® uses 10 ZCTA measurements obtained from 
the 2010 US Census and 17 ZCTA measurements obtained 
from 2007 to 2011 5-Year American Community Survey 
[26, 27]. Selection of measurements was based on commu-
nity-level factors that have shown broad associations across 
multiple health-related outcomes. The development of the 
 SoVI® scores proceeded in accordance with previously 

generated  SoVI® scores for research purposes within the 
HVRI [29, 30].

The  SoVI® is a relative measure represented on a con-
tinuous scale from negative infinity to positive infinity. A 
greater  SoVI® score indicates the less able a geographical 
unit is prepared for, can respond to, and can recover from a 
disaster compared to a geographical unit with a lower  SoVI® 
score. A  SoVI® score was assigned for each subject’s most 
frequently listed ZIP code. The  SoVI® measurements were 
stratified into three categories using cutoffs of 1 standard 
deviations: low (− ∞, − 2.04], medium (− 2.04, 2.79], and 
high (2.79, ∞).

Other ZIP code-level factors include the following: The 
2007–2011 Five-Year American Community Survey was 
used to determine the percent of people within each ZCTA 
with at least a college degree with tertile cutoffs of [0%, 
12.86%], [12.86%, 22.60%], [22.60%, 100%], percent of 
people within each ZCTA living in poverty with tertile cut-
offs of [0%, 7.96%], [7.96%, 15.86%], [15.86%, 100%], per-
cent of Black Americans within each ZCTA with tertile cut-
offs of: [0%, 0%], [0%, 2.73%], [2.73%, 100%], and percent 
of people within each ZCTA that were at least 65 years of 
age with tertile cutoffs of: [0%, 11.95%], [11.95%, 16.92%], 
[16.92%, 100%] [27].

Statistical analyses

Descriptive statistics were calculated for the analytic cohort 
(i.e., t-test for all continuous independent variables and chi-
square tests for all categorical

independent variables). Frequentist multivariate general 
linear models using  SAS® were first developed to inform key 
steps in the development and evaluation of the final models 
[31]. These models were developed for all individual-level 
risk factors and nested models incorporating both individ-
ual- and ecological-level risk factors with patient ZCTA-
linked ZIP code residence. Nested models were evaluated as 
both fixed effect and random effect were created for model 
selection purposes. Bayesian models were developed for the 
null (empty) models; individual-level models; nested models 
incorporating both individual- and area-level risk factors, 
and accounted for patient ZCTA-linked ZIP code residence 
as a random effect; and the multivariate conditional autore-
gressive models incorporating both individual, area-level 
risk factors, accounted for patient ZCTA-linked ZIP code 
residence as a random effect, and accounted for the spatial 
autocorrelation between ZCTA-linked ZIP codes (i.e., extent 
of clustering between neighboring ZCTA-linked ZIP codes 
in the dataset).

All categorical variables were evaluated using created 
dummy variables. Any independent individual-level varia-
bles with undefined 95% confidence intervals or extremely 
large point estimates with extremely wide 95% confidence 
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intervals were excluded. Independent individual-level 
variables not excluded were used in a manual backward 
stepwise approach to generate the final multivariate indi-
vidual-level model were the added variable remained if it 
changed the risk factor estimates of the other variables by 
at least 10%.

A manual backward stepwise approach was used to deter-
mine the final nested-level model. Each ecological-level 
independent risk factor was evaluated separately with the 
final multivariate individual-level model. The model with 
the lowest Akaike information criterion (AIC) was selected 
as the initial nested-level model [32]. Subsequently, the eco-
logical factor with the next-lowest AIC was added to the 
initial nested model. If any risk factor estimates changed 
by more than 10% then the additional ecological factor was 
retained; this was repeated for all ecological-level factors.

The median odds ratio (MOR) also was calculated for 
each model. The median odds ratio uses the area-level vari-
ance in the model and calculated statistics that can be inter-
preted as the median difference in odds between the ZCTA-
linked ZIP code with the highest compared to the lowest risk 
for two individuals with the same evaluated risk factors (i.e., 
the MOR is the risk estimate for the unexplained variation in 
the model) [33]. Therefore, the model with the best fit will 
also have the lowest MOR because risk factors in the model 
account for more of the variance in the outcome.

A Global Moran I’s Test was conducted on the ZCTA-
linked ZIP code-level residuals of the final models to deter-
mine existence of spatial autocorrelation [21]. If the Global 
Moran I’s test was statistically significant, indicating the 
presence of spatial autocorrelation, then models account-
ing for spatial autocorrelation would be constructed using 
risk factors included in the final nested-level models. If the 
Global Moran I’s test was statistically non-significant, indi-
cating no presence of spatial autocorrelation in the data, then 
the nested-level model would become the final overall model 
for that comparison.

Based on the frequentist models, the final Bayesian gen-
eral linear models were developed. All Bayesian models 
used uninformed priors. The initial statistical inference from 
each Bayesian model was based on 15,000 iterations (i.e., 
samples) after 5,000 burn-in period (Supplemental Fig. 1). 
The convergence of the sample chains was evaluated using 
the Geweke diagnostics, which compares the first 10% of 
kept iterations to the last 50% of kept iterations [34]. The 
mean value was used as the point estimate for each individ-
ual and area-level risk factors as well as the MOR estimates. 
The 2.5% and 97.5% iteration cutoffs were used as the ranges 
for the 95% credible intervals (CrI) for each risk factor.

Bayesian models created were compared to each other 
using the Deviation Information Criteria (DIC) [35]. The 
model with the lowest DIC was selected as the best-fitted 
model for that comparison in that analytical cohort.

Logistical aspects

All data storage, management, and analyses were con-
ducted with the VA Informatics and Computing Infra-
structure (VINCI) servers. All data management was done 
using Microsoft SQL Server. All univariate and frequentist 
modeling analyses were conducted using  SAS® version 9.4 
software [31]. All Bayesian modeling was conducted using 
 WinBUGS® version 1.4.3 and R version 3.3.2 [35, 36]. All 
evaluation of Bayesian modeling was conducted using R 
[36]. All statistical tests used an α-level of 0.05. This project 
had Institutional Review Board Approval from the Univer-
sity of South Carolina (Pro00036431) and the WJB Dorn 
VA (10,404).

Results

There were 3,736 PrCA cases in 377 ZCTA’s with a median 
number of PrCA cases of eight and a range of 0 to 153 across 
those ZCTA’s. These PrCA cases were distributed by year, 
as shown in Supplementary Table 1. There were 104,017 
non-cancer cases in 413 ZIP codes with a median of 130 and 
a range of 1 to 2,044 across those ZIP codes. PrCA patients 
accounted for 3.5% of the final analytical cohort. The plu-
rality of patients were between > 60 and 70 years of age 
(37.7%). Most PrCA patients were White (65.5%), married 
(62.3%), and traveled more than 55 miles to a VA facility 
for care (52.0%) (Table 1). The median distance traveled to 
a VA facility was 60.0 miles.

Univariate statistics

PrCA patients were more likely than non-PrCA patients to 
be older for their first VA visit (age from > 50 to 60 years: 
45.1% vs. 34.0%; age from > 60 to 70 years: 41.0% vs. 
37.6%). PrCA patients were also more likely to be Black 
(54.5% vs. 33.6%), less likely to be have been married at 
diagnosis (58.4% vs. 62.5%), more likely to be have been 
previously married (32.7% vs. 22.4%), less likely to never 
have been married or have an unknown marital status (9.0% 
vs. 15.1%), and more likely to travel between 25 and 55 
miles to a VA facility to receive care than their non-cancer 
counterparts (Table 2).

Multivariable Bayesian modeling

Seven models of increasing complexity using a Bayesian 
framework were fit (Table 3). All independent variables were 
significant for the first model (Model 1, Table 3). The second 
model was the nested null model which accounted for the 
subject’s ZCTA-linked ZIP code. This model had a MOR 
of 1.37 (1.30, 1.44) as well as the highest DIC of all seven 
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models. The third model accounted for the individual-level 
factors as well as nesting the subjects in their ZCTA-linked 
ZIP codes (Model 3, Table 3). The fourth model included 
area-level factors including percent of the population living 
in poverty and categorized  SoVI® scores (Model 4, Table 3). 
While Model 3 and Model 4 have identical DICs, Model 4 
had a smaller MOR indicating a better fitted model.

The fifth model was the spatial null model with a spatial 
random effect and autocorrelation term. Model 5 fit the data 
better than Model 2, with both a smaller DIC and MOR. The 
sixth model was the spatial model with only the individual-
level factors (Model 6, Table 3). The seventh model was the 
spatial model with the individual-level factors as well as the 
ZCTA poverty level and the categorized  SoVI® scores for 
each model (Model 7, Table 3).

Model 7, the most complex model, had the smallest DIC 
and MOR [1.14 (1.11, 1.19)] of all the models, indicating 
that it is the model with the best fit. PrCA patients were 
more likely to be older when they had their first VA visit 
as compared to non-cancer patients, with the risk increas-
ing with increasing age: 40–50 years old  (ORadj 5.63 (3.94, 

8.39), > 50–60 years old  [ORadj 13.11 (9.29, 19.53)], and 
> 60–70 years old  [ORadj 13.31 (9.44, 19.81)]. PrCA patients 
were more likely to be Black  [ORadj 2.98 (2.77, 3.20)]. PrCA 
patients were more likely to have been married previously 
as compared to being currently married  [ORadj 1.47 (1.37, 
1.58)]. However, those who had never been married or their 
marital status was unknown were at lowest risk relative to 
those who were married  [ORadj 0.55 (0.49, 0.62)].

Distance between 25 and 55 miles from the patient’s 
ZCTA-linked ZIP code centroid to the most frequented 
VA facility was statistically insignificant in Model 7  [ORadj 
1.06 (0.92, 1.21)]. This stratum for this variable was also 
statistically insignificant in Model 4, while it was statisti-
cally significant for Models 1, 3, and 6. In model 7, PrCA 
patients were less likely to be living more than 55 miles from 
the patient’s ZCTA-linked ZIP code centroid to the most 
frequented VA facility vs. their non-cancer controls  [ORadj 
0.86 (0.75, 0.98)]. This stratum for this variable was also 
statistically significant in Model 4, while it was statistically 
insignificant for Models 1, 3, and 6.

PrCA patients were more likely to live in ZCTA-linked ZIP 
codes with a  SoVI® class 1–2 standard deviations from the 
ZCTA-linked ZIP codes with the lowest Social Vulnerabil-
ity Index  [ORadj 1.35 (1.11, 1.65)] and 3 standard deviations 
from the ZCTA-linked ZIP codes with the lowest  SoVI® score 

Table 1  Descriptive Statistics of South Carolina veteran population 
who seek healthcare at Veteran Health Administration facilities from 
1 January 1999 and 31 December 2015 and meet the study inclusion 
criteria

Categorical variables n = 107,753 (%)

Prostate cancer
 Yes 3,736 (3.47)
 No 104,017 (96.53)

Age at first VA visit (years)
 < 40 8,259 (7.66)
 40–50 21,848 (20.28)
 > 50–60 37,052 (34.39)
 > 60–70 40,594 (37.67)

Race
 White 70,703 (65.62)
 Black 37,050 (34.38)

Marital status
 Married 67,173 (62.34)
 Previously married 24,520 (22.76)
 Never married/unknown 16,060 (14.9)

Preventive care visit
 Yes 104,644 (97.11)
 No 3,109 (2.89)

Digital rectal exam
 Yes 104,023 (96.54)
 No 3,730 (3.46)

Distance traveled (miles)
 0–25 31,200 (28.96)
 > 25–55 20,515 (19.04)
 > 55 56,038 (52.01)

Table 2  Univariate χ2 analysis comparing all prostate cancer patients 
to non-prostate cancer patients for all categorical variables among 
the South Carolina veteran population who seek healthcare at Vet-
eran Health Administration facilities between 1 January 1999 and 31 
December 2015 and meet the study inclusion criteria

Risk factors All PrCA 
patients 
(n = 3,736)

Non-cancer 
patients 
(n = 104,017)

p-value

Age of first VA visit 
(years)

< 0.001

 < 40 31 (0.83%) 8,228 (7.91%)
 40–50 490 (13.12%) 21,358 (20.53%)
 > 50–60 1,684 (45.07%) 35,368 (34.00%)
 > 60–70 1,531 (40.98%) 39,063 (37.55%)

Race < 0.001
 White 1,662 (44.49%) 69,041 (66.37%)
 Black 2,074 (55.51%) 34,976 (33.63%)

Marital status < 0.001
 Married 2,181 (58.38%) 64,992 (62.48%)
 Previously married 1,222 (32.71%) 23,298 (22.40%)
 Never married/

unknown
333 (8.98%) 15,727 (15.12%)

Distance traveled 
(miles)

< 0.001

 0–25 1,071 (28.67%) 30,129 (28.97%)
 > 25–55 910 (24.36%) 19,605 (18.85%)
 > 55 1,755 (46.98%) 54,283 (52.19%)
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 [ORadj 1.39 (1.11, 1.75)]. These estimates remained consist-
ent and statistically significant for all models that accounted 
for them.

Residing in ZCTAs with the highest poverty level 
(≥ 15.86%) increased the risk of PrCA by 24% in Model 4 
 [ORadj 1.24 (1.01, 1.48)]. However, this ZCTA poverty level 
was statistically insignificant after accounting for the spatial 
autocorrelation between ZCTAs in Model 7  [ORadj 1.13 (0.93, 
1.35)].

Discussion

Our study identified an association between a veteran’s 
ZCTA-linked ZIP code of residence and PrCA risk. This 
study used a unique approach to account for individual-
level risk factors, area-level risk factors, spatial ran-
dom effects, and autocorrelation within one modeling 
framework.

Table 3  Odds ratios and 95% credible intervals for multivariate mod-
els comparing prostate cancer patients to non-cancer patients among 
the South Carolina veteran population who seek healthcare at Veteran 

Health Administration facilities from 1 January 1999 and 31 Decem-
ber 2015 and meet the study inclusion criteria

Model 1: individual-level risk factors; Model 2: nested null model (median odds ratio: 1.37 95% credible interval (1.15, 1.26); DIC: 32,079); 
Model 3: nested model with individual-level risk factors; Model 4: full nested model; Model 5: spatial null model (median odds ratio: 1.23 95% 
credible interval (1.16, 1.31); DIC: 32,067); Model 6: spatial model with individual-level risk factors; Model 7: full spatial model
N/A not applicable
*All 15,000 iterations after a burn-in of 5,000 iterations were evaluated
**Every fifth iteration of 25,000 iterations after a burn-in of 15,000 iterations were evaluated
***All 25,000 iterations after a burn-in of 15,000 iterations were evaluated

Risk factors Model 1* Model 3* Model 4* Model 6** Model 7***

Age of first VA visit (years)
 < 40 Reference Reference Reference Reference Reference
 40–50 5.60 (3.88, 8.36) 5.72 (4.06, 8.13) 5.62 (4.03, 7.61) 5.55 (3.94, 7.91) 5.63 (3.94, 8.39)
 > 50–60 13.38 (9.40, 19.93) 13.48 (9.67, 19.03) 13.14 (9.51, 17.67) 13.03 (9.33, 18.62) 13.11 (9.29, 19.53)
 > 60–70 13.60 (9.51, 20.25) 13.67 (9.79, 19.30) 13.36 (9.64, 17.90) 13.23 (9.45, 18.82) 13.31 (9.44, 19.81)

Black 3.07 (2.87, 3.29) 3.02 (2.81, 3.24) 2.96 (2.75, 3.18) 3.03 (2.82, 3.25) 2.98 (2.77, 3.20)
Marital status
 Married Reference Reference Reference Reference Reference
 Ever married 1.50 (1.40, 1.61) 1.49 (1.38, 1.60) 1.47 (1.37, 1.58) 1.48 (1.38, 1.59) 1.47 (1.37, 1.58)
 Never married/unknown 0.57 (0.50, 0.64) 0.56 (0.49, 0.63) 0.55 (0.49, 0.62) 0.56 (0.50, 0.63) 0.55 (0.49, 0.62)

Distance traveled from the 
most listed ZIP code (miles)

 0–25 Reference Reference Reference Reference Reference
 > 25–55 1.21 (1.10, 1.32) 1.20 (1.07, 1.34) 1.08 (0.96, 1.22) 1.16 (1.01, 1.33) 1.06 (0.92, 1.21)
 > 55 0.96 (0.89, 1.04) 0.95 (0.86, 1.04) 0.88 (0.80, 0.98) 0.92 (0.80, 1.06) 0.86 (0.75, 0.98)

Percent of population in ZIP code living in poverty
 0–7.96 N/A N/A Reference N/A Reference
 > 7.96–15.86 N/A N/A 1.04 (0.87, 1.24) N/A 0.94 (0.78, 1.14)
 > 15.86 N/A N/A 1.24 (1.04, 1.48) N/A 1.13 (0.93, 1.35)

SoVI®

 Low N/A N/A Reference N/A Reference
 Medium N/A N/A 1.27 (1.05, 1.56) N/A 1.35 (1.11, 1.65)
 High N/A N/A 1.27 (1.01, 1.58) N/A 1.39 (1.11, 1.75)
 Median odds ratio N/A 1.20 (1.15, 1.26) 1.17 (1.12, 1.22) 1.17 (1.12, 1.22) 1.14 (1.11, 1.19)
 DIC 30,539 30,430 30,430 30,411 30,408
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The distance traveled to receive care evaluates the geo-
graphic accessibility among the veteran population and 
demonstrates a unique dynamic in attempting to quantify 
the impact of travel experienced by veterans given a travel 
stipend [37, 38]. When distance is the only measure describ-
ing the location of a veteran (i.e., Model 1), it is statistically 
significant for those veterans traveling between 25 and ≤ 55 
miles (i.e., a VA healthcare facility within an approximate 
30-min to 1-h commute). That stratum remains statistically 
significant (i.e., Models 3 and 6), until accounting for ZCTA 
poverty level and  SoVI® (i.e., Models 4 and 7).

Interestingly, for veterans traveling > 55 miles (i.e., a VA 
healthcare facility more than an approximate 1-h commute), 
it became a statistically protective effect when ZCTA pov-
erty level and  SoVI® were accounted for (i.e., Models 4 and 
7). This protective effect may be an indication of those vet-
erans living in rural areas [39]. The primary VA healthcare 
facilities in South Carolina are located in urban areas, which 
are limited in South Carolina. The rural/urban distinction of 
a ZIP code proceeds towards rural as the distance between 
VA facilities in South Carolina and a veteran increase. Ober-
tova et al. concluded in their systematic review article on 
the urban–rural disparity in PrCA that those living in rural 
communities could be less likely to seek preventive/wellness 
care visits, which in turn, are less likely to be screened for 
PrCA and thereby less likely to be diagnosed with PrCA 
resulting in a fewer PrCA cases being associated with that 
area [39]. The potential influence of a rural–urban disparity 
warrants the evaluation of measurements characterizing such 
a disparity, such as the rural–urban commuting area codes 
(RUCAs), in future studies based on PrCA incidence [40].

A potential dynamic that will be explored in future 
research is what type of VA facility a veteran receives his 
care; is it a VA hospital or a VA Community-Based Out-
patient Clinic (CBOC)? CBOC’s serve an important func-
tion in providing care to veterans living in less populated 
regions; however, CBOC’s are limited in what type of care 
they can provide. This analysis did not differentiate between 
VA hospitals and CBOCs. However, based on the plausible 
inference from these results, determining if differences exist 
between veterans who receive care at a VA hospital and a 
VA CBOC may be beneficial in improving how health care 
is delivered to this population.

Our results demonstrated that more than one area-level 
risk factor was associated with higher rates of incident 
PrCA in the VA population. The models confirmed that 
area poverty was associated with higher incidence of 
PrCA [41, 42]. However, of key interest is our finding 
that models accounting for the spatial autocorrelation 
between ZCTA-linked ZIP codes diminished the impact 
of area poverty, while the  SoVI® estimates remained simi-
lar. While a poverty level of > 15.9% went from being 

statistically significant in Model 4 to statistically non-sig-
nificant in Model 7, risk estimates for the  SoVI® remained 
statistically significant and stable across those models. A 
credible explanation is that poverty levels for a community 
cannot be constrained by political/administrative bounda-
ries such as ZIP codes, therefore, when spatial autocorrela-
tion is accounted for as in Model 7, it inherently accounts 
for similarities such as poverty level. However, the  SoVI® 
is a composite measure that includes multiple community-
level measures that cannot be fully accounted for by spa-
tial autocorrelation alone. This opens the possibility of 
further exploration of how the measures that comprise the 
 SoVI® individually and collectively impact the outcome 
of interest.

While addressing societal issues of poverty and com-
munity social vulnerability is outside the scope of VA, 
these results indicate that veterans living within an approx-
imate 30-min to 1-h commute to a VA healthcare facil-
ity maybe at increased risk for being diagnosed with an 
incident case of PrCA, especially if they reside in a ZIP 
code with a high percentage of the population in poverty 
and an increased  SoVI® class. These results may indicate 
(1) a false sense of health assurance knowing that they 
live within 1-h of VA facility, but do not choose to utilize 
the VA facility for preventive care/wellness/routine care; 
(2) a veteran who requires increased healthcare services 
chooses to live closer to a VA facility; or (3) an indication 
of the urban/rural dynamic within the veteran population 
seeking care at VHA facilities [39].

We also showed that established PrCA risk factors, such 
as marital status and being Black, were statistically signifi-
cant factors associated with PrCA [1, 43–45]. In addition, 
their respective point estimates and 95% credible intervals 
were nearly identical for all models.

Findings on age at first VA visit can provide insight 
into understanding age of PrCA diagnosis for veterans. 
Veterans diagnosed with incident PrCA were more likely 
to begin their VA healthcare later in life than those vet-
erans without incident PrCA or who did not develop 
incident PrCA during the 16-year study timeframe. Fur-
thermore, the risk of incident PrCA more than doubled 
from the 40–50 to the > 50–60-year-old strata, at which 
point there was slight differences in incident PrCA risk 
between the > 50–60 and > 60–70-year-old strata. This 
risk of age at first VA visit may also be caused by the 
recent influx of new veterans who served in Operations 
Enduring Freedom and Iraqi Freedom resulting in a 
larger population of younger veterans in the VA system 
who are still at risk for developing chronic diseases such 
as PrCA, but may cause a bias when used as part of a 
larger comparison group to evaluate those chronic dis-
eases at this point in time.
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Strengths and limitations

This study used electronic medical records for patient-level 
variables. As such, issues that are inherent in using such 
information are present [46]. The data files used have been 
extensively utilized and queried in other VA-based peer-
reviewed research and are of high reliability and validity 
[47–50]. Furthermore, biases that may be present between 
PrCA patients and non-cancer patients will be non-direc-
tional because data management and cleaning did not differ-
entiate between those patients. Of course, use of pre-existing 
datasets precludes examining data outside of its intended 
scope. For example, we had no information on putative 
PrCA risk factors including diet, physical activity, cardi-
orespiratory fitness, and a host of other psychosocial factors.

The use of ZCTA’s as a proxy for ZIP codes as the geo-
graphical unit of analysis has been demonstrated to have 
boundary representation issues especially for non-populated 
ZCTA’s as compared to ZIP codes [51]. However, limiting 
the population under investigation to South Carolina, which 
is a small, stably populated state as compared to the rest of 
the nation should mitigate the boundary issue. Therefore, the 
only areas impacted by boundary issues are those ZCTAs 
bordering the states of Georgia and North Carolina, which 
is always present in all spatial analyses where there is an 
adjacent area not included in the analysis.

Another consequence of using VA electronic medical 
records is that patient addresses could not be obtained and 
therefore the centroid of the ZCTA that each patient resided 
was used to determine the straight-line distance traveled 
by patients to their most frequented VA facility. This issue 
could not be avoided given the patient confidentiality pro-
tections [52]. However, given this limitation, any bias will 
be non-directional given the relatively small geographical 
area of each ZIP code, which would result in minor differ-
ences between the centroid distance to the VA facility and 
the actual distance. Furthermore, there would be equal prob-
ability that any random individual veteran can live closer or 
farther to their most frequented VA facility than the distance 
from the centroid. Therefore, the analytical cohort would 
have a narrow, normally distributed curve in the difference 
between their actual straight line distance to their most fre-
quented VA facility and the centroid distance.

South Carolina veterans who were not excluded and yet 
received healthcare services at a VA facility not in South 
Carolina were still included in the analyses. Receiving care 
at a South Carolina VA facility was not an exclusion crite-
rion for that reason. The closet VA healthcare facility may 
be located across the state line for many border areas of 
the South Carolina. This occurrence does not impact the 
analyses in determining if residence-specific characteris-
tics are associated with PrCA.

More importantly, the ZCTA was selected as the geo-
graphical unit of analysis because it was the most appropri-
ate choice to assess the spatial impact of PrCA epidemiology 
for two reasons. The first is that it was the smallest of the 
two geographical units available (the other being county). 
Therefore, while census tracts are more commonly used 
in spatial models in evaluating areas smaller than coun-
ties, such geographical units were not available in the VA 
records. The second reason is a consequence of the first. The 
more homogenous the population was, the more likely it is 
to differentiate between ZCTAs in the models and there-
fore to identify ZCTAs with higher- or lower-than-expected 
risks for PrCA. As the geographical unit area increases, the 
population becomes more heterogenous in characteristics 
that could not be assessed. This increases the likelihood of 
introducing an unaccounted directional bias.

No South Carolina ZCTA maps were presented identify-
ing crude counts, crude rates, or ZCTA-specific risk esti-
mates because ten of the 413 ZIP codes (2.4%) had, at most, 
five VA patients. Therefore, any presentation identifying 
location even at the aggregate level would violate the Health 
Insurance Portability and Accountability Act of 1996 [53]. 
The research approach undertaken should not be discounted 
due to the limitation of what can be presented in the public 
domain. This research has the most benefit if used as an 
internal resource in identifying ZIP codes where the risk for 
a specific disease is above or below what is expected after 
controlling for known risk factors. In this regard, additional 
resources may be better directed toward understanding what 
is driving a higher-than-expected disease risk in a specific 
area. This, in turn, could lead to targeting interventions by 
public health researchers who have the potential to benefit 
a specific community in need to better improve their health 
outcomes. Furthermore, clinicians can use this research in 
factoring in a patient’s residence as a potential risk factor 
for specific diseases.

The use of ZCTA-level measurements from one time-
frame is a limitation. However, the measurements from the 
5-Year American Community Survey that were used indi-
vidually and as components of the  SoVI® and the  SoVI® 
have been shown to remain stable over several consecutive 
years [54]. However, this analytical approach demonstrated 
the possibility of successfully modeling individual-level risk 
factors, area-level risk factors, and spatial autocorrelation 
within one modeling framework. This approach opens up the 
possibility to expand this research to include the incorpora-
tion of a temporal component into the modeling framework.

Additionally, “age at PrCA diagnosis” could not be used 
in the multivariate general linear models because the non-
cancer comparison group does not have those values to cal-
culate that measure. For this reason, the creation and use of 
“age at first VA visit” was calculated as novel approach that 
allowed age to be assessed between the PrCA population 
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and the non-cancer population for multivariate general linear 
modeling purposes. While this measures the age at which 
a veteran began accessing VHA care, any bias between the 
PrCA group and the non-cancer comparison group would 
most likely be non-directional; i.e., not biased toward the 
null. Chronic diseases other than PrCA (e.g., cardiovascular 
disease, type 2 diabetes mellitus) also are likely to occur in 
middle to late adulthood. Developing such chronic diseases 
is an equal probable in both the PrCA group and the non-
cancer comparison group [55, 56]. It also is important to 
note that such non-cancer chronic diseases were not exclu-
sion factors in this study.

Finally, in addition to the known risk factors for PrCA 
(race and marital status), we identified the unique factors 
such as area of residence and waiting to begin VA healthcare 
services until later in life as risk factors for incident PrCA. 
We demonstrated that location-specific characteristics as a 
risk factor for PrCA can be evaluated and accounted for at 
three levels: the individual level, community level, and the 
spatial autocorrelation among the ZCTA-linked ZIP codes. 
Expanding on the known risk factors for PrCA will allow 
clinicians to better assess a man’s likelihood for developing 
PrCA thereby improving the preventive care he receives.
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