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Abstract
Purpose To conduct the first epidemiologic study prospectively examining the association between particulate matter air 
pollution < 2.5 µm in diameter  (PM2.5) exposure and hepatocellular carcinoma (HCC) risk in the U.S.
Methods Surveillance, Epidemiology, and End Results (SEER) provided information on HCC cases diagnosed between 
2000 and 2014 from 16 population-based cancer registries across the U.S. Ambient  PM2.5 exposure was estimated by linking 
the SEER county with a spatial  PM2.5 model using a geographic information system. Poisson regression with robust vari-
ance estimation was used to calculate incidence rate ratios and 95% confidence intervals (CIs) for the association between 
ambient  PM2.5 exposure per 10 µg/m3 increase and HCC risk adjusting for individual-level age at diagnosis, sex, race, year 
of diagnosis, SEER registry, and county-level information on health conditions, lifestyle, demographic, socioeconomic, and 
environmental factors.
Results Higher levels of ambient  PM2.5 exposure were associated with a statistically significant increased risk for HCC 
(n = 56,245 cases; adjusted IRR per 10 µg/m3 increase = 1.26, 95% CI 1.08, 1.47; p < 0.01).
Conclusions If confirmed in studies with individual-level  PM2.5 exposure and risk factor information, these results suggest 
that ambient  PM2.5 exposure may be a risk factor for HCC in the U.S.

Keywords PM2.5 · Particulate matter · Air pollution · Liver cancer · Hepatocellular carcinoma · Geographic information 
system

Introduction

Hepatocellular carcinoma (HCC) is the most common histo-
logical type of primary liver cancer, accounting for 85–90% 
of primary liver cancer cases [1, 2]. Risk factors for HCC 
vary by geography and include chronic hepatitis B virus 
(HBV) infection, chronic hepatitis C virus (HCV) infection, 
aflatoxin exposure, heavy alcohol consumption, smoking, 
obesity, and diabetes [3]. Although liver cancer incidence 
and mortality have been increasing in many regions around 
the world including the U.S. [4–6], an estimated 40.5% of 
HCC cases in the U.S. are unexplained by known risk fac-
tors including HCV, HBV, alcohol consumption, diabetes, 
and obesity [7]. Primary prevention of HCC is essential as 
the five-year relative survival rate remains low (< 12%) [8].

Recent evidence suggests that exposure to fine particu-
late matter air pollution < 2.5 µm in diameter  (PM2.5) may 
increase the risk of liver cancer [9, 10].  PM2.5 is a ubiq-
uitous environmental exposure produced from combustion 
sources such as motor vehicles and power plants [11]. PM, 
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and outdoor air pollution in general, is classified as an Inter-
national Agency for Research on Cancer (IARC) Group 1 
human carcinogen largely based on evidence of positive 
associations with lung cancer in epidemiologic and experi-
mental studies [12]. Humans are primarily exposed to  PM2.5 
via inhalation; its relatively finer particle size fraction allows 
for deposition deep in the lung (e.g., alveoli) through sedi-
mentation and diffusion processes [13]. In addition,  PM2.5 
has been shown to induce oxidative damage, inflammation, 
and genotoxicity in the liver [14], promote HCC cell inva-
sion and migration [15], and promote collagen deposition in 
the liver by activating TGF-β signaling [16]. Higher  PM2.5 
exposure has also been associated with reduced liver cancer 
survival [17] as well as higher prevalence of hepatic stea-
tosis, a risk factor for HCC [18]. Two epidemiologic stud-
ies have examined the association between  PM2.5 exposure 
and HCC incidence in Taiwan and Europe showing positive 
associations, although there were temporal mismatches as 
the date of case diagnoses preceded the exposure time peri-
ods [9, 10]. To date, no studies have been conducted in the 
U.S.

Although  PM2.5 levels have decreased in the U.S. over the 
past two decades,  PM2.5 remains an important environmental 
concern as urbanization continues to rise in parts of the U.S. 
and around the world such as in China [19–21]. An esti-
mated 13.6% of the U.S. population resides in areas where 
 PM2.5 concentrations exceed the 24-hour Environmental Pro-
tection Agency (EPA) National Ambient Air Quality Stand-
ards of 35 µg/m3 [22, 23]. Further, in 2017, an estimated 
19.9 million (6.2% of the population) reside in locations with 
unhealthy levels of year-round particle pollution in the U.S. 
[24].  PM2.5 exposure is a modifiable risk factor that can be 
mitigated through reduced time spent outdoors at and during 
high-traffic locations and times [25]. The objective of this 
study was to prospectively examine the association between 
ambient  PM2.5 exposure and HCC incidence in the U.S.

Methods

Study population

The Surveillance, Epidemiology, and End Results (SEER) 
database is a U.S. National Cancer Institute program collect-
ing individual-level information on cancer incidence, sur-
vival, and treatment from population-based cancer registries 
covering 28% of the U.S. population [26]. The following 16 
registries were included in the analysis: Atlanta (metropoli-
tan); Greater California; Connecticut; Detroit (metropoli-
tan); Greater Georgia; Iowa; Kentucky; Los Angeles; Louisi-
ana (excluding July–December 2005 cases due to Hurricanes 
Katrina and Rita); New Jersey; New Mexico; Rural Georgia; 
San Francisco–Oakland; San Jose–Monterey; Seattle (Puget 

Sound); and Utah. The study area included all 607 counties 
located in the catchment areas captured by these 16 SEER 
registries that did not restrict coverage to specific popula-
tions and that were located in the 48 contiguous U.S. states 
with available  PM2.5 exposure data. To protect patient con-
fidentiality, the SEER database does not include personal 
identifiers. This study was exempt from Institutional Review 
Board review.

Outcomes

The following criteria were used to define HCC cases: Inter-
national Classification of Diseases for Oncology, Third Edi-
tion (ICD-O-3) topography code C22.0 for primary liver 
cancer and ICD-O-3 histology codes 8170 to 8175 [27]; 
diagnostic confirmation (e.g., positive histology) exclud-
ing clinical diagnosis only [28]; sequence number of one 
primary only; diagnosis between 2000 and 2014; and not 
reported via autopsy or death certificate only [29]. As con-
ducted in previous SEER-based epidemiologic studies, 
counts of HCC cases were stratified by age at diagnosis 
(< 65 years, ≥ 65); sex (male, female); race (white, black, 
Asian/Pacific Islander/American Indian/Alaska Native); 
and year of diagnosis (2000–2007, 2008–2014) for each 
county [30–32]. Each county was associated with one SEER 
registry.

Exposure assessment

Ambient  PM2.5 exposure was estimated for each county in 
the study area using a spatial  PM2.5 exposure model. The 
model was created by applying inverse distance weighting 
(IDW) spatial interpolation to  PM2.5 concentrations (µg/m3) 
in 2000 measured at 1,082 monitoring sites located across 
the contiguous U.S. provided by the U.S. Environmental 
Protection Agency (EPA) Air Quality System (AQS) data-
base annual summary file [33, 34].  PM2.5 data from 2000 
were selected as the first year cases were diagnosed was 
2000; further, few  PM2.5 monitoring data were available 
prior to 1999 [35]. IDW was used to create a spatial raster 
prediction surface of  PM2.5 exposure levels for the entire 
contiguous U.S., where the predicted value for  PM2.5 at any 
given location is the distance-weighted average of sample 
points (i.e., monitors) in a surrounding neighborhood [36]. 
The IDW neighborhood was defined using the 12 nearest 
monitors, resulting in an approximately 10 × 10 km spatial 
model, similar in spatial resolution to  PM2.5 exposure mod-
els used in previous studies [37, 38]. In sensitivity analy-
ses, visual inspection of prediction surfaces created using 
neighborhoods including between 5 and 20 monitors yielded 
similar results. Monitors outside of the contiguous U.S. were 
excluded from IDW modeling as they exert relatively mini-
mal influence on  PM2.5 concentrations at prediction points in 
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the contiguous U.S. (the closest non-contiguous U.S. moni-
tor was 899 km in distance to the nearest contiguous U.S. 
boundary) [39]. Using 2000 U.S. county boundaries [40], 
the  PM2.5 model was aggregated to the county level in a 
geographic information system (GIS) (i.e.,  PM2.5 raster cell 
centroids intersecting a county were averaged to calculate a 
mean county  PM2.5 value). Annual average ambient  PM2.5 
values were linked with each county in the study area, using 
the county at diagnosis that was available for each case from 
SEER. In secondary analyses, ambient  PM2.5 exposure was 
estimated using the EPA AQS Annual Air Quality Statistics 
Report, which provided county-level  PM2.5 estimates in 2000 
for the weighted annual mean (weighted by the calendar 
quarter) [41].  PM2.5 estimates from the secondary analyses 
are available for a total of 687 counties (150 of the 607 coun-
ties in the study area; Supplementary Fig. 1), while  PM2.5 
estimates from the primary IDW exposure metric are avail-
able for 3,109 counties (all 607 counties in the study area). 
All spatial analyses were conducted in ArcGIS 10.5.1 (Esri, 
Redlands, CA) using the contiguous U.S. Albers equal area 
conic coordinate system (NAD83 datum; USGS version).

Additional covariates

The following individual- and county-level information on 
known and suspected HCC risk factors and variables known 
to be associated with the exposure were evaluated as poten-
tial confounders. From the SEER database, we acquired 
individual-level data on age at diagnosis, sex, race, year of 
diagnosis, and SEER registry. We acquired the following 
county-level socioeconomic and demographic information 
from the 2000 U.S. Census Bureau Summary Files (SFs) that 
were available through SEER: educational attainment (per-
centage with a Bachelor’s degree or higher), poverty (per-
centage of individuals below the poverty level), percentage 
unemployed, median household income, and percentage for-
eign born (a proxy for HBV prevalence as HBV is endemic 
in parts of Asia and Africa [1]). We also acquired informa-
tion on county-level urbanicity (a proxy for HCV prevalence 
as rural–urban differences in HCV have been observed [42]) 
using U.S. Department of Agriculture Rural–Urban Con-
tinuum Codes [43].

The following county-level data were acquired from the 
Institute for Health Metrics and Evaluation (IHME), cre-
ated by applying small area models to data from the U.S. 
Behavioral Risk Factor Surveillance System and U.S. 
National Health and Nutrition Examination Survey: sex-
specific age-adjusted prevalence of heavy alcohol consump-
tion in 2005 (average > 1 drink per day for women or > 2 
drinks per day for men in the past 30 days) [44]; diabetes 
in 2000 (percentage of adults aged ≥ 20 years who reported 
a previous diabetes diagnosis and/or have a fasting plasma 
glucose ≥ 126 mg/dL and/or hemoglobin A1c ≥ 6.5%) [45, 

46]; physical activity in 2001 (participation during the past 
month in any physical activities/exercises outside of work); 
obesity in 2001 (body mass index [BMI] ≥ 30 kg/m2) [47]; 
and current smoking in 2000 (currently smoking daily or 
nondaily cigarettes) [48].

County-level age-adjusted drug poisoning-related mortal-
ity rates, defined using ICD-10 underlying cause-of-death 
codes X40–X44, X60–X64, X85, or Y10–Y14, were esti-
mated using two-stage hierarchical models applied to the 
U.S. National Vital Statistics System multiple cause-of-
death mortality files [49, 50]. Drug poisoning mortality was 
considered as a proxy for HCV prevalence as a substantial 
proportion of drug poisoning deaths are due to injection 
drug use, which is the predominant route of HCV trans-
mission in the U.S. [51]. County-level population density 
(population per  mi2), which is associated with higher traffic 
concentrations and thus other sources and types of air pol-
lution, was downloaded from the 2000 U.S. Census Bureau 
SF1 [52, 53]. We created a variable for region of residence, 
which is associated with differences in  PM2.5 chemical com-
position, by grouping all counties into the four U.S. Census 
Bureau-defined regions: Northeast, Midwest, South, and 
West [54, 55]. Vitamin D has been shown to be associated 
with a reduced risk for HCC [56]. Ultraviolet (UV) radia-
tion exposure is the primary source of vitamin D for most 
individuals [57, 58]. We estimated ambient UV exposure 
using a spatiotemporal exposure model created by applying 
geostatistical methods to known predictors of UV includ-
ing ozone, aerosol optical depth, cloud cover, and elevation 
[59]. UV raster cell centroids were intersected with county 
boundaries and aggregated to the county level using GIS. 
County-level data were compiled using unique U.S. Federal 
Information Processing Standard (FIPS) codes.

Statistical analysis

Poisson regression with robust variance estimation was used 
to calculate incidence rate ratios (IRRs) and 95% confidence 
intervals (CIs) for the association between ambient  PM2.5 
exposure and HCC risk.  PM2.5 exposure was examined con-
tinuously per 10 µg/m3 increase. Restricted cubic regression 
splines were used to test for deviations from linearity. All 
models were a priori-determined to include the following 
variables on known and suspected HCC risk factors: age, 
sex, race, year, SEER registry, urbanicity, heavy alcohol 
consumption, smoking, obesity, diabetes, socioeconomic 
status (median household income, Bachelor’s degree edu-
cation or higher, unemployment, and poverty), foreign born, 
and ambient UV exposure. Population density and SEER 
registry (used as a more granular variable for region) were 
also included in the final model to account for other types of 
outdoor air pollution and differences in  PM2.5 constituents. 
We evaluated potential confounding by physical activity and 
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drug poisoning mortality. As adjustment for these variables 
did not substantially change the IRR for  PM2.5 exposure and 
HCC risk, they were not included in the final model. The 
natural logarithm of the population size, stratified by county, 
age (< 65 years, ≥ 65), sex (male, female), race (white, black, 
Asian/Pacific Islander/American Indian/Alaska Native), and 
year (annual average from 2000 to 2007; annual average 
from 2008 to 2014) was used as the offset in all models. 
Population data were acquired from the National Center for 
Health Statistics (NCHS) Bridged-Race Resident Population 
Estimates 1990–2014 online database downloaded from the 
Centers for Disease Control and Prevention (CDC) WON-
DER [60].

Using stratified analyses, we explored potential effect 
modification by factors that may be associated with differen-
tial time spent outdoors and thus  PM2.5 exposure, or associ-
ated with disparities in HCC incidence rates: age, sex, race, 
urbanicity, physical activity, obesity, diabetes, heavy alco-
hol consumption, and median household income. We fur-
ther stratified by population density and region of residence, 
which influence ambient levels and/or chemical constituents 
of  PM2.5, and by smoking, which has been associated with 
decreased lung deposition of  PM2.5 and competition for 
metabolic activation [61]. To examine potential exposure 
misclassification due to migration, we stratified by residen-
tial mobility using data from the SEER-provided 2000 U.S. 
Census Bureau SF1 on the percentage of the county popula-
tion that stayed in the same house (no migration from 1995 
to 2000). Movers were defined as those residing in counties 
in which at least 51.9% (20th percentile of all counties) of 
the population did not migrate. We stratified by year of diag-
nosis to examine the effect of a potential exposure lag. Tests 
for interaction were conducted by adding an interaction term 
to the model and using likelihood ratio tests to determine 
statistical significance (p < 0.05). We performed sensitivity 
analyses using the secondary ambient  PM2.5 exposure meas-
ure from the EPA AQS Annual Air Quality Statistics Report; 
using Poisson models with a random intercept for county 
to determine if there was potential county-level clustering; 
and using scaled Poisson models applying the Pearson and 
deviance methods to account for overdispersion [62]. All 
statistical analyses were conducted using SAS 9.4 (SAS 
Institute, Cary, NC).

Results

A total of n = 56,245 HCC cases diagnosed between 2000 
and 2014 were included in the analysis. HCC cases were on 
average 62.4 years of age at diagnosis, mostly male (77.1%), 
white (68.5%), and/or resided in the Western region of the 
U.S. (61.5%) (Table 1). Using county-level data from the 
underlying population from which HCC cases were sampled, 

HCC cases at the time of diagnosis resided in counties where 
annual average ambient  PM2.5 levels were 14.6 ± 3.1 µg/
m3 (Table 1). HCC cases resided in counties where 23.9% 
of the population smoked cigarettes, 25.7% were obese 

Table 1  Population characteristics of n = 56,245 hepatocellular carci-
noma cases in the U.S. (SEER 2000–2014)

HCC hepatocellular carcinoma, PM2.5 particulate matter < 2.5  µm, 
SD standard deviation, SEER Surveillance, Epidemiology, and End 
Results, UV ultraviolet radiation
a County-level information was based on the county at diagnosis for 
cases from SEER
b Sex-specific physical activity and obesity prevalence rates were aver-
aged to estimate a total prevalence

Characteristic Cases n (%)

Individual level
 Age at diagnosis (years) (mean ± SD) 62.4 ± 11.6

Sex
 Male 43,357 (77.1)
 Female 12,888 (22.9)

Race
 White 38,546 (68.5)
 Black 7,737 (13.8)
 Asian or Pacific Islander 9,305 (16.5)
 American Indian or Alaskan Native 657 (1.2)

Region of residence at diagnosis
 Northeast 7,596 (13.5)
 South 9,995 (17.8)
 Midwest 4,084 (7.3)
 West 34,570 (61.5)

Year of diagnosis
 2000–2007 23,589 (41.9)
 2008–2014 32,656 (58.1)

County level
 PM2.5 (µg/m3) (mean ± SD)a 14.6 ± 3.1
 UV (mW/m2) (mean ± SD)a 214.4 ± 36.1
 Percent heavy alcohol consumption 

(mean ± SD)a
8.3 ± 2.2

 Percent smoking status (mean ± SD)a 23.9 ± 4.8
 Percent physical activity (mean ± SD)a,b 76.9 ± 5.8
 Percent obese (mean ± SD)a,b 25.7 ± 4.1
 Percent diabetes (mean ± SD)a 11.4 ± 1.7
 Median household income ($10,000) 

(mean ± SD)a
47.1 ± 11.1

 Percent bachelor’s degree or higher (mean ± SD)a 26.1 ± 9.2
 Percent unemployed (mean ± SD)a 6.5 ± 2.3
 Percent poverty (mean ± SD)a 13.1 ± 5.3
 Population density (population/mi2) 

(mean ± SD)a
1,750.9 ± 2,883.5

 Percent foreign born (mean ± SD)a 17.9 ± 12.1
Urbanicitya

 Rural 460 (0.8)
 Urban 55,785 (99.2)



567Cancer Causes & Control (2018) 29:563–572 

1 3

(BMI ≥ 30 kg/m2), 8.3% consumed a heavy amount of alco-
hol (i.e., an average of more than 1 drink per day for women 
and more than 2 drinks per day for men in the past 30 days), 
and 11.4% had diabetes. HCC cases resided in densely popu-
lated counties (average 1,750.9 population/mi2) that were 
characterized by an average median household income of 
$47,100, where less than 30% of the population had a Bach-
elor’s degree education or higher, 13.1% were living below 
the poverty level, and 17.9% were foreign born. Figure 1 
shows annual average ambient  PM2.5 exposure in 2000 
categorized by quintiles calculated using all 607 counties 
included in the study. Annual average ambient  PM2.5 levels 
ranged between 5.5 and 19.8 µg/m3. Higher  PM2.5 concen-
trations were observed in the Southern U.S. (counties in the 
Kentucky and Georgia registries), as well as parts of the 
Northeast (New Jersey) and West (California), consistent 
with the higher levels typically observed in these regions 
during the 2000s [35].

Higher ambient  PM2.5 exposure was not associated with 
HCC risk in basic models adjusting for age, sex, race, year, 
and SEER registry (IRR = 0.99 per 10  µg/m3 increase, 
95% CI 0.87, 1.14; p = 0.93) (Table 2). After additional 

adjustment for county-level heavy alcohol consumption, 
smoking, obesity, diabetes, population density, median 
household income, Bachelor’s degree education, unem-
ployment, poverty, foreign born, urbanicity, and ambient 
UV exposure, we observed a statistically significant positive 
association between ambient  PM2.5 exposure and HCC risk. 
A 10 µg/m3 increase in ambient  PM2.5 exposure was associ-
ated with a 26% higher risk of HCC (adjusted IRR = 1.26, 
95% CI 1.08, 1.47; p < 0.01) (Table 2). Model building is 
shown in Supplementary Table 1. The strongest confounders 
were population density, socioeconomic factors, and ambi-
ent UV.

We observed statistically significant interactions between 
ambient  PM2.5 exposure and population density (p for inter-
action = 0.02), smoking (p = 0.03), and residential mobility 
(p = 0.02) (Table 2).  PM2.5 exposure was positively associ-
ated with HCC risk in areas with high population density 
(adjusted IRR = 1.32, 95% CI 1.11, 1.58), but was not asso-
ciated with HCC risk in areas with low/medium popula-
tion density.  PM2.5 exposure was positively associated with 
HCC risk in areas with low smoking prevalence (adjusted 
IRR = 1.23, 95% CI 1.01, 1.51). However, the sample size in 

Fig. 1  Ambient  PM2.5 exposure (µg/m3) in 2000 by quintiles across 
607 counties in the U.S. Higher  PM2.5 levels are shown in darker 
colors. The  PM2.5 quintiles were calculated using all 607 counties 

captured by the 16 SEER population-based cancer registries included 
in the study. (Color figure online)
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areas with low/medium population density or low/medium 
smoking prevalence were relatively smaller than in high 
population density or high smoking prevalence areas. In 
general, the association between  PM2.5 and HCC risk was 
positive across all strata defined by residential mobility. The 
association between  PM2.5 and HCC risk did not vary by 
age, sex, race, urbanicity, physical activity, obesity, diabetes, 
heavy alcohol consumption, median household income, and 
region (p > 0.05). In sensitivity analyses among n = 48,187 
HCC cases with  PM2.5 exposure information available from 
the EPA AQS Annual Air Quality Statistics Report, we did 
not observe an association between  PM2.5 exposure and 
HCC risk (adjusted IRR = 1.01, 95% 0.88, 1.16) (Supple-
mentary Table 2). We observed a suggestive positive asso-
ciation between  PM2.5 exposure and HCC risk among cases 
diagnosed between 2000 and 2007 (adjusted IRR = 1.21, 
95% CI 0.98, 1.48); and a statistically significant positive 
association among cases diagnosed between 2008 and 2014 

(adjusted IRR = 1.30, 95% CI 1.13, 1.50) (Supplementary 
Table 3). Similar results were observed when using Poisson 
regression with a random intercept for county and scaled 
Poisson models applying either the Pearson and deviance 
methods (results not shown).

Discussion

We observed a statistically significant positive association 
between county-level ambient  PM2.5 exposure and HCC 
risk in the U.S. after adjustment for individual-level age at 
diagnosis, sex, race, year of diagnosis, and SEER registry, 
and county-level information on health conditions, lifestyle, 
demographic, socioeconomic, and environmental factors. To 
the best of our knowledge, this is the first study examining 
the association between ambient  PM2.5 exposure and HCC 
risk in the U.S.

Table 2  Associations between 
ambient  PM2.5 exposure 
and HCC incidence (SEER 
2000–2014)

CI confidence interval, HCC hepatocellular carcinoma, IRR incidence rate ratio, PM2.5 particulate mat-
ter < 2.5 µm, SEER Surveillance, Epidemiology, and End Results
a Adjusted for age at diagnosis, sex, race, year of diagnosis, and SEER registry
b Additionally adjusted for the following county-level variables: prevalence of heavy alcohol consumption, 
smoking, obesity, diabetes; population density; median household income; percentage with a Bachelor’s 
degree or higher; percentage unemployed; percentage of individuals below the poverty level; percentage 
foreign born; urbanicity; ambient UV exposure
c We stratified by tertiles of population density and sex-specific smoking prevalence across all 607 counties 
included in the analysis
d Low population density refers to < 31.9 population/mi2. Medium population density refers to 31.9–83.3 
population/mi2. High population density refers to > 83.3 population/mi2
e Low smoking prevalence refers to cases residing in a county where < 22.5% of the female population or 
< 27.7% of the male population smoked cigarettes. Medium smoking prevalence refers to cases residing in 
a county where 22.5–25.7% of the female population or 27.7–31.7% of the male population smoked ciga-
rettes. High smoking prevalence refers to cases residing in a county where > 25.7% of the female popula-
tion or > 31.7% of the male population smoked cigarettes
f Non-movers were defined as individuals who resided in a county where ≥ 51.9% (20th percentile of all 
607 counties) of the population stayed in the same home. Movers resided in a county where < 51.9% of the 
population stayed in the same home

PM2.5 exposure (per 
10 µg/m3 increase)

Cases (n) Basica IRR (95% CI) p Fully  adjustedb IRR 
(95% CI)

p

Overall analysis
 PM2.5 56,245 0.99 (0.87, 1.14) 0.93 1.26 (1.08, 1.47) < 0.01

Stratified analyses
Population  densityc,d 0.02
 Low 1,850 0.87 (0.60, 1.28)
 Medium 4,483 0.78 (0.58, 1.03)
 High 49,912 1.32 (1.11, 1.58)

Smokingc,e 0.03
 Low 43,209 1.23 (1.01, 1.51)
 Medium 7,031 0.97 (0.67, 1.40)
 High 6,005 1.19 (0.73, 1.96)

Residential  mobilityf 0.02
 Non-mover 31,039 1.20 (1.01, 1.43)
 Mover 25,206 1.25 (0.96, 1.63)
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The results of this study are consistent with the growing 
body of literature suggesting that exposure to  PM2.5 impacts 
hepatocarcinogenesis. Two epidemiologic studies examining 
individual-level  PM2.5 exposure (based on geocoded resi-
dential addresses) and liver cancer risk have shown gener-
ally positive associations. In a prospective cohort study of 
464 HCC cases in Taiwan, higher levels of  PM2.5 exposure 
were associated with a statistically significant increased risk 
of HCC in the Taiwan Penghu Islands (HR per 13.1 µg/m3 
increase = 1.22, 95% CI 1.02, 1.47) after adjusting for age, 
sex, hepatitis B surface antigen, hepatitis C antibody, ala-
nine transaminase, alcohol consumption, and smoking [9]. 
In a prospective cohort study as part of the European Study 
of Cohorts for Air Pollution Effects (ESCAPE) project that 
included 279 primary liver cancer cases, higher  PM2.5 expo-
sure was associated with a suggestive but not statistically 
significant positive association with liver cancer (HR per 
5 µg/m3 increase = 1.34, 95% CI 0.76, 2.35) after adjusting 
for age, sex, smoking, alcohol consumption, occupational 
exposure, employment status, education, and area-level soci-
oeconomic status [10]. However, neither study considered 
potential confounding by diabetes, which has been associ-
ated with both  PM2.5 and liver cancer [63, 64]. The ESCAPE 
study also did not adjust for chronic HBV or HCV infection 
as potential confounders, although the authors noted that 
confounding by hepatitis may be unlikely as correlates of 
HBV and HCV were adjusted for in the models (e.g., edu-
cation), and prevalence of these viruses is low in the study 
area. Further, there was a temporal mismatch as  PM2.5 expo-
sure information was available from 2006 to 2009 for HCC 
cases diagnosed between 1991 and 2009 in Pan et al. [9], and 
from 2009 to 2011 for liver cancer cases diagnosed between 
1985 and 2012 in Pedersen et al. [10]. The  PM2.5 exposure 
assessments used in these studies may not represent long-
term exposure relevant to hepatocarcinogenesis, making the 
interpretation of findings challenging.

In this study, we observed a statistically significant posi-
tive association between ambient  PM2.5 exposure and HCC 
risk. These results are consistent, in direction and magni-
tude, with previous research showing positive or sugges-
tively positive associations with liver cancer [9, 10]. We 
developed an objective measure of ambient  PM2.5 exposure, 
linking a spatial  PM2.5 model, created using  PM2.5 concen-
trations measured at EPA monitors spanning the contigu-
ous U.S., with the SEER county at diagnosis for each HCC 
case. We estimated  PM2.5 exposure in 2000 as few  PM2.5 
monitoring data were available prior to 1999 [35], which 
would have provided relatively fewer data points for spatial 
interpolation of  PM2.5 before 1999. In addition, 2000 was the 
first year cases were diagnosed in our study. HCC has been 
associated with latency periods of up to 20 years; thus, we 
were primarily interested in estimating historical exposure 
that may be more relevant to hepatocarcinogenesis compared 

to recent exposure. We assumed that the county at diagno-
sis represented the location where cases resided during the 
period relevant to the development of liver cancer (prior to 
diagnosis), which is supported by observing that cases in our 
study resided in counties in which the majority of residents 
did not move from 1995 to 2000. As expected, compared 
to cases diagnosed between 2000 and 2007, we observed a 
stronger positive association between  PM2.5 exposure and 
HCC risk among cases diagnosed between 2008 and 2014 
(characterized by a potential exposure lag of between 8 and 
14 years). Although results in a sensitivity analysis using 
a  PM2.5 exposure measure from the EPA AQS Annual Air 
Quality Statistics Report were null, 457 of the 607 counties 
in the study were missing these exposure data, resulting in 
excluding over 14% of HCC cases (many of whom resided 
in high-exposure areas), and reduced exposure variability.

In this analysis, the strongest confounders were popula-
tion density, socioeconomic factors, and UV, which have 
been associated with liver cancer. Higher population density 
has been associated with increased liver cancer risk, and 
higher socioeconomic status and UV and vitamin D lev-
els have been associated with decreased liver cancer risk 
[32, 56, 65, 66].  PM2.5 concentrations are higher in areas 
with higher population density, related to sources of  PM2.5 
including combustion from motor vehicles and other anthro-
pogenic sources [12]. Higher socioeconomic status and the 
ability to choose whether or not to reside near highways and/
or improve air quality has generally been associated with 
lower  PM2.5 levels [67]. UV is inversely associated with 
 PM2.5 as  PM2.5 particles absorb and scatter UV wavelengths, 
reducing surface UV levels [68].

We observed statistically significant interactions between 
 PM2.5 exposure and population density, smoking, and resi-
dential mobility. However, the sample size in low/medium 
population density areas and low/medium smoking preva-
lence areas is smaller compared to areas with high popula-
tion density or high smoking prevalence, and the stratified 
estimates for residential mobility were generally similar 
and positive.  PM2.5 exposure was positively associated with 
HCC risk in areas with high population density, which have 
been characterized by higher traffic intensity, decreased driv-
ing speeds, and increased emissions, suggesting that densely 
populated areas may be associated with higher emissions per 
vehicle [69].  PM2.5 exposure was positively associated with 
HCC risk in areas with low smoking prevalence. Although 
the mechanisms of action may differ between lung versus 
liver cancer, several studies have demonstrated stronger 
adverse effects of  PM2.5 on lung cancer risk among never-
smokers and former smokers compared to current smokers, 
possibly due to competition for metabolic activation [61, 
70].

Limitations of this study include lack of personal  PM2.5 
exposure information and exposure misclassification 
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associated with using the county at diagnosis provided 
by SEER. We also lacked information on individual-level 
factors affecting  PM2.5 exposure including time spent out-
doors. Further, the ecological fallacy cannot be ruled out, 
as the association between area-level  PM2.5 and HCC may 
not represent the individual-level association between 
 PM2.5 and HCC risk. However, we applied established 
spatial interpolation methods to estimate a  PM2.5 expo-
sure model using a nationwide network of EPA monitors. 
Ambient  PM2.5 exposure was assessed using the same 
methods across all counties in the study. Further, spatially 
interpolated  PM2.5 prediction surfaces of similar spatial 
resolutions, as well as spatiotemporal exposure models 
created using the EPA monitors used in our study, have 
been predictive of cancer risk in previous epidemiologic 
studies [35, 71–73]. Similar positive associations for 
 PM2.5 and liver cancer were observed in individual-level 
epidemiologic studies [9, 10]. Although we did not have 
information on residential history and could not estimate 
long-term historical  PM2.5 exposure, cases lived in coun-
ties where the majority of residents stayed in the same 
home between 1995 and 2000, and results were similarly 
positive after stratifying by county-level residential mobil-
ity. Residual confounding due to lack of information on 
individual-level risk factors for HCC, such as alcohol 
consumption and chronic HCV infection, is possible. 
However, we were able to adjust for individual-level age, 
sex, race, year of diagnosis, and SEER registry, as well as 
county-level information on known and suspected HCC 
risk factors, including heavy alcohol consumption, smok-
ing, obesity, diabetes, and socioeconomic factors. We also 
adjusted for urbanicity as a proxy for HCV prevalence 
and percentage of foreign-born individuals as a proxy for 
HBV prevalence in our analyses. HBV may not be a strong 
confounder of the association as it was not associated with 
 PM2.5 in previous research [9]. Although areas with a high 
prevalence of HCV, which is the major risk factor for liver 
cancer in the U.S., have coincided with areas character-
ized by high  PM2.5 levels, our results were adjusted for 
population density and socioeconomic factors, which are 
associated with HCV prevalence [9, 42]. We also adjusted 
for county-level obesity and diabetes, major risk factors for 
HCC in the U.S. that have exhibited rural/urban variations 
and associations with  PM2.5 [74, 75].

Strengths of our study include the large sample size of 
confirmed HCC cases from SEER population-based cancer 
registries covering a substantial proportion of the U.S. popu-
lation. We conducted an objective location-based exposure 
assessment utilizing a spatial  PM2.5 model incorporating 
 PM2.5 concentrations measured at over 1,000 U.S. EPA AQS 
monitors. The study area includes counties located across 
the contiguous U.S. characterized by a wide range of  PM2.5 
levels. We also evaluated potential confounding and effect 

modification using individual- and county-level information 
from many objective data sources including SEER and the 
U.S. Census Bureau.

In conclusion, results from the first prospective analysis 
in the U.S. suggest that higher ambient  PM2.5 exposure may 
be an important risk factor for HCC in this country. Future 
research examining this association using long-term per-
sonal  PM2.5 exposure measures and individual-level HCC 
risk factors is warranted to confirm these findings.
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