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measuring pesticide exposure using self-reported exposure, 
occupation, job-exposure matrices, or geographic residence 
demonstrated inconsistent results. These studies were lim-
ited by exposure assessment methods, lack of confounder 
information, minimal case confirmation, selection bias, 
and/or over-adjustment.
Conclusions There is mixed evidence suggesting a possi-
ble association between specific pesticides and HCC risk, 
with the strongest evidence observed in biomarker-based 
studies. In particular, organochlorine pesticides, includ-
ing DDT, may increase HCC risk. Future research should 
focus on improved pesticide exposure assessment methods, 
potentially incorporating multiple approaches including 
biomonitoring while considering the chemicals of interest, 
historical exposure to address latency periods, and examin-
ing specific chemicals and exposure pathways.

Keywords Liver cancer · Hepatocellular carcinoma · 
Pesticides · Epidemiology · Review

Abstract 
Purpose To review the epidemiologic literature examin-
ing pesticide exposure and liver cancer incidence.
Methods A search of the MEDLINE and Embase data-
bases was conducted in October 2015. Eligibility criteria 
included examining hepatocellular carcinoma (HCC) or 
primary liver cancer, pesticides as an exposure of interest, 
and individual-level incidence. The review was performed 
according to Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines.
Results Forty-eight papers were assessed for eligibility 
and 15 studies were included in the review. The majority of 
studies were conducted in China and Egypt (n = 8), used a 
case–control design (n = 14), and examined HCC (n = 14). 
Most studies showed no association between self-reported 
and/or occupational exposure to pesticides and liver cancer 
risk. Six studies demonstrated statistically significant posi-
tive associations, including three biomarker-based studies 
(two using pre-diagnostic sera) that reported higher serum 
levels of dichlorodiphenyltrichloroethane (DDT) were 
associated with increased HCC risk. Studies indirectly 
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Introduction

Primary liver cancer is the sixth most common cancer in 
the world and the second leading cause of cancer-related 
death [1]. Approximately 70–85% of primary liver cancer 
cases are hepatocellular carcinoma (HCC) [2]. The second 
most common histology is intrahepatic cholangiocarcinoma 
[3]. Over 80% of HCC cases occur in East Asia and sub-
Saharan Africa [4]. Age-adjusted liver cancer incidence 
in China in 2012 was 33.7 per 100,000 among males and 
10.9 per 100,000 among females [1]. In the U.S., HCC is 
the most commonly occurring type of primary liver cancer 
and is increasing in incidence [5]. Between 2000 and 2005 
and 2006–2012, age-adjusted HCC incidence in the US 
increased from 7.5 to 10.0 per 100,000 among males (33% 
increase; p < 0.00001), and from 2.1 to 2.7 per 100,000 
among females (27% increase; p < 0.00001) [6]. The major-
ity of HCC risk factors contribute to carcinogenesis by pro-
moting the formation and progression of cirrhosis [7]. In 
parts of Asia and sub-Saharan Africa, predominant risk fac-
tors include chronic hepatitis B virus (HBV) infection and 
exposure to aflatoxin, a mycotoxin produced by the Asper‑
gillus fungus forming on foods in damp conditions [8]. In 
Japan and Egypt, the major risk factor is chronic hepatitis 
C virus (HCV) infection [3]. Major risk factors in the U.S. 
and Europe include chronic HCV infection, heavy alcohol 
consumption (≥3 more drinks per day), and metabolic syn-
drome [3, 9, 10]. Other risk factors include obesity, dia-
betes, non-alcoholic fatty liver disease (and non-alcoholic 
steatohepatitis), and cigarette smoking; coffee and tea con-
sumption may be protective [11–16]. However, between 15 
and 50% of HCC cases have no established risk factors [4].

Pesticides and liver cancer

Pesticides are chemicals used to destroy, mitigate, pre-
vent, or repel pests such as insects, mice, weeds, fungi, and 
microorganisms. Pesticides can be delineated into func-
tional groups (e.g., insecticides) according to the organisms 
they control, or chemical classes (e.g., organochlorines) 
according to similar chemical structures and biological 
mechanisms of action [17]. Humans are exposed to pes-
ticides via dermal contact, ingestion, and inhalation [18]. 
Occupational exposure to pesticides occurs among indi-
viduals employed in agriculture, pesticide manufacturing, 
pesticide application, and forestry; family members may 
be exposed if pesticides are introduced into the home (e.g., 
on clothing). Non-occupational exposure can also occur 
via residential use or dietary ingestion from contaminated 
drinking water and food [17, 19]. Residential proximity to 
agricultural pesticide applications is an important source of 
ambient environmental exposure, where pesticides applied 
from the air and ground may drift from intended sites 

[20, 21]. Pesticides are metabolized in the liver and are 
hypothesized to contribute to liver carcinogenesis through 
mechanisms of cell adhesion alterations, oxidative stress, 
genotoxicity, tumor promotion, immunotoxicity, and hor-
monal action [22–25]. Experimental studies have shown 
that exposure to dichlorodiphenyltrichloroethane (DDT), an 
organochlorine insecticide widely used in the mid-twenti-
eth century, and its metabolite, dichlorodiphenyldichloro-
ethylene (DDE), lead to the development of HCC and other 
liver tumors in rodents [26–28]. However, results from epi-
demiologic studies of pesticide exposure and liver cancer 
mortality in humans have been inconsistent [29–37].

Liver cancer is a significant and growing public health 
burden and a substantial number of cases are unexplained 
by known risk factors. A growing body of literature has 
examined pesticide exposure as a potential environmen-
tal factor related to liver cancer. However, to date, the lit-
erature has not been synthesized. Inconsistent results from 
epidemiologic studies may be due to methodological limi-
tations such as selection bias. Importantly, it is difficult 
to reconcile results of studies that used different exposure 
assessment methods (e.g., biomarkers vs. self-report). The 
purpose of this review was to summarize the current epide-
miologic literature examining the association between pes-
ticide exposure and liver cancer and to interpret results in 
light of these challenges.

Methods

Search strategy

The review was performed according to Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines [38]. The MEDLINE (January 1966 
to October 2015) and Embase (1980 to October 2015) data-
bases were searched for studies. In MEDLINE, the follow-
ing terms were searched as exploded MeSH terms and in 
all fields (e.g., title and abstract): (liver neoplasms) and 
(agrochemicals OR environmental exposure OR rural pop-
ulation OR rural health) AND humans [MeSH] AND (risk 
OR epidemiologic studies OR incidence). In Embase, the 
following terms were searched as exploded Emtree terms: 
‘liver cancer’ AND (‘environmental chemical’ OR ‘envi-
ronmental exposure’ OR ‘rural area’ OR ‘rural population’) 
AND ‘human’ AND (‘risk’ OR ‘observational study’ OR 
‘incidence’ OR ‘prospective study’ OR ‘controlled study’ 
OR ‘cohort analysis’). The Embase search was executed 
as broadly as possible (mapping to Emtree, searching free 
text in all fields, exploding using narrower Emtree terms). 
For both database searches, limits for humans, English lan-
guage, and original research were applied.
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Study selection

After combining studies from the MEDLINE and Embase 
searches, duplicates were removed and studies were 
screened by title and abstract for relevance. One review 
paper was removed during screening as it was not filtered 
during the database searches. Inclusion and exclusion 
criteria for this review were determined a priori by the 
authors. Full-text papers were evaluated according to the 
following eligibility criteria for inclusion into the review: 
the outcome of interest was HCC or primary liver cancer; 
an exposure of interest was pesticides (including proxies 
for exposure); and the study investigated individual-level 
risk of developing the outcome. Studies examining cancers 
other than liver were not considered due to internal validity 
concerns (i.e., inclusion of studies with adequate statisti-
cal power to detect an association and that ascertained liver 
cancer risk factors to assess potential confounding). All 
cited references in each evaluated paper were also exam-
ined for inclusion into the review. Among studies satisfy-
ing all eligibility criteria, the following information was 
extracted: study design, time period, sample size, source 
population, outcome, case confirmation, reference group, 
matching factors, exposure metric(s), measures of associa-
tion, confounders, and effect modifiers. Potential sources of 
bias (e.g., selection) were evaluated for each study. Unad-
justed odds ratios (ORs) and 95% confidence intervals (CIs) 
were calculated for five studies not reporting these results, 
but providing sufficient information for their calculation 
[39]. All exposure metrics used in each study are listed in 
Table  1. Results from each study included in the review 
are shown in Table 2. Among studies using multiple expo-
sure metrics, one primary result is reported for each study 
in Table 2. Reporting of the primary result was performed 
according to the following order determined by quality and 
relevance of the exposure metric to pesticide exposure and/
or scientific evidence supporting an association with liver 
cancer: DDT if measuring multiple organochlorine pes-
ticides in biospecimens; self-reported pesticide exposure 
(overall); employment in agricultural occupation/job title 
(the occupation more relevant to pesticide exposure was 
reported, e.g., farmworker vs. farm manager); employment 
in agriculture industry. Results regarding specific pesticide 
chemical classes are reported in the text. Issues affecting 
internal validity (i.e., case confirmation, confounding, over-
adjustment, and selection bias) as well as effect modifica-
tion are reported.

Results

A total of 1,262 studies were screened (Fig.  1) and after 
exclusions, 48 full-text papers were assessed for eligibility. 

After the exclusions described above, 15 studies were 
included in the review (Table  1) [40–54]. Most studies 
were conducted in China (n = 4) and Egypt (n = 4). The 
majority of studies used a case–control design (n = 14 
total; n = 12 retrospective; n = 2 prospective) and examined 
incident HCC as the outcome (n = 14). Most studies con-
firmed diagnoses, including via histology, imaging (e.g., 
ultrasonography), elevated alpha-fetoprotein (AFP) lev-
els, and clinical examination. Most studies evaluated more 
than one measure of pesticide exposure such as job title in 
addition to self-reported pesticide exposure; results among 
these studies were inconsistent. While a majority of stud-
ies showed no association between pesticide exposure and 
liver cancer (n = 9; 60%), six studies (40%) reported sta-
tistically significant positive associations between pesti-
cide exposure and liver cancer with ORs ranging between 
2.19 and 4.07 (Table 2). These studies were conducted in 
China and Egypt. One study reported a statistically sig-
nificant protective effect of employment in the agriculture 
industry, although there was no adjustment for major risk 
factors [44]. The strongest evidence for an association was 
observed among three biomarker-based studies (two of 
which were prospectively assessed) conducted in China 
directly measuring organochlorine pesticides in serum and 
demonstrating statistically significant linear trends with 
increasing DDT levels and increasing HCC risk [48, 49, 
54].

DDT and other organochlorine pesticides

Biomonitoring

Three biomarker-based studies in China measured serum 
organochlorine pesticides and demonstrated statistically 
significant positive associations with HCC risk, with 
adjusted ORs ranging between 2.96 and 4.07 for DDT 
(Table 2), adjusting for variables including age, sex, hepa-
titis B surface antigen (HBsAg), and hepatitis C virus anti-
body (anti-HCV) [48, 49, 54]. Two of the three studies 
assessed exposure using sera preceding diagnosis [48, 49], 
while one study assessed exposure after diagnosis [54]. The 
time between blood draw and HCC diagnosis was between 
0 and 17 years in McGlynn et al. [48], 1 and 7 years in Pers-
son et al.  [49], and not reported in Zhao et al. [54]. Zhao 
et al. [54] also showed statistically significant positive asso-
ciations between both DDE and hexachlorocyclohexane 
(HCH), an organochlorine pesticide, and HCC. With the 
exception of Zhao et al. [54], all of these studies confirmed 
cases (e.g., via histology). Odds ratios for serum DDT and 
HCC risk increased between 39 and 65% after adjustment 
for confounders in two studies [48, 49]. Although Pers-
son et al. [49] did not adjust for HCV, McGlynn et al. [48] 
showed that HCV was not a significant risk factor in a 
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low-HCC rate region in China. McGlynn et  al.  [48] and 
Persson et al.  [49] did not ascertain aflatoxin information, 
but cited previous research demonstrating low aflatoxin 
levels in the study area and no statistically significant asso-
ciation between corn consumption and HCC risk. Although 
two studies used population-based controls matched on 
major risk factors [48, 49], one study used hospital-based 
controls [54], representing a potential source of selection 
bias. A statistically significant interaction was observed 
between DDT and DDE in Zhao et  al.  [54] (interaction 
p = 0.001) and McGlynn et  al.  [48] (p = 0.042), where 
higher HCC risk was associated with increasing serum 
DDT and decreasing serum DDE. Zhao et  al.  [54] dem-
onstrated higher serum DDT levels were associated with 
increased HCC risk among those with HBV (p = 0.001), not 
heavily consuming alcohol (p = 0.001), diabetes (p = 0.01), 
higher serum aflatoxin levels (p = 0.005), higher serum 
polyaromatic hydrocarbon levels (p = 0.0005), and higher 
serum HCH levels (beta isomer; p = 0.0096).

Self‑reported pesticide exposure

Cordier et al.  [43] interviewed participants from hospitals 
in Vietnam regarding occupational exposure to pesticides. 
Self-reported exposure to ≥30  L/year of organochlorine 
pesticides (adjusted OR 4.8, 95% CI 0.9, 25.1) compared 
to none is suggestive of an association with HCC among 
males in Vietnam, adjusting for age, hospital, place of resi-
dence, HBsAg, and alcohol consumption [43]. Over-adjust-
ment may have occurred as Cordier et al. [43] matched on 
a variable correlated with pesticide exposure (place of resi-
dence), potentially biasing results towards the null. Usage 
of hospital-based controls represents a potential source of 
selection bias.

Residential history

VoPham et  al.  [53] assessed pesticide exposure by com-
bining residential ZIP Codes with a pesticide exposure 
database in a geographic information system (GIS) in the 
U.S. ZIP Code-level organochlorine pesticide exposure 
≥14.53 kg/km2 compared to <14.53 kg/km2 (adjusted OR 
1.87, 95% CI 1.17, 2.99) was associated with a statisti-
cally significant increase in HCC risk among individu-
als residing in agriculturally intensive areas in the U.S., 
adjusting for liver disease and diabetes and stratifying by 
the matching factors of age, sex, race, duration of Cali-
fornia residence, and year [53]. VoPham et  al.  [53] did 
not have access to individual-level occupation, a potential 
confounder. There was a statistically significant interaction 
between ZIP Code-level organochlorine pesticide expo-
sure and sex (p = 0.0075), where pesticide exposure was 
associated with a statistically significant increase in HCC Ta
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risk among males, but no association was observed among 
females [53].

Other pesticides

Self‑reported pesticide exposure

Cordier et al. [43], a previously referenced study, found that 
self-reported exposure to ≥30  L/year of organophosphate 
pesticides (adjusted OR 4.7, 95% CI 1.1, 20.1) as well as 
other pesticides (adjusted OR 4.0, 95% CI 0.3, 47.0) com-
pared to none suggested an association with HCC among 
males in Vietnam, although the sample size was small.

Job‑exposure matrices

Ezzat et  al.  [45] estimated exposure using a job-exposure 
matrix (JEM), in addition to collecting self-reported infor-
mation regarding occupational history, pesticide exposure, 
and agricultural activities in Egypt. Several selected pes-
ticide chemical classes demonstrated statistically signifi-
cant positive associations with HCC among males in rural 
Egypt, including carbamate pesticides (adjusted OR 2.9, 
95% CI 1.4, 5.8) and organophosphate pesticides (adjusted 
OR 2.7, 95% CI 1.3, 5.3), adjusting for age, HCV RNA 
(ribonucleic acid), and HBsAg [45]. Regarding potential 
over-adjustment, Ezzat et  al.  [45] matched on rural/urban 
residence, although results were stratified by residence and 

sex. Controls were recruited from a hospital orthopedic 
department. Effect modification by sex was reported, where 
occupational exposure to agricultural pesticides was associ-
ated with a statistically significant increased risk of HCC 
among males in rural Egypt, but was not associated with 
HCC among females [45].

Residential history

VoPham et al. [53] (referenced earlier) reported no associa-
tion between ZIP Code-level organophosphate pesticides or 
carbamate pesticides and HCC in the U.S.

Mixed exposures and/or unspecified pesticides

Self‑reported pesticide exposure

Studies ascertaining self-reported pesticide exposure 
mostly showed no association between pesticide exposure 
and liver cancer [40, 41, 43, 45, 47]. Exposure assessment 
methods included interviews and questionnaires. However, 
Badawi et al. [41] reported pesticide exposure vs. no expo-
sure was associated with a statistically significant increased 
risk of HCC in Egypt (adjusted OR 2.19, 95% CI 1.41, 
3.43), adjusting for age, sex, occupation, smoking, fam-
ily history of cancer, schistosomiasis, and HBV (Table 2). 
Ezzat et  al.  [45] reported agricultural pesticide expo-
sure vs. never exposure was associated with a statistically 

Fig. 1  PRISMA study flow 
diagram
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significant increased risk of HCC among males in rural 
Egypt (adjusted OR 2.5, 95% CI 1.3, 5.0) (Table 2). Aus-
tin et al. [40] did not collect information regarding potential 
confounders including HCV. Badawi et al. [41] did not col-
lect information regarding HCV, which is a major HCC risk 
factor in Egypt. Many studies used hospital-based controls, 
a potential source of selection bias [40, 41, 43, 45, 47].

Job‑exposure matrices

Chang et al. [42] assessed exposure using a JEM, showing 
no association between liver cancer and ≥10 years of pesti-
cide exposure compared to never exposure among females 
in China (adjusted OR 0.54, 95% CI 0.12, 2.32), adjust-
ing for age at baseline, smoking, and alcohol consumption 
(Table 2). Metastatic liver cancer may have been included 
in the case group, as International Classification of Dis-
eases, Ninth Revision (ICD-9) code 155.2 (malignant liver 
neoplasms not specified as primary or secondary) was used 
in the case definition [42]. Information on established liver 
cancer risk factors was not collected.

Occupation and industry

Several studies ascertained occupation and industry infor-
mation from a national supplemental pension fund, inter-
views, and questionnaires [44, 46, 50–52]. Some studies 
coded occupational information using classification sys-
tems such as the International Standard Classification of 
Occupations and the International Standard Industrial Clas-
sification of All Economic Activities [44, 46, 50]. Job titles 
were typically defined as farmer, farm worker, and farm 
laborer, and industries as agriculture. Although farming 
occupation was generally not associated with liver cancer 
[46, 50, 52], Schiefelbein et  al.  [51] showed farming vs. 
never employed in farming was associated with a statisti-
cally significant increased risk of HCC in Egypt (adjusted 
OR 2.8, 95% CI 1.1, 7.2), adjusting for HBV, anti-HCV, 
schistosomiasis, cirrhosis, and blood transfusion (controls 
were matched to cases according to age and sex) (Table 2). 
Pesticide exposure defined based on working in the agri-
culture industry in Denmark was not associated with liver 
cancer (Table 2) [44].

Most of these studies confirmed diagnoses, although 
there is some potential evidence of inclusion of metastatic 
liver cancer in Dossing et al. [44]. Seven percent (n = 5) of 
randomly sampled liver cancer patients were considered 
metastatic by pathologists, but not by the Denmark Can-
cer Registry [44]. Two studies did not collect or collected 
minimal confounder information [44, 46]. Porru et al. [50] 
may have over-adjusted by controlling for area of residence. 
Several studies used hospital-based or healthy cancer center 
visitors/non-relatives accompanying patients, a potential 

source of selection bias [46, 50, 52]. Effect modification by 
HCV was reported in Soliman et  al.  [52], where farming 
occupation was associated with a statistically significant 
increased risk of HCC among individuals with HCV, but 
was not associated with HCC among those without HCV.

Residential history

VoPham et al.  [53] (referenced earlier) reported that com-
bined ZIP Code-level exposure to organochlorine, organo-
phosphate, and carbamate pesticides was not associated 
with HCC risk in the U.S. after adjustment (Table 2).

Discussion

There is some evidence to suggest a positive association 
between exposure to particular pesticides and HCC in the 
published literature to date. To the best of our knowledge, 
this is the first review summarizing the epidemiologic lit-
erature on pesticide exposure and liver cancer. While most 
studies showed null results, several demonstrated statisti-
cally significant elevations in liver cancer risk associated 
with higher pesticide exposure ascertained directly via bio-
markers or indirectly (e.g., self-report). Studies that indi-
rectly measured pesticide exposure demonstrated inconsist-
ent results, ranging from statistically significant positive 
associations to non-significant deficits in risk. The most 
convincing evidence was observed among three case–con-
trol studies directly measuring organochlorine pesticides 
such as DDT in serum (two of which were prospectively 
assessed). Aside from the possibility of chance, methodo-
logical issues likely contributed to inconsistent results, 
including pesticide exposure assessment, case confirma-
tion, confounding, over-adjustment, and selection bias.

Pesticide usage in the U.S. has declined over the past 30 
years [55], but remains a major issue in this country com-
prising 22% of the world pesticide market [56]. Worldwide 
pesticide production has continuously increased since 1940 
[57]. China is the current global leader in usage [58] and 
developing countries, such as Vietnam, have experienced 
increasing use [59]. Specific pesticides demonstrated sta-
tistically significant associations with liver cancer among 
studies included in this review, including the organochlo-
rine insecticide DDT. Broader pesticide chemical classes 
associated with increased risk of liver cancer include 
organochlorines, organophosphates, and carbamates, each 
comprised of pesticides showing carcinogenic potential 
[60–62]. Organochlorines are mostly insecticides, were 
widely used in the 1940s to 1960s, but have largely been 
banned in many countries due to adverse wildlife and 
human health effects and environmental persistence [18, 
63]. DDT was banned in China in 1983, but use continues 
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for malarial control and dicofol insecticide production [48]. 
Organophosphates and carbamates, predominantly insecti-
cides, began to increase in use following the ban of organ-
ochlorines. One-third of the insecticides used in China 
are organophosphates [64]. Both chemical classes were 
widely used in the U.S. during the 1980s and 1990s, but 
have since declined in usage replaced by more environmen-
tally friendly chemicals [65]. Many of the pesticides from 
these chemical classes (e.g., DDT) are persistent organic 
pollutants, remaining in the environment for long periods 
of time and accumulating and passing from one species to 
another through the food chain [66]. DDT bioaccumulates 
in human adipose tissue. Pesticides outside of these chemi-
cal classes may be relevant to liver carcinogenesis, but their 
effects may not have been documented due to a lack of 
environmental persistence.

The high quality of the two biomonitoring case–control 
studies using pre-diagnostic sera, in terms of adjustment 
for established risk factors and exposure assessment, bol-
ster confidence in their findings linking specific pesticides 
to HCC as direct measurement captures exposure from all 
sources [48, 49]. These studies were able to establish a 
temporal relationship as blood samples were collected prior 
to disease diagnosis. The use of biomonitoring to objec-
tively quantify exposure also minimizes particular biases 
(e.g., recall bias from self-report). Both studies demon-
strated statistically significant positive associations with 
organochlorine pesticides, including DDT. Humans are 
exposed to DDT and DDE through oral, inhalation, and 
dermal routes [67]. Humans can directly ingest DDE pre-
sent in foods containing animal fat, especially as DDE is 
relatively more persistent than DDT [28]. Oral DDT and 
DDE exposure results in absorption by the intestinal lym-
phatic system and into portal blood. DDT and DDE are dis-
tributed in the lymph and blood to all body tissues and are 
subsequently stored in fat. DDT is initially metabolized in 
the liver to DDE and DDD (dichlorodiphenyldichloroeth-
ane). DDE and DDD are subsequently converted to DDA 
(2,2-bis(4-chlorophenyl)acetic acid), the primary urinary 
metabolite of DDT, in the liver and kidney. Conversion of 
DDT to DDE is predicted to occur slowly (<20% over 23 
years). DDE metabolism is purported to occur at a slower 
rate compared to DDT. DDT is excreted as its metabolites 
through urine, feces, semen, and breast milk [67]. McGlynn 
et  al.  [48] and Persson et  al.  [49] measured serum DDT 
at study baseline, which occurred between 0 and 17 years 
preceding HCC diagnosis. These studies showed a statisti-
cally significant dose–response relationship between DDT 
and HCC risk. Zhao et al.  [54] also showed a statistically 
significant positive association, but assessed serum meas-
urements at study recruitment, which may be susceptible 
to reverse causation, especially as DDE was not associated 
with HCC in the prospective case–control studies [48, 49], 

but was associated with a statistically significant increase 
in HCC risk in this retrospective case–control study [54]. 
Although these differing results may reflect variability in 
pesticide exposure across China, with more recent expo-
sure in the Zhao et al. [54] study population, reverse causa-
tion cannot be ruled out as liver cancer is associated with 
weight loss [68], which has been linked with increases in 
DDT and DDE [69]. Since organochlorine compounds are 
stored in fat, loss of body fat may increase blood and organ 
concentrations [69]. It is not clear whether results from 
China, which has higher levels of pesticide exposure, would 
be generalizable to populations where pesticide exposure is 
relatively lower such as the U.S. For example, the highest 
serum DDT concentrations in the U.S. are lower than the 
25th percentile in Chinese studies [3, 18, 49].

Studies demonstrating a statistically significant posi-
tive association between pesticide exposure and liver can-
cer risk were conducted in China and Egypt, while the 
majority of studies with null findings were conducted in 
Europe and the U.S. The major limitation of the evalu-
ated studies was pesticide exposure assessment. Three 
studies used biomonitoring (two of which were prospec-
tively assessed), considered the gold standard exposure 
assessment method that can assess long-term exposure 
to chemicals, particularly those with long biological 
half-lives whose concentrations are not affected by dis-
ease [17, 19]. Although informative, biomonitoring has 
limitations, including inability to determine the exact 
timing and amount at initial exposure (as levels change 
over time and may not reflect the magnitude of expo-
sure), the source or route of exposure, a meaningful 
health benchmark, and difficulty in assessing exposure 
to chemicals with relatively shorter biological half-lives 
such as organophosphates and carbamates [70]. Most 
studies included in the literature review indirectly meas-
ured exposure. Proxy measures can be useful in captur-
ing exposure to pesticides without known biomarkers or 
from residential use. Farmers and those involved in pur-
chasing/using pesticides have been shown to provide reli-
able information [17]. GIS can integrate multiple expo-
sure data sources to estimate ambient pesticide exposure 
based on location [53]. However, these measures are sub-
ject to exposure misclassification due to recall bias and 
uncertain geographic context. Most studies did not exam-
ine historical pesticide exposure, which would address 
a potential latency period of 20 years documented for 
some HCC risk factors [4]. Recent exposure may be irrel-
evant to hepatocarcinogenesis. Exposure misclassifica-
tion was likely non-differential, particularly among the 
studies prospectively assessing exposure using biomoni-
toring [48, 49], using administrative data regarding geo-
graphic residence [53], occupational information from a 
pension fund [44], and studies blinding interviewers or 
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occupational physicians to case–control status [43, 46]. 
However, as many studies relied on self-report, differ-
ential exposure misclassification due to more accurate 
recall of past occupations, exposures, and residential his-
tory among cases cannot be ruled out, which may bias 
results towards or away from the null, contributing to the 
observed inconsistent results.

The majority of studies confirmed cases by histology, 
clinical examinations, imaging, elevated AFP levels, or a 
combination of these. Histological confirmation through 
biopsy or surgical resection is considered the gold standard 
[71], thus other confirmation methods may introduce mis-
classification of cases and controls. Misclassification from 
including metastatic liver cancer or non-HCC primary liver 
cancers in the case group could bias results (e.g., towards 
the null if pesticides are specifically associated with HCC 
and not other histologies or primary tumors). Prevalent 
HCC cases may differ from incident cases in their pesticide 
exposure experiences, where those with prevalent HCC 
may have survived due to relatively less pesticide exposure 
compared to incident cases [47].

Many studies did not adjust for established risk factors 
of HCC. The effect of confounding will vary according to 
geographic region, source population, and pesticide expo-
sure assessment, reflecting differences in relationships 
with confounders in addition to exposure misclassification. 
When comparing effect estimates between studies adjusting 
for confounders compared to those not/minimally adjust-
ing, several variables appear to exhibit strong confounding, 
particularly liver disease (HBV, HCV, and/or cirrhosis), 
alcohol consumption, age, and sex.

Over-adjustment, or controlling for variables highly cor-
related with the exposure of interest, may have affected 
results. Pesticide exposure is a largely rural phenomenon, 
as agricultural activities are more common in less densely 
populated areas [19]. Adjustment for variables that are 
inherently geographic, such as rural or urban residence, 
may produce comparable cases and controls, but may con-
sequently impact results from measures designed/intended 
to capture the effect of pesticide exposure. For example, 
over-adjustment may have biased some results towards the 
null as pesticide use is expected to be more prevalent in 
rural areas, manifest in some studies matching on/adjust-
ing for area of residence [43, 50]. However, several stud-
ies showed statistically significant results despite adjust-
ment for/matching on geography-related variables [43, 45, 
48, 49]. Badawi et al. [41] adjusted for farming occupation 
and pesticide exposure in the same multivariable model. 
These wide-ranging results highlight differential impacts of 
potential over-adjustment depending on pesticide exposure 
assessment and the study area. For example, rural–urban 
demarcations used in some studies may not accurately 
reflect pesticide exposure practices, obscuring variability 

that may exist in pesticide use across particular study areas. 
The effect of over-adjustment should be considered in 
future research.

Many studies used hospital controls, representing a 
potential selection bias where conditions for admission and 
other cancers (e.g., bladder cancer [40]) may share pesti-
cide exposure as a risk factor with HCC and bias results 
towards the null (assuming pesticides increase liver cancer 
risk). For example, Porru et al. [50] included hospital-based 
controls admitted for issues primarily related to the genito-
urinary, digestive, and circulatory systems. As bladder can-
cer, a genitourinary issue, has been linked with pesticide 
use [72], results may have been biased towards the null.

Future research should harness the advantages of mul-
tiple pesticide exposure assessment methods. Important 
considerations include historical exposure reconstruction 
to address latency periods, and evaluation of multiple and 
specific pesticides as well as multiple relevant sources 
and pathways (e.g., occupation, residential use, residen-
tial proximity to agricultural pesticide applications, and 
diet). Biomonitoring studies should consider pharma-
cokinetic variability in exposure assessment. Single bio-
marker measurements are subject to exposure misclassifi-
cation, and including information regarding birth cohort, 
body mass index, and weight gain as surrogates for expo-
sure onset and individual differences in absorption and 
excretion, respectively, in statistical analyses may reduce 
misclassification [73]. Additional information to consider 
includes diet, health conditions (e.g., thyroid disease), 
lactation, medications, metabolizing enzymes, occupa-
tion, and residence. Sequential longitudinal biomarkers 
can be obtained to determine secular trends affecting 
pharmacokinetic variability. Practical issues regarding 
biomonitoring should be considered, including invasive-
ness of collection, implementing quality assurance/con-
trol measures, and collection from sensitive populations 
such as children [74]. Given suggestive associations in 
some studies, future research should focus on specific 
pesticides, such as DDT, and pesticides from particular 
chemical classes including organochlorines, organophos-
phates, and carbamates, as well as others that may have 
similar biological mechanisms of action to any of these 
classes [89]. Focusing on individuals with an opportunity 
for exposure can allow for detecting health effects that 
would be rarer and more difficult to observe in the gen-
eral population. For example, agricultural pesticide use is 
more common in rural areas. Closer examination of effect 
modification is warranted, including between pesticide 
exposure and HCC risk factors such as sex, alcohol con-
sumption, diabetes, HCV, and HBV. Obesity and diabe-
tes are continuing to increase in prevalence, particularly 
in developing countries, which has important implica-
tions especially if there is a true synergistic association 
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between diabetes and pesticide exposure [3, 54]. Results 
from studies utilizing multiple pesticide exposure met-
rics and/or examining multiple chemicals that were not 
reported in Table 2 should be examined [40, 41, 43–50, 
52–54]. For example, Ezzat et  al.  [45] examined dithi-
ocarbamate fungicides and bridged diphenyl acaricides. 
Anticipated National Institutes of Health-funded research 
includes two nested case–control studies conducted in the 
U.S. and Norway measuring 11 organochlorine pesticides 
using blood samples collected between the 1960s and 
1970s [75]. Although this review only included published 
studies, the overall null findings suggest the absence of a 
publication bias in favor of statistically significant posi-
tive associations. Studies that examined multiple cancer 
outcomes were excluded (n = 11). Excluding such stud-
ies may be viewed as a potential limitation as most were 
of prospective designs and thus less susceptible to cer-
tain biases compared to case–control studies (e.g., retro-
spective exposure assessment). However, as these stud-
ies were limited with respect to internal validity-related 
issues in statistical power (liver cancer is a rare outcome) 
and lack of adjustment for potential confounders critical 
to our association of interest, we a priori determined to 
exclude them from our review.

In summary, there is some evidence to suggest a 
positive association between particular pesticides and 
HCC. The most convincing evidence was observed in 
three studies directly measuring serum pesticide levels, 
although one of these studies used post-diagnostic sera 
and results may be subject to reverse causation. Specific 
pesticides, including the organochlorine DDT, dem-
onstrated statistically significant positive associations 
with HCC. While many studies showed no association, 
these were largely limited by indirect pesticide exposure 
assessment methods likely resulting in exposure misclas-
sification, minimal case confirmation, lack of adjustment 
for confounders, over-adjustment, and/or selection bias. 
Given the high prevalence of pesticide exposure in geo-
graphic areas with high HCC incidence and the high pro-
portion of HCC cases in the U.S. that occur among those 
with no established risk factors, it is important to deter-
mine whether pesticides play a role in hepatocarcinogen-
esis. Future research should focus on improving pesticide 
exposure assessment, considering historical exposure, 
multiple pesticide exposures and exposure pathways, and 
the impact of specific organochlorine, organophosphate, 
and carbamate pesticides.
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