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Abstract

Purpose  Germline mutations in tumour suppressor genes
cause various cancers. These genes are also somatically
mutated in sporadic tumours. We hypothesized that there
may also be cancer-related germline variants in the genes
commonly mutated in sporadic breast tumours.

Methods After excluding the well-characterized breast
cancer (BC) genes, we screened 15 novel genes consistently
classified as BC driver genes in next-generation sequencing
approaches for single nucleotide polymorphisms (SNPs).
Altogether 40 SNPs located in the core promoter, 5'- and
3'-UTR or which were nonsynonymous SNPs were geno-
typed in 782 Swedish incident BC cases and 1,559 matched
controls. After statistical analyses, further evaluations
related to functional prediction and signatures of selection
were performed.
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material, which is available to authorized users.
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Results TBX3 was associated with BC risk (rs2242442:
OR=0.76, 95% CI 0.64-0.92, dominant model) and with
less aggressive tumour characteristics. An association with
BC survival and aggressive tumour characteristics was
detected for the genes ATR (rs2227928: HR=1.63; 95%
CI 1.00-2.64, dominant model), RUNXI (rs17227210:
HR =3.50, 95% CI 1.42-8.61, recessive model) and TTN
(rs2303838: HR=2.36; 95% CI 1.04-5.39; rs2042996:
HR=2.28; 95% CI 1.19-4.37, recessive model). According
to the experimental ENCODE data all these SNPs them-
selves or SNPs in high linkage disequilibrium with them
(*>0.80) were located in regulatory regions. RUNXI and
TTN showed also several signatures of positive selection.
Conclusion The study gave evidence that germline vari-
ants in BC driver genes may have impact on BC risk and/
or survival. Future studies could discover further germline
variants in known or so far unknown driver genes which
contribute to cancer development.

Keywords Breast cancer - Driver genes - Germline
variants - Case—control study - Single nucleotide
polymorphism

Introduction

Breast cancer (BC) is the most frequent cancer among
women in both developing and developed regions of the
world. In 2012, around 522,000 women died due to BC
and another 1.67 million new cancer cases were diag-
nosed worldwide [1, 2]. About 5-10% of women with
a diagnosis of BC do have a family history of BC, which
is a known risk factor for this disease [3]. Breast tumours
can be caused by germline variants in tumour suppressor
genes like TP53, which may also be somatically mutated
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in sporadic tumours [4]. To identify somatic mutations and
to determine genes which are critical in the development
of human cancer, the International Cancer Genome Con-
sortium (ICGC) was launched. The first spectra of somatic
mutations in human protein-coding genes in BC were pub-
lished in 2006 and 2007 [5, 6]. Around 90% of BC tumours
are caused by somatic mutations, so-called driver muta-
tions, which initiate the carcinogenic process [7-9]. To
identify possible driver genes in sporadic breast tumours a
number of studies using next-generation sequencing were
published in 2012 [10-13]. However, it was not investi-
gated, whether the driver genes could also contain inherited
variants, which influence the development of cancer. Thus,
the aim of this study was to identify germline variations
in potential driver genes which influence BC risk and/or
survival.

Materials and methods
Study population

The present study was performed using a population-
based Swedish cohort consisting of 782 prospectively
collected cases and 1,559 age-and gender-matched con-
trols from the Visterbotten intervention project (VIP), the
mammary screening project (MSP) and from the Depart-
ment of Oncology at the Norrlands University Hospi-
tal in Umed. Controls were matched with cases by age at
baseline (6 months) and time of sampling (+2 months).
Blood samples were collected from an ethnically homog-
enous population living in Umea (North Sweden) and its
surroundings between January 1990 and January 2001
[14]. Prospective cases were identified from the cohorts by
record linkage to the regional cancer registry. Date and the
reason of death were collected until 30 January 2012 from
the Swedish population register while clinical data were
enquired from the registry managed by the Northern Swe-
den Breast Cancer Group (Table 1).

All participants gave informed consents to the use
of theirs samples for research purpose. The study was
approved by the ethical committees of the participating
institutes.

Gene/SNP selection

We focused on genes described to carry BC driver muta-
tions in at least two of the following publications: Banerji
et al. [10], Ellis et al. [11], Shah et al. [12], Stephens et al.
[13]. We were mainly interested in genes not previously
reported as BC driver genes, consequently well-known and
intensively studied genes, such as BRCA1, BRCA2, TP53
and PTEN, were excluded from the study. SNP selection
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Table 1 Characteristics of breast tumours at the time of diagnosis

Characteristics Samples
Cases/controls 782/1559
Age at diagnosis, mean + SD (years) 58+8
Range (years) 30-86
Estrogen receptor (ER) No. (%)
Positive 402 (51.41)
Negative 133 (17.01)
Missing 247 (31.58)
Progesterone receptor (PR)
Positive 283 (36.19)
Negative 214 (27.37)
Missing 285 (36.45)
Estrogen/progesterone receptor
ER+/PR+ 228 (29.16)
ER+/PR— 71 (9.08)
ER—/PR+ 12 (1.53)
ER—/PR— 114 (14.59)
Missing 357 (45.65)
Tumour size
<2cm 499 (63.81)
>2 cm 228 (29.16)
Missing 055 (7.03)
Lymph node status
Positive 221 (28.26)
Negative 469 (59.97)
Missing 92 (11.76)
Distant metastases
Positive 13 (1.66)
Negative 759 (97.06)
Missing 10 (1.28)
Stage at diagnosis
0 2(0.26)
I 405 (51.79)
I 325 (41.56)
111 26 (3.32)
v 15 (1.92)
Missing 9 (1.15)
Histological grade
1 159 (20.33)
2 357 (45.65)
3 225 (28.77)
Missing 41 (5.24)

was done by Ensembl browser release 69 (http://www.
ensembl.org/index.html). We emphasized regions with
known functions like core promoter, 5'- and 3'-untranslated
regions (UTRs) and nonsynonymous SNPs which were
described in well-verified transcripts marked in Ensembl
as HAVANAmanually curated gold transcripts and con-
sensus coding sequences (CCDSs). Haploview was used
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to select SNPs on the basis of linkage disequilibrium (LD)
(*>0.80) to minimize the number of SNPs to be geno-
typed. An additional inclusion criterion was defined by a
minor allele frequency (MAF) >10%, with the exception
of ARID2 (rs7570492), MAP3K13 (rs13091808), MLL2
(rs11168827) and MLL3 (rs1323116, rs3735156). CBFB
was excluded as it did not have any functional SNPs fulfill-
ing our selection criteria. Reported driver genes with SNPs
fulfilling our selection criteria are listed in Online Resource
L.

Genotyping

Either the KASPar SNP Genotyping System (KBioscience,
Hoddesdon, Great Britain) or the TagMan SNP Genotyping
Assay (Life Technologies, Darmstadt, Germany) was used.
Both are based on an allele-specific PCR. Master Mix for
the KASPar assays was prepared according to the KBiosci-
ence’s conditions and products, whereas 5x HOT FIREPol
Probe qPCR Mix Plus from Solis BioDyne (Tartu, Estonia)
was used for the TagMan assays. In case an assay could not
be designed, an assay for a highly linked SNP (*>0.80)
was ordered instead. PCRs were performed in a 384-well
plate format using a total reaction volume of 4 ul per well.
Endpoint genotype detection was performed using the
ViiA7 Real-Time PCR System (Applied Biosystems, Weit-
erstadt, Germany).

Statistical analysis

The »* test was used to test the observed genotype fre-
quencies in the controls for Hardy—Weinberg equilibrium
(HWE). To estimate the associations between genotypes
and BC risk, odds ratios (ORs) and 95% confidence inter-
vals (Cls) were calculated by logistic regression (PROC
LOGISTIC, SAS Version 9.2; SAS Institute, Cary, NC).
Relative risk of death was estimated as hazard ratio (HR)
(PROC PHREG, SAS Version 9.2, SAS Institute, Cary,
NC) via Cox regression. Polymorphisms that showed sig-
nificant differences in BC-specific survival in the unad-
justed model were analysed further by adjusting the data
for size of tumour, lymph node metastases, histological
grade and estrogen (ER) and progesterone receptor (PR)
status (PROC PHREG, SAS Version 9.2, SAS Institute,
Cary, NC). p values <0.05 were considered statistically
significant. Kaplan—-Meier method (PROC LIFETEST,
SAS Version 9.2; SAS Institute) was used to generate sur-
vival curves. To measure the differences between the sur-
vival functions among the different genotypes log-rank test
(PROC LIFETEST, SAS Version 9.2; SAS Institute, Cary,
NC) was used. To account for multiple testing, empirical p
values were generated using the permutation option in Plink
[15]. Number of permutations used was equal to 10,000.

In this prospective study, we followed the REMARK rec-
ommendations for reporting of tumour marker prognostic
studies [16].

In silico functional analyses

To increase our knowledge about the consequences of the
SNPs on protein-binding sites, chromatin structure and
promoter and enhancer strength, HaploReg (http://www.
broadinstitute.org/mammals/haploreg/haploreg.php)  was
used; RegulomeDB (http://regulome.stanford.edu/) was
utilized to gain detailed information of possible effects
on histone modification. All effects were proofed for data
in MCF7 (Michigan Cancer Foundation-7 breast cancer
cell line), T-47D (epithelial cell line derived from mam-
mary ductal carcinoma), human mammary epithelial cells
(HMEC) or MCF10A-ER-SRc (breast epithelial cell line-
estrogen receptor-src) cell lines. Effects on transcription
factor-binding sites (TFBSs) were calculated through posi-
tion weight matrices (PWM). PolyPhen/SIFT prediction
was used to evaluate a possible impact of an amino acid
change on protein structure and function (Ensemble release
75, http://www.ensembl.org/index.html). Influence of the
3'-UTR SNPs on micro-RNA binding was studied using
microSNiPer (http://epicenter.ie-freiburg.mpg.de/services/
microsniper/). All linked SNPs mentioned in HaploReg
with an 72>0.80 among the European population were
studied for their influence on promoter, enhancer or chro-
matin structure.

Signatures of selection

To gain information about the functional consequences
of the SNPS, likelihood of mutations, conservation and
recombination rate (RR) of the genes and the SNPs associ-
ated with BC risk, survival or tumour characteristics were
evaluated. Recombination rate of a specific region was
assessed in comparison to the whole chromosome. As an
estimate for conservation, phylogenetic p value (phyloP)
was used. A region is conserved if the value is >.3 and
has a positive prefix. Both variables were analysed with
the UCSC Browser (http://genome.ucsc.edu). Indication of
selective pressure was assessed by analysing first the Fixa-
tion Index (Fgp). It compares allele frequencies between
two populations. Values >0.25 indicate strong genetic dif-
ferentiation and values >0.05 moderate genetic differen-
tiation. Second, integrated haplotype score (iHs), which
determines the length of haplotypes around a SNP, was
assessed. Scores with [iHsI >2 are a proof of selection and
IiHsI >1.5 is an indication of selection; a negative score
refers to a longer haplotype for derived alleles and a posi-
tive score for ancestral alleles. The third value, Fay Wu’s H,
distinguishes between a DNA sequence evolving randomly
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and the one evolving under positive selection. Strong nega-
tive values starting at —40 are considered as a signature of
a selective sweep [17, 18]. To identify these values, hap-
lotter was used (http://haplotter.uchicago.edu). In case the
genotyped SNP was not listed, values of a highly linked
SNP (+*>0.80) were used instead.

Results

Altogether 20 SNPs in 14 potential driver genes were asso-
ciated with BC risk, survival and/or clinical and patho-
logical tumour characteristics at p <0.05 level (Tables 2, 3;
Online Resource 2 and 3).

SNPs associated with risk

Five genes were associated with BC risk (Table 2; Online
Resource 2). The genotype distribution of rs2242442
(TBX3) and rs10497520 (TTN) was significantly differ-
ent between the cases and the controls (overall p=0.01
and p=0.03, respectively). The most significant associa-
tion was observed for rs2242442 (TBX3): both heterozy-
gous and homozygous carriers of the minor allele were at
a decreased risk of BC (OR 0.76, 95% CI 0.64-0.92; dom-
inant model). Also minor allele carriers of another TBX3
SNP, rs12366395, had a decreased risk (OR 0.83, 95%
CI 0.69-1.00; dominant model). LD between these SNPs
determined by 1000 genomes was r>=0.01. Interestingly,
three of the four genotyped SNPs in TBX3 were associated
with less aggressive tumour features: rs2242442 with small
tumour size and rs8853 and rs1061651 with low histologi-
cal grade (Table 2, Online Resource 3).

Among TTN rs10497520 minor allele carriers, only the
homozygous ones were at increased risk (OR 1.96, 95%
CI 1.18-3.26). Four additional SNPs in 77N showed asso-
ciations with less favourable tumour characteristics, large
tumour size, high-grade and/or negative hormone receptor
status (Online Resource 3).

An increased risk was observed for homozygous car-
riers of two SNPs (2=0.25) in MAP3KI (rs702688 OR
1.33,95% CI 0.99-1.76; rs72758040 with OR 1.36, 95% CI
1.01-1.83). However, no association with clinical tumour
characteristics was observed for any of the eight genotyped
SNPs.

One SNP in MLL2, rs11168827, was associated
both with risk (OR 1.31, 95% CI 1.00-1.72 for homozy-
gotes), positive hormone receptor status and low grade. A
decreased risk was observed for homozygous minor allele
carriers of SF3B1 rs4685 (OR 0.73, 95% CI 0.54-0.97).
The SNP was also associated with negative lymph node
metastasis and hormone receptor status. By applying the
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permutation test, none of these associations remained sta-
tistically significant.

SNPs associated with BC-specific survival

SNPs in ARIDIB, ATR, RUNXI and TTN showed associa-
tion with BC-specific survival (Table 3; Online Resource
2). Poor survival was observed for carriers of the minor
allele of the SNPs rs73013281 (ARIDIB) and rs2227928
(ATR) (HR 1.58, 95% CI 1.02-2.45 and HR 1.63, 95% CI
1.00-2.64, dominant model), whereas for SNPs rs17227210
(RUNXI), 152303838 (TTN) and rs2042996 (TTN) poor
survival was observed only among homozygous carriers.
These results are supported by the Kaplan—Meier plots
(Fig. 1). Tumours of the ARIDIB and ATR SNP carriers
were also diagnosed at high stage. The association between
rs2227928 (ATR) and high stage remained statistically sig-
nificant after applying the permutation test (p=0.023).
Consequently, the associations of ARIDIB and ATR with
survival did not stay significant after adjustment for clini-
cal tumour characteristics (Table 4). The strength of the
associations between the RUNXI and TTN SNPs and sur-
vival remained at the same level after adjustment with
tumour size, lymph node metastasis status and grade, they
even became stronger after further adjustment with hor-
mone receptor status. However, these results should be
taken with caution because of the small numbers of the
minor homozygote genotypes and because of incomplete
hormone receptor status data (Table 1). Nevertheless, as
two additional RUNXI SNPs, rs8130963 and rs7276777,
were associated with stage and four SNPs in TTN with less
favourable tumour characteristics, a true direct or indirect
association of the genetic variation with survival cannot be
ruled out (Online Resource 3).

Functional characterization of the associated SNPs

We used HaploReg to search for SNPs in high LD
(1220.80) with SNPs associated with either BC risk,
tumour characteristics or survival and used the experimen-
tal data obtained in any mammary epithelial (tumour) cell
line (MCF7, T-47D, HMEC, MCF10A-ER-SRc) to assess
their possible functional role in breast tumourigenesis
(Online Resource 4; summarized in Table 5). All promoter
and 5'-UTR SNPs, except rs12465459 (TTN), were located
in an active promoter. According to the ENCODE data, all
these SNPs can affect chromatin structure, histone modifi-
cation, regulatory protein and/or transcription factor bind-
ing. Of the eight 3'-UTR SNPs covered by our study, five
were predicted to change the binding site for one or more
miRNAs and they all had an impact on histone modifica-
tion and transcription factor-binding sites. A possible or
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Table 3 (continued)

&

No. of No. of OR (95% CI) p value

Association with clinical parameters

p value Clinical characteristics

No. of cases No. of cases died (%) HR (95% CI)

Association with survival

Gene/SNP  Genotype

Springer

patients

patients

Group 2(%)

Group 1(%)

1.00

67 (52.76)
55 (43.31)
5(3.94)
5(3.94)

I

247 (63.50)

1.00

64 (13.68)
35 (13.89)
10 (27.78)
10 (27.78)

468
252

36

GG
AG
AA

rs2042996

1.65 (1.09-2.50) 0.02
0.97 (0.35-2.69) 0.95

0.80 (0.29-2.18) 0.66

123 (31.62)
19 (4.88)

1.04 (0.69-1.58) 0.84

3.66 (1.19-4.51) 0.01

19 (4.88)

I+1I

2.28 (1.19-4.37) 0.01

*AA vs. GG+AG 36

Histological grade

1.00

119 (55.35)
84 (39.07)

324 (64.80)

GG
AG
AA

1.50 (1.07-2.11) 0.02

152 (30.40)
24 (4.80)
24 (4.80)

1.36 (0.66-2.81) 0.40
1.17 (0.58-2.39) 0.66

12 (5.58)
12 (5.58)

*AA vs. GG+ AG

Significant values are given in bold

*Recessive model

HR hazard ratio, CI confidence interval, OR odds ratio

probably damaging functional effect was predicted by Poly-
Phen for two of the six missense SNPs.

Signatures of selection

TTN was the most noticeable gene in this study. Four out
of six SNPs are conserved and all six SNPs show either
signatures of a strong (Fgr>0.25) or moderate (Fgp>0.05)
genetic drift and an evolution under positive selection (Fay
Wu’s H<—40) (Online Resource 5). In addition, the iHs
score (—1.5) for s10497520 is an indication for a selection
based on the derived allele. All these values lead to a strong
indication of a functionality of the genetic variation in TTN.
Furthermore, rs8130963 (RUNXI) is significant among
three values. Fay Wu’s H=-56 indicates an evolution
under positive selection which is supported by Fgr=0.346
(CEU vs. YRI) and Fgr=0.054 (CEU vs. ASN).

Discussion

Our aim was to identify cancer-related germline variants in
novel genes classified as potential BC driver genes in four
studies published in 2012. After genotyping and statistical
analysis ATR, RUNXI, TBX3 and TTN became the focus
of the study. These potential driver genes carry germline
variants with a statistical and functional impact and could,
therefore, be potential predisposing genes with an influ-
ence on the development of BC. Whereas SNPs in TBX3
were associated with less aggressive tumour markers, SNPs
in ATR, RUNXI and TTN showed an opposite association.
All associated or highly linked SNPs (+2>0.80) affected
gene regulation according to the experimental ENCODE
data. RUNXI and TTN showed also signatures of positive
selection.

Ataxia Telangiectasia mutated and Rad3-related (ATR),
together with Ataxia Telangiectasia mutated (ATM), plays
an important role in cell cycle regulation by transducing
DNA damaging signals [19]. Thus, ATR has been studied
as a target for cancer therapy [20]. In the present study, two
missense SNPs rs2227928 and rs2229032 were genotyped.
These SNPs were also identified in Finnish and French
breast/ovarian cancer families [21, 22], however, at a sim-
ilar frequency as in the healthy control populations. Both
SNPs are predicted to be benign/tolerated according to
PolyPhen/SIFT. However, rs2227928 captures rs6768093
(r*=0.99), which is located at the active promoter of ATR.
Rs2227928 was associated with high stage, large tumour
size and positive regional lymph node metastases, conse-
quently poor survival was observed. Several SNPs which
are linked to rs2227928 with an 7% between 0.85 and 0.97
are located in the PLS1 (Plastin 1) gene. The encoded actin-
binding protein has been found at high levels specifically
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Fig. 1 Kaplan—Meier plots of SNPs associated with breast cancer-specific survival

in small intestine [23]. An association with BC is so far
unknown. The significant Fgp value (0.076 EUR vs. YRI)
for 152227928 could be an indication of genetic hitchhik-
ing, as other values were not noticeable.

Runt-related transcription factor 1 (RUNX]I) is a tumour
suppressor which is highly expressed in breast epithe-
lial cells [24]. Downregulation of RUNXI is part of a
17-gene signature that has been suggested to predict BC
metastasis [25]. RUNXI may stimulate E-cadherin and
inhibit epithelial-to-mesenchymal transition [26]. How-
ever, how RUNXI promotes BC development has to be
clarified. In the present study, three out of the four geno-
typed SNPs were associated with high stage (rs8130963,
1s7276777) or poor survival (rs17227210). All these SNPs
are located in introns and were genotyped instead of poten-
tially functional SNPs, rs72813661 in the active promoter,
rs13051066 in the 3-UTR and rs56045941 in the 5’-UTR,
respectively. Rs8130963 shows a strong negative Fay Wu’s
H value of —56 and a strong genetic differentiation between
the European and African population (Fgp=0.346), which
is an indication for positive selection. Rs17227210 was
associated with poor survival before (HR 3.66, 95% CI
1.48-9.08) and after adjustment for ER, PR, T, N and

grade (HR 5.07, 95% CI 1.15-22.47). All linked SNPs are
located at a position of either a strong or a weak enhancer.
One of these, 117227231 (1'2:0.92 to rs17227210), affects
GATA3 (GATA binding protein 3) binding. As GATA3 has
already been classified as a high confident cancer driver
gene and as a possible marker for metastatic breast carci-
nomas [27, 28], the change of the GATA-binding site could
explain the poor survival associated with rs17227210.

The T-box transcription factor 3 (TBX3) is expressed
in mammary tissues and plays a context-dependent role
in mammary gland development and tumourigenesis [29].
TBX3 interacts with several major oncogenic pathways and
is overexpressed in many tumours but most commonly in
BC [30]. Recently, somatic mutations in 7BX3 have been
classified as BC driver mutations [10-13, 31, 32]. Our
study suggests an additional layer to the involvement of
TBX3 in the development of BC by showing that SNPs
are associated with protective tumour traits. The two risk-
associated SNPs rs2242442 and rs12366395 are located at
the active promoter and have an effect on the transcription
factor-binding site of STAT (signal transducer and activa-
tor of transcription). Mutations in STAT proteins, which
lead to unregulated cell proliferation, have been found in

@ Springer
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myeloproliferative disorders. However, these aspects are
not well studied in BC [33]. Gene expression of TBX3
could be influenced by the SNPs rs8853, rs1061651 and
two other 3'UTR SNPs linked to them due to their impact
on miRNA-binding sites. An association of miR-1290,
which binding is affected by rs3741698, a SNP linked to
151061651 with *=0.91, and estrogen receptor-positive
BC has been described [34]. Furthermore, TBX3 overex-
pression has been observed in primary breast tumours and
BC cell lines with higher expression in estrogen receptor-
positive tumour cells [29]. However, other publications
have described that estrogen-induced T7BX3 overexpression
results in a pool of estrogen receptor-negative cancer stem-
like cells [30].

TTN (Titin) has been intensively studied as a compo-
nent of the muscle contractile machinery [35, 36]. How-
ever, TTN seems to play a role in non-muscle cells during
chromosome condensation and chromosome segregation
[37, 38]. Furthermore, the disease rhabdomyosarcoma is
associated with Titin. Rhabdomyosarcoma can also affect
the breast, although rarely [39]. Thus, 7TN may play a
role in oncogenesis, although the biological mechanisms
need to be evaluated. In contrast, 77N is also described as
a false-positive driver gene due to mutational heterogene-
ity which dominates over true driver events [35, 40]. In our
study, six out of nine genotyped SNPs were associated with
increased risk, aggressive tumour characteristics and/or
poor survival. Three of these SNPs showed an association
with negative hormone receptor status. Two of five mis-
sense SNPs (1512463674 and rs10497520) are predicted to
cause a probably or possibly damaging amino acid change
by PolyPhen. Thus, these SNPs could have impact on the
structure and function of the protein. Beside rs12463674
and rs10497520, TTN has a large number of other missense
mutations, though phyloP estimates for 77N indicate high
conservation. For all genotyped SNPs, the values of Fgr,
Fay Wu’s H and iHS indicated strong positive selection.

Although our study provides new knowledge about
genes and mutations influencing BC risk, tumour charac-
teristics and survival certain limitations have to be con-
sidered: first, a relatively small sample size and especially
missing information on hormone receptor status decreased
the power to detect associations with genotypes; second,
the associations did not stay statistically significant after
correction for multiple testing; third, the results need to be
replicated in another population. The strengths of our study
included a population-based design, with prospectively col-
lected blood samples, long follow-up, and detailed clini-
cal data. As several SNPs within one gene were associated
with BC risk, tumour characteristics and/or survival, all of
them with functional consequences and some even with
signatures of positive selection, a true direct or indirect

@ Springer

association of the studied SNPs with BC development can-
not be ruled out.

Conclusion

Our study suggests that germline variants in driver genes
of sporadic tumours can have an impact on BC risk,
tumour characteristics and/or survival. Several SNPs in
ATR, RUNXI, TBX3 and TTN showed associations with
BC development and progression. In silico analyses pro-
vided evidence of possible functional consequences for the
associated SNPs. For TTN and RUNXI, strong signatures
of positive selection gave further insights on the functional-
ity of the SNPs. However, to verify the results on BC sur-
vival and the influence of 77N, further investigations are
necessary.
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