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Abstract

Purpose Nonsteroidal anti-inflammatory drugs (NSAIDs)

target the prostaglandin H synthase enzymes, cyclooxy-

genase (COX)-1 and COX-2, and reduce colorectal cancer

risk. Genetic variation in the genes encoding these enzymes

may be associated with changes in colon and rectal cancer

risk and in NSAID efficacy.

Methods We genotyped candidate polymorphisms and

tag SNPs in PTGS1 (COX-1) and PTGS2 (COX-2) in a

population-based case–control study (Diet, Activity and

Lifestyle Study, DALS) of colon cancer (n = 1,470 cases/

1,837 controls) and rectal cancer (n = 583/775), and

independently among cases and controls from the Colon

Cancer Family Registry (CCFR; colon n = 959/1,535,

rectal n = 505/839).

Results In PTGS2, a functional polymorphism

(-765G[C; rs20417) was associated with a twofold

increased rectal cancer risk (p = 0.05) in the DALS. This

association replicated with a significant nearly fivefold

increased risk of rectal cancer in the CCFR study

(ORCC vs. GG = 4.88; 95 % CI 1.54–15.45; ORGC vs. GG =

1.36; 95 %CI 0.95–1.94). Genotype–NSAID interactions

were observed in the DALS for PTGS1 and rectal cancer risk

and for PTGS2 and colon cancer risk, but were no longer

significant after correcting for multiple comparisons and did

not replicate in the CCFR. No significant associations

between PTGS1 polymorphisms and colon or rectal cancer

risk were observed.
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Conclusions These findings suggest that polymorphisms

in PTGS2 may be associated with rectal cancer risk and

impact the protective effects of NSAIDs.
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Introduction

Inflammation is thought to play a major role in the devel-

opment and progression of colorectal cancer. The use of

nonsteroidal anti-inflammatory drugs (NSAIDs), such as

aspirin, reduces the risk of colorectal cancer [1]. NSAIDs

inhibit the prostaglandin H synthase (PTGS) enzymes,

which convert arachidonic acid into prostaglandins. Sev-

eral prostaglandins, primarily PGE2, have been implicated

in colorectal carcinogenesis [2]. Although both PTGS

isoforms, cyclooxygenase (COX)-1 and COX-2, catalyze

the same reactions and share approximately 60 % amino

acid identity, they are encoded by distinct genes and differ

substantially in their expression and regulation [3, 4].

COX-1 is constitutively expressed and is important for

‘‘housekeeping’’ functions, whereas COX-2 is typically an

inducible enzyme expressed in cells responding to

inflammatory or proliferative stimuli [3].

Several lines of evidence indicate that COX-2 facilitates

colorectal carcinogenesis. COX-2 is overexpressed in up to

90 % of colon carcinomas and 40 % of a precursor lesion,

colorectal adenoma [5–7]. Aspirin decreases the risk of

colorectal cancers that express high levels of COX-2 but

has little effect on the risk of tumors that have little or no

COX-2 [8]. Further, in Min mice, selective inhibition of

COX-2 or deletion of the PTGS2 gene results in a sub-

stantial reduction in polyp development and tumorigenesis,

providing evidence for COX-2 involvement in carcino-

genesis that is already at the stage of precursor lesions [9].

COX-2 has also been shown to activate co-carcinogens

through oxidation [14].

There is also accumulating evidence to support the

proposal [10] that COX-1, specifically the platelet enzyme,

is involved in colorectal tumorigenesis. First, there is the

decreased incidence and mortality of colorectal cancer that

are associated with low doses of aspirin [11], doses that

selectively and persistently inhibit COX-1 in anucleate

platelets [12]. Oral low-dose aspirin (80–100 mg) produces

a transient pulse of the drug in the blood that peaks at only

1–3 lM, with a t1/2 of *20 min [13, 14]. Given that

aspirin’s IC50 for human COX-2 is *15 lM [15, 16], low-

dose aspirin is likely to give little if any prolonged inhi-

bition of COX-2 activity in nucleated cells, which readily

replace any acetylated COX-2 protein. A second observa-

tion linking COX-1 to colorectal carcinogenesis is that

knockout of the PTGS1 gene markedly decreases the

incidence of polyposis in Min mice [17]. Thus, COX-1 and

COX-2 appear to have distinct roles in colorectal carci-

nogenesis, and polymorphisms in the genes encoding these

enzymes (PTGS1 and PTGS2) might plausibly affect can-

cer risk. We have previously shown that polymorphisms

related to prostaglandin synthesis affect the risk of colo-

rectal adenoma and may modify the preventive associa-

tions with NSAID use [1, 18–22]. In the current analysis,

we investigated PTGS1 and PTGS2 polymorphisms in

relation to the risk of colon and rectal cancers and their

potential interactions with NSAID use in a large popula-

tion-based study of colon and rectal cancer risk and vali-

dated those findings in a second, independent, study. The

results indicate that a PTGS2 functional promoter variant is

reproducibly associated with a two- to fourfold increased

risk of rectal, but not colon, cancer.

Materials and methods

Study design and data collection

The analyses are based on a case/unrelated-control study of

colon and rectal cancers and a population-based case/

unaffected-sibling-control study, here restricted to non-

Hispanic whites (NHW). Methods, described in detail

elsewhere [23–27], are described briefly here. Study pop-

ulation characteristics are showed in Table 1.

Diet, Activity and Lifestyle Study (DALS) of colon

and rectal cancer populations (discovery study)

NHW colon cancer cases (n = 1,470) and controls

(n = 1,837) and rectal cancer cases (n = 583) and controls

(n = 775) were recruited from Utah, the Northern Cali-

fornia Kaiser Permanente Medical Care Program

(KPMCP), and metropolitan Minneapolis–St. Paul, Min-

nesota (colon cases only). Eligible participants were aged

30–79 years with no previous diagnosis of colorectal can-

cer, familial adenomatous polyposis, Crohn’s disease, or

ulcerative colitis. Colon cancer cases were diagnosed

between 1991 and 1994 [23], and rectal cancer cases

between 1997 and 2001 [24, 25]. Diet, physical activity,
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Table 1 Characteristics of the DALS and CCFR study populations

DALS

Colon cancer p Rectal cancer p

Controls Cases Controls Cases

(n = 1,837) (n = 1,470) (n = 775) (n = 583)

N % N % N % N %

Age NAb NAb

Mean ± SD 65.1 ± 10.3 65.1 ± 9.7 62.6 ± 10.5 62.3 ± 10.8

Location NA NA

Distal 724 49.3

Proximal 710 48.3

Rectal 583 100.0

Sex NAb NAb

Female 868 47.3 642 43.7 347 44.8 237 40.7

Male 969 52.7 828 56.3 428 55.2 346 59.3

Study site \0.001 0.51

Kaiser Northern California 695 37.8 662 45.0 449 57.9 349 59.9

Minnesota 800 43.5 566 38.5

Utah 342 18.6 242 16.5 326 42.1 234 40.1

Current NSAID usea \0.001 0.002

Yes 762 41.7 477 32.7 359 46.6 221 38.1

No 1,065 58.3 980 67.3 412 53.4 359 61.9

CCFR

Colon cancer p Rectal cancer p

Controls Cases Controls Cases

(n = 1,535) (n = 959) (n = 839) (n = 505)

N % N % N % N %

Age NAb NAb

Mean ± SD 54.6 ± 11.8 54.1 ± 11.0 52.7 ± 11.3 51.8 ± 10.1

Location NA NA

Distal 444 46.3

Proximal 515 53.7

Rectal 505 100.0

Sex NAb NAb

Female 871 56.7 505 52.7 446 53.2 216 42.8

Male 664 43.3 454 47.3 393 46.8 289 57.2

Study site 0.12 0.16

Ontario 339 22.1 193 20.1 130 15.5 79 15.6

Los Angeles 269 17.5 189 19.7 125 14.9 85 16.8

Australia 277 18.0 164 17.1 252 30.0 130 25.7

Hawaii 3 0.2 3 0.3 4 0.5 3 0.6

Mayo foundation 314 20.5 169 17.6 151 18.0 76 15.0

Seattle 333 21.7 241 25.1 177 21.1 132 26.1

Current NSAID usea 0.07 0.08

Yes 373 24.5 218 22.9 173 20.8 92 18.3

No 1,148 75.5 736 77.1 659 79.2 412 81.7

Numbers may not total to 100 % due to rounding and missing values
a Current NSAID use is defined as current, regular use three times per week for at least 1 month in the DALS and as current, regular use of at least two pills

per week for at least 1 month for the CCFR study
b NA—this was a matching factor
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smoking, anthropometry, medical history, NSAID use,

family history of cancer, demographics, race/ethnicity, and

reproductive history data were obtained by questionnaire

[23, 24, 26, 28–32]. The referent period for the study was

2 years prior to diagnosis for cases and 2 years prior to

selection for controls. NSAID use was defined as aspirin/

NSAID use at least three times per week for 1 month or

more. The colon and rectal cancer populations were

recruited separately at different time periods, but are col-

lectively referred to in this manuscript as the DALS as they

were parallel study designs.

Colon Cancer Family Registry study (validation study)

Participants were recruited to the Colon Cancer Family

Registry (CCFR) from six registry centers: University of

Hawaii, Honolulu, Hawaii, USA; Fred Hutchinson Cancer

Research Center, Seattle, Washington, USA; Mayo Clinic;

University of Southern California Consortium (Dartmouth

Medical School, University of Southern California, Uni-

versity of Colorado, University of Arizona, Cleveland

Clinic Foundation, University of North Carolina, and

University of Minnesota); Cancer Care Ontario, Toronto,

Ontario, Canada; and the University of Melbourne, Vic-

toria, Australia. Both population-based and clinic-based

ascertainment strategies were used [27], with some centers

recruiting all incident cases from population-based cancer

registries (i.e., population-based recruiting), whereas others

oversampled cases with a family history of colorectal

cancer or cases who were diagnosed at a young age (i.e.,

family-based recruiting), as described in detail previously

[27]. The current study includes only population-based

participants. All cases were interviewed within 5 years of

diagnosis; 73 % of cases were interviewed within 2 years

of diagnosis. Standardized questionnaires were used to

collect epidemiologic data from study participants on

demographic characteristics, race/ethnicity, medical his-

tory, NSAID use, family history of cancer, smoking his-

tory, selected diet, physical activity, height and weight,

and, in women only, reproductive history and hormone use.

‘‘Regular NSAID use’’ was defined as use of aspirin or

ibuprofen at least twice per week for 1 month or more [27,

33, 34]. The CCFR study used a case/unaffected-sibling-

control design restricted to NHW. Analyses of population-

based families included 1,464 cases and 2,374 unaffected

siblings after exclusion criteria were applied (see below).

Cases included probands and affected relatives diagnosed

with primary invasive colorectal cancer from 1998 to 2002.

Controls were siblings of cases without a colorectal cancer

diagnosis at the time of ascertainment. There were 1,534

sibships in our study. Because some sibships have multiple

cases and/or controls, the number of sibships can exceed

the total number of cases.

Sibships lacking either a case or an unaffected sibling

and cases for whom time-to-interview was more than

5 years were excluded. Also excluded were individuals

whose samples were not available for genotyping, who did

not have epidemiologic data and duplicate samples, or who

had missing genotypes. Informed consent was obtained

from all participants. This study was approved by the

Institutional Review Board at each CCFR site.

Genotyping

For the DALS, a linkage-disequilibrium (LD)-based tag

SNP-selection algorithm [35] was used to identify tag

SNPs (r2 = 0.90, MAF [ 4 %) representing common

genetic variation in PTGS1 and PTGS2 in the CEPH

population (Utah residents with ancestry from northern and

western Europe) [36]. We genotyped 19 polymorphisms in

PTGS1, including 13 tag SNPs, five candidate SNPs: R8 W

(rs1236913), P17L (rs3842787), R149L (rs10306140),

L237M (rs5789), and R108Q (rs5787), and one deletion

polymorphism (L15–L16del) identified previously through

sequencing [37]. PTGS2 polymorphisms included 15 tag

SNPs and two candidate SNPs from the promoter region:

-765 G[C (rs20417) and -163 C[G (rs5270). The tar-

geted polymorphisms are shown in Supplementary

Table 1. Genotype quality control and exclusion criteria

were as described [21]. To ensure adequate gene coverage,

multiple SNPs were genotyped from LD bins containing a

large number of SNPs. After genotyping was completed,

redundant SNPs were removed from the analysis based on

LD value (r2 [ 0.9) among NHW controls (Supplementary

Figure 1). The CCFR study was genotyped for six PTGS1

and eight PTGS2 SNPs to provide independent validation

of findings from the DALS. SNPs were chosen for the

validation study if preliminary analyses in the discovery

dataset resulted in an unadjusted p value \ 0.10. In addi-

tion, all candidate SNPs were genotyped in the CCFR study

unless they were monomorphic in the DALS (Supple-

mentary Table 1). The p value cutoff was determined

during the preliminary analyses of the DALS dataset and

chosen to minimize the number of false-negative SNPs

from DALS while reducing the number of SNPs to be

tested in the CCFR.

We used the IlluminaTM GoldenGate assay to genotype

blood-derived DNA in both the DALS and CCFR studies.

PTGS1 SNPs rs5789 (L237M) and rs1236913 (R8W) were

confirmed by Taqman allelic discrimination assay in the

DALS colon cancer study. The -765 G[C polymorphism

in PTGS2 (rs20417) was genotyped in the CCFR study

using a Taqman allelic discrimination assay [18]. PTGS1

rs3842787 (P17L) and the L15–L16del were genotyped by

Sanger sequencing in all studies. Two PTGS1 tag SNPs

that failed QC and three candidate SNPs with a
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MAF \ 0.2 %: R149L (rs10306140), R108Q (rs5787), and

-163 C[G (rs5270), were excluded from subsequent

analysis (Supplementary Table 1).

Statistical analysis

Main effects of single SNP

Odds ratios (ORs) and 95 % confidence intervals (CIs)

were calculated in the DALS using unconditional logistic

regression. Because of the case/unaffected-sibling-control

design for the CCFR, conditional logistic regression was

used with each sibling set treated as a matched set. All

models were restricted to NHW, as they represented

[90 % of all study populations and the tag SNP-selection

algorithm used was based on the LD structure of the CEPH

population, which has ancestry from northern and western

Europe. All models were adjusted for continuous age and

sex. DALS models were also adjusted for study site. ‘‘Main

effect’’ analyses examined the association between each

individual SNP and colon or rectal cancer risk. For each of

these analyses, likelihood ratio tests (LRTs) were from a

2-degree of freedom (df) test where genotypes were mod-

eled using indicator variables for the heterozygous and the

homozygous variant genotypes (codominant models) and

from a 1-df test where homozygous variant and heterozy-

gous genotypes were grouped for analysis (dominant

models), which was the case only for SNPs where fewer

than ten cases or controls had the homozygous variant

genotype. If fewer than five cases or controls had the het-

erozygous variant genotype, the statistical model was not

run. Significance was assessed using LRTs. All tests of

statistical significance used a two-sided p value and

a = 0.050.

Interaction analyses

Interactions were evaluated by taking the product of indi-

cator variables for NSAID use (current vs. never/former)

and for genotypes. For SNP–NSAID interactions, a 2-df test

was used to evaluate the multiplicative interaction term for

codominant SNPs and binary NSAID use (current vs. never/

former) and a 1-df test was used to evaluate the multipli-

cative interaction term for dominant SNPs and binary

NSAID use. Because use of NSAIDs may be associated

with other known risk factors for CRC, NSAID interactions

were adjusted for additional variables within each study.

DALS interactions were additionally adjusted for the fol-

lowing continuous variables: BMI, smoking (cigarettes/

day), physical activity (hours/week), dietary calcium (mg/

day), calories (kilocalories/day), and dietary fiber (g/day).

CCFR interactions were additionally adjusted for BMI

(continuous), smoking in pack-years (continuous), and

physical activity (categorized from average MET hours into

inactive, less active, active, and very active). Aspirin use

was also investigated independently. To avoid small-cell

counts, the dominant model was used if there were less than

ten homozygous variant cases or controls in either NSAID

category. If fewer than five cases or controls had the het-

erozygous variant genotype in either NSAID category, the

statistical model was not run. Significance was assessed

using likelihood ratio tests (LRTs). Table 3 includes only

SNPs genotyped in both studies with a p interaction less

than 0.05 in at least one study prior to any multiple-testing

correction. The p values presented in Tables 2 and 3 are

prior to correction for multiple testing. All analyses were

performed using SAS 9.3 or R version 2.13.2.

Multiple-testing corrections

The DALS was treated as the discovery dataset, and mul-

tiple-comparison corrected p values were attained for all

polymorphisms using minP permutation tests with 10,000

replications [38]. Candidate functional polymorphisms

have prespecified hypotheses to impact cancer risk; there-

fore, multiple-testing corrections are not necessarily

applicable to those polymorphisms. The CCFR study

served as an independent validation dataset and was not

subject to multiple-comparison correction in the primary

analyses. A secondary, post hoc multiple-testing correction

was performed in the CCFR colon cancer study for geno-

type–NSAID interactions (Table 3).

Results

Genetic associations

Characteristics (age, sex, site, and NSAID use) of the

DALS and CCFR study populations are presented in

Table 1. In our analysis, the DALS served as the discovery

dataset, and the CCFR study was an independent validation

dataset. Table 2 includes only SNPs that were genotyped in

both studies. After correcting for multiple comparisons,

there were no statistically significant (minP B 0.05) asso-

ciations between SNPs in PTGS1 and risk of colon or rectal

cancer in the DALS discovery dataset (Table 2). The rare

L15–L16 deletion did show a trend toward increased risk in

both the DALS and CCFR colon and rectal studies, con-

sistent with previous observations for adenoma [19], but

this did not reach statistical significance. Post hoc analyses

combining colon and rectal cancers within each study also

did not reach significance for this polymorphism (data not

shown).

In PTGS2, we observed a nearly twofold increase in risk

of rectal cancer in the DALS for individuals with the
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Table 2 Association between selected PTGS1 and PTGS2 polymorphisms and risk of colon and rectal cancers

Colon cancer

Controls Cases OR 95 % CI pc

N % N %

PTGS1 candidate polymorphisms

rs1236913 (R8W C[T)

DALSa

C/C 1,608 87.6 1,273 86.6 Ref – – 0.35

C/T ? T/T 227 12.4 197 13.4 1.10 0.90 1.35

CCFRb

C/C 1,306 87.4 808 87.1 Ref – – 0.91

C/T ? T/T 188 12.6 120 12.9 1.02 0.72 1.44

L15–L16 deletion

DALSa

No deletion 1,770 98.9 1,411 98.7 Ref – – 0.63

Deletion 19 1.1 18 1.3 1.17 0.61 2.25

CCFRb

No deletion 1,478 98.9 918 98.9 Ref – – 0.21

Deletion 16 1.1 10 1.1 2.19 0.61 7.83

rs3842787 (P17L C[T)

DALSa

C/C 1,546 86.6 1,231 86.2 Ref – – 0.94

C/T 228 12.8 187 13.1 1.04 0.84 1.28

T/T 12 0.7 10 0.7 1.01 0.44 2.36

CCFRb

C/C 1,308 87.6 792 85.3 Ref – – 0.09

C/T ? T/T 176 12.4 136 14.6 1.41 0.95 2.09

rs5789 (L237M C[A)

DALSa

C/C 1,738 94.7 1,394 94.8 Ref – – 0.82

C/A ? A/A 97 5.3 76 5.2 0.96 0.71 1.32

CCFRb

C/C 1,410 93.9 883 94.4 Ref – – 0.17

C/A ? A/A 92 6.1 52 5.6 0.72 0.44 1.15

PTGS1 tag SNPs

rs10306135 (4,331 A[T)

DALSa

A/A 1,295 73.5 1,009 71.7 Ref – – 0.55

A/T 428 24.3 367 26.1 1.09 0.93 1.29

T/T 40 2.3 32 2.3 1.02 0.64 1.64

CCFRb

A/A 1,113 74.1 700 74.4 Ref – – 0.42

A/T 352 23.4 223 23.7 0.95 0.73 1.24

T/T 38 2.5 18 1.9 0.61 0.29 1.29

rs6478565 (15,268 A[G)

DALSa

A/A 1,197 67.9 972 68.8 Ref – – 0.77

A/G 507 28.8 398 28.2 0.96 0.82 1.12

G/G 58 3.3 42 3.0 0.89 0.59 1.34
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Table 2 continued

Colon cancer

Controls Cases OR 95 % CI pc

N % N %

CCFRb

A/A 1,073 69.9 664 69.2 Ref – – 0.77

A/G 418 27.2 272 28.4 0.97 0.76 1.23

G/G 44 2.9 23 2.4 0.79 0.42 1.48

PTGS2 candidate SNP

rs20417 (-765 G[C)

DALSa

G/G 1,232 69.6 979 68.9 Ref – – 0.95

G/C 495 28.0 404 28.5 1.02 0.87 1.20

C/C 44 2.5 37 2.6 1.04 0.67 1.63

CCFRb

G/G 1,059 71.0 648 69.8 Ref – – 0.67

G/C 393 26.3 258 27.8 1.10 0.85 1.43

C/C 40 2.7 23 2.5 0.89 0.42 1.88

PTGS2 tag SNPs

rs4648250 (-1,740 A[G)

DALSa

A/A 1,715 97.9 1,376 98.6 Ref – – 0.09

A/G 37 2.1 19 1.4 0.63 0.36 1.10

CCFRb

A/A 1,343 99.2 841 98.6 Ref – – 0.13

A/G 11 0.8 12 1.4 2.32 0.75 7.15

rs689466 (-1,195 A[G)

DALSa

A/A 1,198 67.5 910 64.0 Ref – – 0.15

A/G 509 28.7 455 32.0 1.16 1.00 1.36

G/G 67 3.8 57 4.0 1.10 0.76 1.58

CCFRb

A/A 958 63.2 619 65.9 Ref – – 0.38

A/G 496 32.7 287 30.6 0.83 0.64 1.08

G/G 63 4.2 33 3.5 0.84 0.49 1.44

rs20424 (-196 C[G)

DALSa

C/C 1,726 97.2 1,379 97.2 Ref – – 0.91

C/G ? G/G 49 2.8 40 2.8 1.02 0.67 1.57

G/G 1 0.1 0 0.0

CCFRb

C/C 1,327 97.1 831 96.5 Ref – – 0.03

C/G ? G/G 40 3.0 30 3.5 2.44 1.05 5.67

rs2745557 (201 G[A)

DALSa

G/G 1,233 69.6 981 69.5 Ref – – 0.98

G/A 492 27.8 394 27.9 1.01 0.86 1.18

A/A 47 2.7 36 2.6 0.96 0.62 1.50

CCFRb

G/G 1,048 68.4 649 67.7 Ref – – 0.41
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Table 2 continued

Colon cancer

Controls Cases OR 95 % CI pc

N % N %

G/A 431 28.1 281 29.3 1.10 0.86 1.42

A/A 54 3.5 29 3.0 0.78 0.42 1.44

rs4648261 (418 G[A)

DALSa

G/G 1,664 94.0 1,332 93.9 Ref – – 0.90

G/A ? A/A 107 6.1 86 6.1 1.02 0.76 1.37

CCFRb

G/G 1,432 93.3 904 94.3 Ref – – 0.04

G/A ? A/A 103 6.7 55 5.7 0.58 0.35 0.98

rs4648268 (2,284 G[A)

DALSa

G/G 1,443 81.2 1,148 80.7 Ref – – 0.14

G/A 322 18.1 253 17.8 0.99 0.82 1.19

A/A 13 0.7 21 1.5 1.98 0.99 3.98

CCFRb

G/G 1,051 79.0 690 81.2 Ref – – 0.01

G/A 269 20.2 149 17.5 0.61 0.43 0.86

A/A 11 0.8 11 1.3 1.39 0.50 3.87

rs5275 (6,364 T[C)

DALSa

T/T 725 40.8 599 42.2 Ref – – 0.20

T/C 805 45.4 655 46.1 0.99 0.86 1.16

C/C 245 13.8 166 11.7 0.82 0.66 1.03

CCFRb

T/T 588 43.4 370 43.2 Ref – – 0.71

T/C 601 44.3 378 44.1 0.90 0.69 1.18

C/C 167 12.3 109 12.7 0.98 0.64 1.51

Rectal cancer

Controls Cases OR 95 % CI pc

N % N %

PTGS1 candidate polymorphisms

rs1236913 (R8W C[T)

DALSa

C/C 668 87.3 491 85.7 Ref – – 0.34

C/T ? T/T 97 12.7 82 14.3 1.17 0.85 1.60

CCFRb

C/C 720 87.3 414 86.6 Ref – – 0.28

C/T ? T/T 105 12.7 64 13.4 1.32 0.79 2.18

L15–L16 deletion

DALSa

No deletion 752 98.3 559 97.9 Ref – – 0.55

Deletion 13 1.7 12 2.1 1.28 0.58 2.83

CCFRb

No deletion 816 98.9 472 98.7 Ref – – 0.22

Deletion 9 1.1 6 1.3 2.89 0.51 16.48
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Table 2 continued

Rectal cancer

Controls Cases OR 95 % CI pc

N % N %

rs3842787 (P17L C[T)

DALSa

C/C 668 87.2 490 85.4 Ref – – 0.35

C/T 98 12.8 84 14.7 1.16 0.85 1.59

T/T * * *

CCFRb

C/C 724 87.8 413 86.4 Ref – – 0.89

C/T ? T/T 101 12.2 65 13.6 1.04 0.62 1.73

rs5789 (L237M C[A)

DALSa

C/C 732 94.6 551 94.5 Ref – – 0.97

C/A ? A/A 42 5.5 32 5.5 1.01 0.63 1.62

CCFRb

C/C 776 94.4 456 93.4 Ref – – 0.35

C/A ? A/A 46 5.6 32 6.6 1.42 0.67 3.00

PTGS1 tag SNPs

rs10306135 (4,331 A[T)

DALSa

A/A 577 74.5 432 74.4 Ref – – 0.91

A/T 197 25.4 149 25.6 1.01 0.79 1.30

T/T * * *

CCFRb

A/A 595 72.3 355 72.4 Ref – – 0.27

A/T 208 25.3 121 24.7 1.03 0.72 1.48

T/T 20 2.4 14 2.9 2.04 0.84 4.94

rs6478565 (15,268 A[G)

DALSa

A/A 536 69.2 397 68.2 Ref – – 0.18

A/G 209 27.0 172 29.6 1.11 0.88 1.42

G/G 30 3.9 13 2.2 0.60 0.31 1.17

CCFRb

A/A 580 69.1 343 67.9 Ref – – 0.30

A/G 233 27.8 143 28.3 1.07 0.76 1.52

G/G 26 3.1 19 3.8 1.82 0.85 3.93

PTGS2 candidate SNP

rs20417 (-765 G[C)

DALSa

G/G 553 71.4 433 74.3 Ref – – 0.05

G/C 211 27.2 134 23.0 0.81 0.63 1.04

C/C 11 1.4 16 2.7 1.95 0.89 4.26

CCFRb

G/G 576 70.4 314 65.4 Ref – – 0.01

G/C 232 28.4 151 31.5 1.36 0.95 1.94

C/C 10 1.2 15 3.1 4.88 1.54 15.45
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Table 2 continued

Rectal cancer

Controls Cases OR 95 % CI pc

N % N %

PTGS2 tag SNPs

rs4648250 (-1,740 A[G)

DALSa

A/A 748 98.6 575 99.7 – – – ND

A/G 11 1.4 2 0.3 – – –

CCFRb

A/A 726 99.5 427 99.1 – – – ND

A/G 4 0.5 4 0.9 – – –

rs689466 (-1,195 A[G)

DALSa

A/A 509 65.7 376 64.7 Ref – – 0.87

A/G 237 30.6 185 31.8 1.06 0.83 1.33

G/G 29 3.7 20 3.4 0.94 0.52 1.68

CCFRb

A/A 558 67.5 338 68.0 Ref – – 0.42

A/G 249 30.1 138 27.8 0.91 0.63 1.31

G/G 20 2.4 21 4.2 1.46 0.66 3.25

rs20424 (-196 C[G)

DALSa

C/C 748 96.6 556 95.4 Ref – – 0.22

C/G ? G/G 26 3.3 27 4.6 1.41 0.81 2.45

G/G 1 0.1 0 0.0

CCFRb

C/C 720 97.0 424 97.0 Ref – – 0.24

C/G ? G/G 22 3.0 13 3.0 0.56 0.21 1.48

rs2745557 (201 G[A)

DALSa

G/G 534 68.9 392 67.5 Ref – – 0.45

G/A 214 27.6 174 29.9 1.10 0.87 1.40

A/A 27 3.5 15 2.6 0.75 0.39 1.42

CCFRb

G/G 556 66.3 322 63.9 Ref – – 0.19

G/A 258 30.8 162 32.1 1.28 0.90 1.84

A/A 25 3.0 20 4.0 1.88 0.86 4.11

rs4648261 (418 G[A)

DALSa

G/G 732 94.6 546 94.1 Ref – – 0.70

G/A ? A/A 42 5.4 34 5.9 1.10 0.69 1.75

CCFRb

G/G 769 91.7 478 94.7 Ref – – 0.07

G/A ? A/A 70 8.3 27 5.3 0.52 0.25 1.08

rs4648268 (2,284 G[A)

DALSa

G/G 626 80.8 462 79.2 Ref – – 0.47

G/A 149 19.2 121 20.7 1.10 0.84 1.44

A/A * * *
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rs20417 CC genotype (-765 G[C, ORCC vs. GG = 1.95;

95 % CI 0.89–4.26; LRT p = 0.05). Although this asso-

ciation was not significant after correcting for multiple

testing (minP [ 0.05), it did replicate in the independent

CCFR study population, with a statistically significant

(LRT p = 0.01) increased risk of rectal cancer for indi-

viduals with the GC or CC genotype (Table 2). Individuals

with the CC genotype had an almost fivefold increase in

rectal cancer risk (ORCC vs. GG = 4.88; 95 % CI

1.54–15.45). A comparison of rectal cancer risk for the

homozygous variant CC genotype to the GG common

genotype resulted in p value of 0.09 in the DALS and a

p value of 0.01 in the CCFR study (data not shown). In

both study populations, the increased risk was limited to

rectal cancer. A polytomous regression model found a

significant difference between colon and rectal cancer risk

(global p \ 0.0001, data not shown) for this SNP in the

DALS. There were no other statistically significant asso-

ciations between PTGS2 SNPs and risk of colon or rectal

cancer in the DALS.

NSAID interactions

We observed nominally significant (LRT p B 0.05) geno-

type–NSAID interactions for SNPs in PTGS1 in the DALS

discovery study (Table 3). First, the benefit of regular

NSAID use for reducing rectal cancer risk was limited to

those with the PP (CC) genotype for P17L (rs3842787;

LRT p = 0.05). This is consistent with our previous find-

ing that the benefit of regular NSAID use for reducing

adenoma risk was limited to those with the PP genotype

[19]. Additionally, we observed that NSAID use was of

greater benefit for reducing rectal cancer risk among those

carrying the variant allele of either rs10306135 (4,331

A[T, LRT p = 0.01) or rs6478565 (15,268 A[G, LRT

p = 0.03). There is modest linkage disequilibrium between

these two SNPs, which may contribute to the similar

findings (r2 = 0.56, Supplementary Figure 1). These

associations were no longer statistically significant after

correcting for multiple testing (minP [ 0.05) and did not

replicate in the CCFR independent validation study. No

significant genotype–NSAID interactions were observed in

PTGS1 in relation to colon cancer risk. Aspirin use alone

also showed no significant interactions with PTGS1 geno-

types for colon or rectal cancer in either study (data not

shown).

For PTGS2, one significant genotype–NSAID interac-

tion was seen in the DALS colon cancer discovery dataset

(rs20424; LRT p = 0.01), but it was no longer significant

after correcting for multiple testing (minP [ 0.05), and did

Table 2 continued

Rectal cancer

Controls Cases OR 95 % CI pc

N % N %

CCFRb

G/G 581 81.0 344 80.4 Ref – – 0.41

G/A 136 19.0 84 19.7 1.22 0.76 1.95

A/A * * *

rs5275 (6,364 T[C)

DALSa

T/T 342 44.2 252 43.2 Ref – – 0.91

T/C 344 44.4 265 45.5 1.05 0.84 1.32

C/C 88 11.4 66 11.3 1.02 0.71 1.47

CCFRb

T/T 299 41.0 182 41.9 Ref – – 0.97

T/C 339 46.5 204 47.0 1.01 0.70 1.46

C/C 91 12.5 48 11.1 1.08 0.59 1.97

* Dominant model

Only SNPs genotyped in both DALS and CCFR are shown. Additional SNPs genotyped in DALS are in Supplementary Table 2. The dominant

model was used when\10 cases or controls had the homozygous variant genotype; modeling was not run when fewer than five cases or controls

were heterozygotes
a Adjusted for age, sex, and center
b Adjusted for age and sex
c Global p value from a likelihood ratio test prior to correction for multiple comparisons, with statistically significant p values (p \0.050) shown

in bold. No SNPs remained significant in the DALS after correcting for multiple comparisons using minP permutation tests (minP B 0.05)
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Table 3 Interactions between selected PTGS1 and PTGS2 SNPs, NSAID use, and risk of colon and rectal cancers

NSAID Usea Colon cancer

Never/former Current pd

Controls Cases OR 95 % CI Controls Cases OR 95 % CI

PTGS1

rs3842787 (P17L 50 C[T)

DALSb

C/C 914 824 Ref – – 623 396 0.65 0.55 0.77 0.40

C/T ? T/T 128 132 1.16 0.89 1.51 111 63 0.63 0.45 0.87

CCFRc

C/C 969 605 Ref – – 327 182 0.83 0.64 1.07 0.26

C/T ? T/T 147 104 1.34 0.85 2.11 37 32 1.66 0.83 3.32

rs10306135 (4,331 A[T)

DALSb

A/A 723 662 Ref – – 565 337 0.62 0.52 0.73 0.65

A/T 266 247 1.03 0.84 1.27 160 117 0.75 0.57 0.98

T/T 25 22 1.00 0.55 1.82 15 10 0.69 0.30 1.56

CCFRc

A/A 822 542 Ref – – 279 157 0.82 0.62 1.07 0.69

A/T ? T/T 302 182 0.85 0.62 1.18 86 55 0.78 0.49 1.23

rs6478565 (15,268 A[G)

DALSb

A/A 663 634 Ref – – 526 330 0.61 0.51 0.73 0.88

A/G 309 272 0.92 0.75 1.12 197 121 0.61 0.47 0.79

G/G 36 28 0.88 0.53 1.48 22 14 0.58 0.29 1.17

CCFRc

A/A 801 514 Ref – – 260 149 0.86 0.65 1.14 0.89

A/G ? G/G 347 222 0.85 0.63 1.14 113 69 0.71 0.46 1.08

PTGS2

rs20424 (-62 C[G)

DALSb

C/C 986 918 Ref – – 731 448 0.61 0.53 0.72 0.01

C/G ? G/G 34 22 0.65 0.37 1.14 15 18 1.24 0.61 2.49

CCFRc

C/C 992 637 Ref – – 323 191 0.90 0.69 1.17 0.31

C/G ? G/G 25 22 2.75 1.07 7.04 15 8 1.22 0.30 4.90

NSAID usea Rectal cancer

Never/former Current pd

Controls Cases OR 95 % CI Controls Cases OR 95 % CI

PTGS1

rs3842787 (P17L 50 C[T)

DALSb

C/C 350 310 Ref – – 314 178 0.61 0.48 0.78 0.05

C/T ? T/T 57 44 0.88 0.57 1.34 41 37 1.03 0.64 1.66

CCFRc

C/C 570 335 Ref – – 149 78 0.86 0.57 1.28 0.46

C/T ? T/T 76 52 1.20 0.66 2.19 23 12 0.71 0.28 1.78
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not replicate in the CCFR validation study. No other sig-

nificant genotype–NSAID interactions were observed in

PTGS2 in the DALS.

Examination of aspirin use alone showed nominally

significant associations with three SNPs in PTGS2 in the

DALS (Supplementary Table 3). However, two of the three

interactions seen between PTGS2 genotype and aspirin use

did not replicate in the CCFR validation study. A third,

rs2745557, had a significant interaction with aspirin use for

rectal cancer in the DALS (int p = 0.03) and for colon

cancer in the CCFR study (int p = 0.001), but there was no

association for rectal cancer in DALS or colon cancer in

the CCFR. In both studies, the variant allele carriers not

currently taking aspirin were at increased risk compared to

wild-type nonusers, but appeared to benefit more from

aspirin than wild-type individuals. No observed genotype–

NSAID interactions reached statistical significance in both

the CCFR and DALS populations. Several genotype–

NSAID interactions were observed in the CCFR validation

study but not in the DALS discovery study (Supplementary

Table 4). Associations observed in the CCFR validation

study but not in the DALS discovery study may be due to

chance, inadequately controlling for interactions in the

DALS discovery study in the original analysis, or due to

Table 3 continued

NSAID usea Rectal cancer

Never/former Current pd

Controls Cases OR 95 % CI Controls Cases OR 95 % CI

rs10306135 (4,331 A[T)

DALSb

A/A 318 256 Ref – – 255 174 0.80 0.62 1.04 0.01

A/T 93 101 1.33 0.96 1.85 104 47 0.55 0.38 0.82

T/T * * * *

CCFRc

A/A 467 290 Ref – – 123 64 0.68 0.43 1.06 0.21

A/T ? T/T 182 112 0.86 0.58 1.29 44 23 0.97 0.50 1.88

rs6478565 (15,268 A[G)

DALSb

A/A 294 236 Ref – – 238 160 0.80 0.61 1.04 0.03

A/G 118 123 1.31 0.96 1.79 121 60 0.60 0.42 0.87

G/G * * * *

CCFRc

A/A 456 281 Ref – – 120 61 0.75 0.48 1.16 0.61

A/G ? G/G 203 131 1.00 0.68 1.48 53 31 0.91 0.48 1.75

PTGS2

rs20424 (-62 C[G)

DALSb

C/C 397 342 Ref – – 347 211 0.68 0.54 0.85 0.97

C/G ? G/G 15 17 1.35 0.66 2.76 11 10 0.94 0.39 2.26

CCFRc

C/C 560 338 – – – 154 85 – – – ND

C/G ? G/G 17 11 – – – 5 2 – – –

* Dominant model

Only SNPs with an interaction p value \0.05 in the DALS are shown. The dominant model was used when \10 cases or controls had the

homozygous variant genotype; modeling was not run if fewer than five cases or controls were heterozygotes
a Current NSAID use is defined as current, regular use three times per week for at least 1 month in the DALS and as current, regular use of at

least two pills per week for at least 1 month for the CCFR study
b Adjusted for age, sex, center, BMI, smoking, physical activity, calcium, calories, and dietary fiber
c Adjusted for age, sex, BMI, smoking, and physical activity
d Interaction p value from a likelihood ratio test prior to correction for multiple comparisons, with statistically significant p values (p\0.050)

shown in bold. No SNPs remained significant in the DALS after correcting for multiple comparisons using minP permutation tests (minP B 0.05)
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the sib-pair design of the CCFR study [39]. To partly

address this, we performed an exploratory post hoc strati-

fication of DALS by family history, but were unable to

replicate associations seen in the CCFR (data not shown).

In addition, statistically significant findings were typically

limited to either colon or rectal cancer, but not seen in both.

Discussion

We comprehensively assessed the importance of genetic

variability in the two primary prostaglandin synthesis

genes, PTGS1 and PTGS2, using two independent study

populations of colon and rectal cancer risk. We describe a

significant association between the rs20417 variant C allele

in PTGS2 and increased risk of rectal cancer in DALS, a

large population-based study, which replicated in a second,

independent, large population-based study of rectal cancer

from the CCFR. Genotype–NSAID interactions were

observed in the DALS for PTGS1 and rectal cancer risk,

and for PTGS2 and colon cancer risk; however, these

interactions were no longer statistically significant after

correcting for multiple comparisons and did not replicate in

the CCFR validation study. Interactions between aspirin

use alone and PTGS2 genotypes were also inconsistent

between the DALS and CCFR studies.

The first report of an association between PTGS2 rs20417

and risk of colorectal cancer was in a Japanese study [40],

but other studies in Caucasian populations did not confirm

the finding [41, 42]. Recent meta-analyses have indicated

that the variant C allele may be a risk factor for colorectal

cancer in Asian but not in Caucasian populations [43–47].

Importantly, these earlier analyses did not examine colon

and rectal cancers separately, and thus, it is unknown whe-

ther previous studies would have seen an association with

rectal cancer risk in Caucasians. In addition, large genome-

wide association studies generally have not genotyped

rs20417 directly and also have not been stratified by colon

and rectal cancers. As our studies were restricted to NHW,

our results suggest that the rs20417 C allele may be a risk

factor for this group, but only for rectal cancer and not colon

cancer. We have previously reported a possible reduced risk

of colorectal adenoma associated with this allele in Cauca-

sians, although sample sizes were too small to distinguish

between adenomas in colon and rectal sites [18].

We observed an interaction between this rs20417 SNP,

NSAID use, and rectal cancer risk in the CCFR study,

where the variant C allele carriers had a greater protective

benefit from NSAID use. Observing statistically significant

NSAID interactions in the CCFR and not in the DALS may

be due to chance or may be due to differences in the study

designs. As a case/sibling-control study in which shared

genetics and environment are matched between siblings,

the CCFR study is potentially more efficient for studying

gene–environment interactions [39], which could be one

reason why this interaction was observed in the CCFR but

not in the DALS. Alternatively, there could be confounding

factors in the DALS that were not adequately controlled for

in our analysis. We did not observe an association between

rs20417 and colon cancer risk in either study. A polyt-

omous regression model indicated that the difference in

risk between colon and rectal cancers for rs20417 in the

DALS was significant, with a global p \ 0.0001 for both

main association and NSAID interaction models (data not

shown). In general, we saw little reproducibility in statis-

tically significant genetic associations between colon and

rectal cancer risk.

These findings add further data to evidence that colon

and rectal cancers have different etiologies. In addition, a

significant interaction between PTGS2 rs20417 and NSAID

use suggests that, in contrast to colorectal adenoma [18],

rs20417 interacts with NSAIDs for rectal cancer risk. The

interaction was only seen in the CCFR, so this also could

be a chance finding. A study of colorectal cancer from

Rotterdam reported that NSAID users carrying the rs20417

C allele lived longer than nonusers with the wild-type G

allele [48]. The Rotterdam study did not see an association

between colorectal cancer risk and rs20417 genotype, but

they did not analyze colon and rectal cancers separately.

COX-2, encoded by the PTGS2 gene, catalyzes a key

step in the conversion of arachidonic acid to bioactive

prostaglandins. The PTGS2 candidate polymorphism,

rs20417 (-765 G[C), is known to affect gene expression

and prostaglandin production [49, 50]. The functional

impact of rs20417 has been studied by several groups; their

studies suggest a proinflammatory effect of the CC geno-

type via increased prostanoids. A more than tenfold

increase in PGE2 and PGD2 production was observed in

monocytes from asthma patients homozygous for rs20417

CC compared to monocytes from GG homozygotes, with

monocytes from heterozygotes displaying an intermediate

phenotype of elevated PGE2 and PGD2 [50, 51]. This is

consistent with the observation of increased urinary PGE2

metabolites and biomarkers of monocyte/macrophage

activation in stable coronary artery disease patients with

the CC genotype [52]. Further, AML patients have been

found to have increased PTGS2 mRNA levels in bone

marrow and increased COX-2 protein levels in serum [53].

There has been a report of a 30 % reduction in gene

expression associated with the CC variant in an initial

study with a reporter-gene system [49]. However, sub-

sequent findings were mixed [52], suggesting that in vitro

models of promoter activity do not fully capture the com-

plex regulation of PTGS2 transcription.

We previously reported an increased adenoma risk for

carriers of the PTGS1 L15–L16 deletion [19]. The current
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analyses found similar trends for both colon and rectal

cancers. However, the trend is not statistically significant,

possibly because this deletion is rare and there is lack of

power for validating the association. We also present a

replication of our previously reported genotype–NSAID

interaction for the PTGS1 P17L polymorphism

(rs3842787). Consistent with our findings in colorectal

adenoma [19], we found in the DALS that the NSAID-

associated risk reduction for rectal cancer was limited to

the wild-type genotype for P17L. The functional impact of

PTGS1 P17L (rs3842787) may be direct, due to the amino

acid change in the signal peptide, or indirect via the near-

complete linkage disequilibrium in Caucasians between

rs3842787 and seven 50 polymorphisms [54].

In general, statistically significant genotype–NSAID

interactions did not replicate between the DALS and CCFR

studies. The one significant interaction seen in both studies,

between aspirin use and PTGS2 rs2745557, was inconsis-

tent in that it was seen in rectal cancer in the DALS and in

colon cancer in the CCFR study (Supplementary Table 3).

This may be a chance finding or may be due to these

studies’ somewhat different study designs and definitions

of NSAID use, different adjustment variables, limited

sample size, and a weaker NSAID effect in the CCFR

(Table 1). Both DALS and CCFR are large population-

based case–control studies of colon and rectal cancer risk.

The DALS uses population-based controls, and the CCFR

uses unaffected siblings as controls. This is both the

strength and a limitation of using the CCFR as a replication

dataset for DALS. On the one hand, the CCFR sib-pair

design helps avoid false positives that may result from

population stratification and increases the power to detect

gene–NSAID interactions. The CCFR sib-pair design,

under which the shared genetics and environment are

matched between siblings, can have greater power to detect

gene–environment interactions than a case–control study

design [39]. On the other hand, the family-based study

design may have reduced the power of the main effect

analyses. We felt that the potential benefit of the CCFR in

replicating NSAID interactions outweighed the limitations

in the main effect analysis. The main effects are adjusted

for age and sex in both studies. DALS is further adjusted

for center, which is not necessary in the CCFR due to the

sib-pair design. For the NSAID analysis, both studies were

also adjusted for the known CRC risk factors of BMI,

physical activity, and smoking. We were not able to adjust

the CCFR for dietary risk factors as such data are not

available within the CCFR. However, the additional

adjustments to the DALS did not substantially alter the

results. Larger-scale investigations are needed to address

NSAID, and particularly aspirin, pharmacogenetics with

more certainty. Given the new results from randomized

controlled trials of aspirin, which demonstrated strong

cancer preventive effects [1, 11, 55], this issue deserves

further attention.

Conclusions

One polymorphism in the PTGS2 gene (-765 G[C;

rs20417) was associated with a statistically significantly

increased risk of rectal cancer in two large, independent,

population-based studies in the USA. Our results suggest

that the rs20417 C allele may be a risk factor for non-

Hispanic whites, but only for rectal cancer, not colon can-

cer. No significant associations were observed between the

targeted PTGS1 polymorphisms and colon or rectal cancer

risk. A number of genotype–NSAID interactions were

noted; however, no genotype–NSAID interactions reached

statistical significance in both the discovery and validation

studies or for both colon and rectal cancers. An interaction

between rs2745557 in PTGS2 and aspirin use was sugges-

tive—showing similar gene–aspirin interaction patterns and

reaching significance in the DALS rectal cancer study and

the CCFR colon cancer study, but not vice versa. These

findings suggest that further validation is needed.
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