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Abstract

Purpose Studies of cancer patient survival typically

report relative survival or cause-specific survival using data

from patients diagnosed many years in the past. From a

risk-communication perspective, such measures are sub-

optimal for several reasons; their interpretation is not

transparent for non-specialists, competing causes of death

are ignored and the estimates are unsuitable to predict the

outcome of newly diagnosed patients. In this paper, we

discuss the relative merits of recently developed alterna-

tives to traditionally reported measures of cancer patient

survival.

Methods In a relative survival framework, using a period

approach, we estimated probabilities of death in the pres-

ence of competing risks. To illustrate the methods, we

present estimates of survival among 23,353 initially

untreated, or hormonally treated men with intermediate- or

high-risk localized prostate cancer using Swedish popula-

tion-based data.

Results Among all groups of newly diagnosed patients, the

probability of dying from prostate cancer, accounting for

competing risks, was lower compared to the corresponding

estimates where competing risks were ignored. Accounting

for competing deaths was particularly important for patients

aged more than 70 years at diagnosis in order to avoid

overestimating the risk of dying from prostate cancer.

Conclusions We argue that period estimates of survival,

accounting for competing risks, provide the tools to com-

municate the actual risk that cancer patients, diagnosed

today, face to die from their disease. Such measures should

offer a more useful basis for risk communication between

patients and clinicians and we advocate their use as means

to answer prognostic questions.

Keywords Relative survival � Prostate cancer �
Competing risks � Period analysis � Population based

Introduction

Population-based cancer patient survival is useful for mon-

itoring and evaluating the effectiveness of cancer patient

care as it provides estimates of survival that are represen-

tative of the entire population. The most commonly reported

measures of survival among cancer patients, in such studies,

are cause-specific survival and relative survival [1]. Cause-

specific survival uses information from death certificates or
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chart reviews to identify cancer deaths whereas relative

survival takes an indirect approach to identifying cancer

deaths by contrasting the all-cause survival among the

patients to the expected survival for a comparable group in

the general population who are assumed to be free of the

cancer of interest. Both measures aim to estimate survival in

the hypothetical scenario where cancer is the only possible

cause of death [2]. In the statistical literature, this hypo-

thetical construct is called net survival; it is useful for pur-

poses such as studying temporal trends in survival or

comparing survival between countries where it is desirable

to correct for differences in non-cancer mortality. Net sur-

vival is also relevant in a randomized clinical trial setting if

the primary objective to be addressed concerns demon-

strating a putative effect between treatment arms [3].

Thus, the commonly reported 10-year cause-specific

survival and 10-year relative survival each provide an

estimate of the probability of not dying of cancer within

10 years of diagnosis in the hypothetical situation where

one cannot die of other causes than the cancer of interest.

From a patient perspective, such information is often of

less value since the risk of deaths from other causes is a

fact that must be accounted for when discussing the

prognosis and the available treatment options. In the sta-

tistical literature, probabilities of death estimated in the

presence of competing causes of death are called crude (as

opposed to net) probabilities of death. The 10-year crude

probability of death due to cancer will be lower than the

10-year net probability of death since once we let patients

die of other causes than the endpoint of interest, the

probability of dying of cancer is lower. The crude proba-

bility of death is sometimes referred to as cumulative

incidence [4] or the absolute probability of death [5].

Unfortunately, each of these terms (including crude prob-

ability) is also used for other statistical measures.

Our aim with this study is to clarify the interpretation of

standard and more recent measures of population-based

cancer patient survival. In addition to discussing the relative

merits of crude and net survival, we also explain how com-

bining period analysis with estimates of crude survival can

provide more accurate estimates of the prognosis among

newly diagnosed cancer patients compared to the conven-

tionally reported cohort estimates. For illustration, we present

estimates of risk category- and treatment-specific prostate

cancer survival using population-based data from Sweden.

Methods

Data

The National Prostate Cancer Register of Sweden captures

more than 97 % of all men diagnosed with prostate cancer

compared with the Swedish National Cancer Register to

which reporting is mandatory and regulated by law [6]. In

addition to the information available in the Swedish

National Cancer Register, the National Prostate Cancer

Register contains information about tumor characteristics

at the date of diagnosis and primary treatment within

6 months from diagnosis.

We investigated men with intermediate- and high-risk

prostate cancer diagnosed between 1996 and 2008. The

intermediate-risk category was defined as clinical local

stage T1-2, N0, NX-, M0, MX, and serum levels of pros-

tate–specific antigen (PSA) between 10 and 20 ng/ml or

Gleason score 7, and the locally advanced high-risk cate-

gory as T3-4, N0, NX, M0, MX, and/or PSA between 20

and 50 ng/ml, and/or Gleason score 8 or higher according

to a modified version of National Comprehensive Cancer

Network� classification [7]. Patients who received cura-

tively intended treatment were excluded, leaving 29,647

patients in the investigated cohort.

Statistical methods

Relative survival and excess mortality

Relative survival is the preferred method for estimating net

survival in a population-based setting as it captures mor-

tality that is either directly or indirectly related to the

cancer without requiring information on cause of death [1].

Relative survival is defined as the ratio of the observed

all-cause survival among the patients compared to the

expected (all-cause) survival in a disease-free but other-

wise comparable population. In practice, patients are

matched to the general population on factors which most

often include age, sex, and calendar year, although some-

times additional factors, such as socioeconomic status and

race, are also feasible. An estimate of the 5-year relative

survival of 1.00 suggests that the survival of the patients is

just as good (or poor) as that in the general population. It

does not mean that all patients are alive 5 years after

diagnoses, only that the patients have not experienced any

excess mortality associated with the cancer under study

during the first 5 years of follow-up. Excess mortality is the

mortality analog of relative survival. It is a rate, rather than

a proportion, and is expressed as the difference between the

observed mortality rate (all-cause) among the patients and

the expected mortality rate in a healthy population. Esti-

mates of relative survival below 1.00, or equivalently, an

excess mortality rate greater than zero, imply that the

survival of the patients is worse than expected and it is

assumed that the reason for the difference is entirely due to

the cancer in question. One important implication of this is

that relative survival captures deaths that can be viewed as

506 Cancer Causes Control (2013) 24:505–515

123



indirectly caused by the cancer, for example, excess car-

diovascular deaths following cardiotoxic treatments [8–

10], or excess deaths from suicides [11]. These are deaths

that are difficult to capture using a cause-specific approach

since they are typically not classified as death from cancer.

Net versus crude probability of death

If our primary interest is death due to a specific cancer,

then deaths due to other causes (including other forms of

cancer) are known as competing risks. Relative survival

aims to provide an estimate of net survival, survival in a

virtual world where competing causes of death do not

exist. This is not a world in which cancer patients live and

such estimates are not particularly relevant to individual

patients. The solution is provided by the so-called crude

survival probabilities, which can be calculated using sta-

tistical methods for competing risks. Rather than reporting

crude survival probabilities (the probability of not dying), it

is common to report the complement, called the crude

probability of death. To reinforce the conceptual difference

between net and crude probabilities of death, we have

estimated both quantities in the cohort of men diagnosed

with prostate cancer in Sweden (Fig. 1). The shaded area in

Fig. 1a, c represents the net probabilities (i.e., 1—relative

survival) of prostate cancer death as a function of years

since diagnosis. For a 75-year-old man diagnosed with

prostate cancer, the probability of dying of prostate cancer

within 10 years is 0.27 in a world where it is not possible

to die of other causes (Fig. 1a). When acknowledging the

existence of competing causes of death, we see that the

crude probability that such a man will die of prostate

cancer during the subsequent 10 years is only 0.18

(Fig. 1b). In the same panel, we can also see that the

probability of dying of a cause other than prostate cancer

within 10 years is 0.43 and the probability of still being

alive after 10 years is 0.39. We argue that the right-hand

figures are of considerably more interest to clinicians and

patients as they not only provide a more accurate prediction

of the real-world risk of dying from cancer but also addi-

tional information about the overall risk of dying during

follow-up. The difference between crude and net proba-

bilities is not as great for the 60-year-old men since the

probability of death due to causes other than cancer is not

as high (Fig. 1c, d).

Period analysis

Traditionally reported cohort estimates of cancer patient

survival are obtained by following-up cohorts of patients

for a number of years after they are diagnosed with cancer.

Because cohort estimates of, for example, 10-year survival

require following patients diagnosed at least 10 years back

in time, they do not fully capture the impact of advances in

the diagnosis and treatment on the prognosis of patients

diagnosed more recently. Brenner and others [12] sug-

gested an alternative approach to estimation, known as

period analysis, which has been shown to be considerably

better at predicting the future survival of newly diagnosed

patients [13]. In contrast to the cohort approach, where all

patients (and their corresponding time at risk) contribute to

the analysis, the inclusion of patients and contribution of

person-time, in a period analysis, is restricted to a pre-

specified time window. For example, let us assume that we

fix a time window to the years 2005–2009 where the end of

2009 is the last date for which follow-up information is

available. For patients who are diagnosed within that

window follow-up is calculated in the same manner as in a

traditional cohort approach, from the date of diagnosis until

the date of death or censoring (administrative or due to loss

from follow-up). However, for patients who were diag-

nosed before the time window only the time at risk that

occurs within the window is counted. For example, patients

who were diagnosed in 1996, and still alive in 2005, enter

their 9th year of follow-up in 2005 and therefore contribute

to the estimation of the 9-, 10-, 11-, 12-, and 13-year

survival probabilities if they remain alive until the end of

2009. Similarly patients diagnosed in 1997, enter the time

window during their 8th year of follow-up and thus con-

tribute to the survival estimates from that year. Time at risk

prior to the time window is not included in the survival

analysis. Also, patients who die before entering the time

window are completely excluded from the analysis. With

this approach, estimates of short-term survival are more

‘‘up-to-date’’ than the corresponding estimates in a cohort

approach. Because period analysis has proven empirically

to be superior to the cohort approach, with respect to its

ability to predict future survival, we believe such an

approach to estimation provides estimates that are of

greater clinical relevance, in particular for risk-communi-

cation purposes [12].

Modeling approach

A wide range of statistical models have been proposed for

modeling excess mortality [14, 15]. We used flexible

parametric survival models [16, 17] which use individual-

level data and explicitly estimate a baseline excess mor-

tality rate that may vary nonlinearly with time since

diagnosis, by the use of restricted cubic splines [18]. By

further allowing delayed entry to the flexible parametric

survival model, we adapted a period approach to modeling,

using a time window of 2005–2009 inclusive. The choice

of period window was based on a desire to capture recent

survival experience while, at the same time, providing

a sufficient number of cases for the statistical analysis.

Cancer Causes Control (2013) 24:505–515 507
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A window of, for example, 2008–2009 would provide more

up-to-date estimates but with larger standard errors. A

detailed description of the statistical models that were used

is included in the statistical appendix.

Crude probabilities of death were retrieved by re-cal-

culating the survival estimates from the flexible parametric

models using competing risk theory adapted for relative

survival as described by Lambert et al. [19]. The user-

written stpm2 and stpm2cm commands for flexible para-

metric models in the Stata software (17) (StataCorp. 2009

Stata Statistical Software: Release 11. College Station, TX:

StataCorp LP) were used for the statistical analyses.

Results

Table 1 shows the numbers of men and deaths in the full

cohort (n = 29,647) by patient and disease characteristics.

Among these patients, the distribution of age at diagnosis

and selection of conservative or hormonal treatment among

men with intermediate-risk cancers was relatively stable

throughout the study. In contrast, among men in the high-

risk group, the proportion of men older than 79 years at

diagnosis increased from 33 % in 1996–1999 to 46 % in

2006–2008, along with the use of hormone therapy. The

number of informative subjects in the period analysis

(n = 23,353), that is, men that contribute person-time to

the chosen period window, is also provided in Table 1 as

well as the number of deaths that occurred among these

men. Naturally, the number of informative men increases

with calendar period of diagnosis as the criteria for entering

the period analysis is to be alive at the start of 2005.

Figure 2 shows the predicted crude probabilities of

death within the first 10 years after diagnosis for newly

diagnosed men managed conservatively, and Fig. 3 shows

these probabilities for hormonally treated men. The esti-

mates are shown by risk category, and for a selection of

ages at diagnosis. The probability of dying from prostate

cancer was similar across the different ages within each

risk category of conservatively treated men, whereas for

men who received hormone therapy, age at diagnosis was a

strong predictor for prostate cancer mortality. For all dis-

played ages at diagnosis, and both risk groups, the crude

probability of death from prostate cancer was higher

among hormonally treated men compared to men managed

conservatively. Table 2 provides the means to quantify the

observed differences in survival at two fixed time points (5

and 10 years) after diagnosis. For example, in the inter-

mediate-risk group of conservatively treated men, the

proportion who died from prostate cancer within 10 years

after diagnosis was 4.6 % (95 % CI 1.9–7.4 %) for men

aged 60 years at diagnosis and 3.9 % (95 % CI 1.9–6.0 %)

for men aged 80 years at diagnosis. The corresponding

proportions for men treated hormonally, 27.6 % (95 % CI

20.8–34.4 %) for men aged 60 years and 12.2 % (95 % CI

9.0–15.4 %) for men aged 80 years at diagnosis.

Figures 2, 3 and Table 2 also provide estimates of the

crude probabilities of death from other causes than prostate

cancer, and thereby also the probability of still being alive

as a function of elapsed time since diagnosis. When these
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The inserted numbers represent the 10−year probabilities of death

Fig. 1 Predictions of net

probabilities of death (on the

left) and crude probabilities of

death (on the right) due to

prostate cancer among men

aged 60 and 75 at diagnosis who

were recorded as having

intermediate- or high-risk

cancer and as treated

conservatively or with hormonal

treatment in the National

Prostate Cancer Register of

Sweden between 1996 and 2008
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crude probabilities are reported together with the crude

probabilities of death, such as in Table 2, the results can

easily be converted and communicated in terms of natural

frequencies to aid the interpretation of the results further.

For illustration, among 100 newly diagnosed 60 year-old

men with intermediate-risk prostate cancer and hormonal

treatment, we would expect 11 to have died from their

cancer, 4 to have died from other causes than cancer,

and 85 to still be alive 5 years from today. In the 10-year

perspective, we would expect 28 men to have died from

prostate cancer, 10 from other causes, and 62 to still be

alive.

Compared to net probabilities of death from cancer, the

crude probabilities of death from cancer were lower, par-

ticularly for older men. Figure 4 summarizes the net and

crude 10-year probabilities of dying from prostate cancer

by risk and treatment group as a function of age at diag-

nosis. While the long-term crude prostate cancer mortality
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among men managed conservatively remained stable

within risk category and across different ages at diagnosis,

estimates of net mortality began to diverge from the cor-

responding crude estimates for men older than 70 years at

diagnosis. A similar feature was observed among men

older than 75 years at diagnosis and treated with hormone

therapy although, in general, both the net and the crude

mortality due to cancer were higher for all ages and both

risk groups compared to conservatively managed men.

Discussion

The great majority of studies of cancer patient survival

report estimates of net survival that are only interpretable

in the hypothetical situation where patients are assumed

immune to death from causes other than the cancer under

study. Particularly for elderly patients, such statistics will

overestimate the real-world probability of death due to

cancer as illustrated in our case of men with intermediate-

and high-risk localized prostate cancer. As such, estimates

of net survival do not provide an ideal basis for medical

decision making where it is necessary to consider the trade-

off between the (real-world) probabilities of treatment-

related side effects and probabilities of death due to the

underlying disease. Estimates of net survival are useful for

many other purposes and we are certainly not suggesting

they no longer should be presented. For example, to

achieve valid international comparisons of cancer survival,

it is vital to control for the fact that non-cancer mortality

differs across countries in order to enable like-with-like

comparisons. Moreover, in studies that evaluate research

Table 2 Predicted 5- and 10-year crude probabilities of death, expressed as percentages with 95 % confidence intervals, for patients diagnosed

in the intermediate- or high-risk category

Conservative management

5 years after diagnosis 10 years after diagnosis

Intermediate risk High risk Intermediate risk High risk

60 years

Dead PC 0.6 (0.0–1.1) 3.0 (0.1–5.5) 4.6 (1.9–7.4) 17.0 (10.4–23.6)

Dead not PC 4.7 (4.7–4.7) 4.6 (4.6–4.7) 11.6 (11.5–11.7) 11.0 (10.6–11.4)

Alive 94.8 (94.2–95.3) 92.3 (89.9–94.8) 83.8 (81.1–86.4) 72.0 (65.8–78.3)

70 years

Dead PC 0.6 (0.1–1.6) 3.4 (1.1–5.6) 4.9 (2.5–7.3) 17.8 (14.1–21.5)

Dead not PC 11.9 (11.9–11.9) 11.8 (11.7–11.9) 29.2 (28.9–29.5) 27.4 (26.7–28.0)

Alive 87.5 (87.0–88.0) 84.8 (82.7–87.0) 65.9 (63.8–68.0) 54.8 (51.7–58.0)

80 years

Dead PC 0.5 (0.1–0.9) 2.6 (1.0–4.2) 3.9 (1.9–6.0) 14.4 (11.0–17.8)

Dead not PC 34.3 (34.2–34.3) 34.1 (33.9–34.3) 67.7 (67.0–68.4) 63.8 (62.4–65.1)

Alive 65.3 (64.9–65.6) 63.3 (61.9–64.7) 28.3 (26.9–29.7) 21.9 (19.7–24.0)

Hormone treatment

5 years after diagnosis 10 years after diagnosis

Intermediate risk High risk Intermediate risk High risk

60 years

Dead PC 10.6 (6.5–14.7) 30.8 (25.3–36.3) 27.6 (20.8–34.4) 53.7 (47.7–59.7)

Dead not PC 4.4 (4.3–4.6) 3.9 (3.7–4.1) 10.1 (9.6–10.6) 7.7 (7.2–8.3)

Alive 85.0 (80.9–89.0) 65.3 (59.9–70.7) 62.3 (55.9–68.7) 38.6 (33.1–44.1)

70 years

Dead PC 7.9 (5.1–10.8) 23.9 (20.8–26.9) 20.5 (15.8–25.2) 42.4 (38.9–45.9)

Dead not PC 11.5 (11.3–11.7) 10.5 (10.2–10.7) 26.4 (25.5–27.2) 21.5 (20.7–22.2)

Alive 80.6 (77.9–83.3) 65.7 (62.9–68.5) 53.1 (49.2–57.1) 36.1 (33.3–39.0)

80 years

Dead PC 4.3 (2.6–6.0) 13.6 (10.9–16.3) 12.2 (9.0–15.4) 27.2 (23.6–30.8)

Dead not PC 33.7 (33.3–34.0) 32.0 (31.4–32.6) 63.9 (62.5–65.3) 56.1 (54.2–57.9)

Alive 62.0 (60.6–63.5) 54.4 (52.2–56.6) 23.9 (22.0–25.9) 16.8 (14.7–18.8)
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questions related to disease etiology, net survival should

also be the method of choice since, ideally, the results

should reflect differences in survival associated with the

exposure under study as opposed to differences in the non-

cancer mortality.

It is important that both the producers and the consumers

of cancer survival statistics become more aware that dif-

ferent end-users are best served by different types of sta-

tistics. For example, period estimates of crude survival will

in general be more useful in a clinical setting than cohort

estimates of net survival. Period estimates have been

shown to provide good predictions of long-term net sur-

vival [12, 20], in particular, if there have been improve-

ments in survival, either true (e.g., following improvements

in treatment) or artificial (e.g., following increased

screening activities) over time. However, studies that

combine period estimation with competing risk theory in

order to predict the outcome of newly diagnosed patients

using crude probabilities of death are still rare [21].

The statistical methodology used to estimate the crude

probabilities of death relies on the fact that relative survival

can be estimated accurately. The key assumptions for

estimating relative survival are that survival from prostate

cancer is independent from survival from other causes, and

that the expected survival in the general population cor-

rectly represents the survival that the cancer patients would

have experienced in the absence of cancer. Stattin and

others have previously demonstrated that the all-cause

mortality in patients with low- or intermediate-risk prostate

cancer in Sweden was lower than expected, indicating a

selection of healthy men for PSA testing and diagnostic

work-up leading to a diagnosis of localized prostate cancer

[22]. To overcome the strongest selection mechanisms to

the cohort and to treatment, we did not include men

diagnosed in the low-risk category or men who received

curative treatment. Even so, the estimates of crude survival

in this study must be interpreted within the context of the

limitation of observational data. In particular, the reported

estimates should not be interpreted as a basis for assigning

treatment to patients.

If the patients represent a selected group with better

survival than that of the general population, relative survival

methods will underestimate the probabilities of prostate

cancer death. The requirement that patients are exchange-

able to the general population is thus an assumption that

needs to be carefully evaluated from study to study. In

applications where the assumption of exchangeability is in

doubt, cause-specific survival, using external information

from death certificates, should be considered as a viable

alternative to relative survival. Cause-specific survival does,

however, require high-quality information from death cer-

tificates to accurately determine whether a death should be

considered attributable to the cancer in question or not [23].

Recently, systematic re-classification algorithms for cause of

death data have been developed in order to improve the

quality of cause-specific survival analyses [24]. In practice,

the choice between relative survival and cause-specific

survival must be based on subject matter knowledge of

which of the two assumptions (exchangeability/accurate

cause of death classification) is less likely to be violated.

Studies aimed at producing and presenting contempo-

rary information, targeted toward patients and their treating

clinicians that are useful to anticipate the outcome after a

diagnosis of cancer should be of greater interest. This has,
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for example, been recognized by the Finnish Cancer Reg-

istry, which publishes not only estimates of relative sur-

vival but also of the predicted 5-year crude probabilities of

death due to cancer and other causes in their bi-annual

report [25]. However, Koller and others assessed the fre-

quency of studies published in the scientific literature on

the subject of competing risks between the years 2000 and

2010 in 119 core clinical journals. The authors concluded

that, even in general clinical journals with the highest

impact factors, competing risks were often ignored, that the

application of inappropriate statistical methods was a fre-

quent problem and that a better recognition of competing

risks in the clinical community is needed [26].

Producing statistics for risk communication requires

prediction models that not only include prognostic factors

that influence the risk of dying from the disease under

study, but also on factors that affects the non-cancer

mortality. In the current application, the model was pre-

dominantly based on factors associated with the disease

(risk group and treatment). While further adjustments for,

for example, the general health status of the patients would

improve the predictions, such information was unfortu-

nately not available on an individual-level basis in our data.

One possibility to overcome this weakness in the future

studies would be to utilize Swedish nationwide health

registers, such as the Hospital Discharge Register to

incorporate general disease burden into both the expected

mortality rate data for Sweden and the patient data.

Alternatively, a ‘‘health status-adjusted’’ age could be

derived and incorporated in the analysis as described pre-

viously by Feuer and others in a cause-specific setting

within the surveillance, epidemiology, and end results

program (SEER) [27].

Presenting data for risk communication in a manner that

is understandable for the end-user is crucial to increase the

usefulness of cancer patient survival statistics. While, for

example, age-standardized estimates of net survival serve

as a useful summary measure of patient survival in many

situations (e.g., international comparisons of survival,

studies of disease etiology, etc.), we argue that the same is

not true for estimates of crude survival [28, 29]. In par-

ticular, age-standardized estimates of crude survival would

be of limited use in studies where an individual-level

prediction of prognosis is the goal. To this end, factors that

have strong impact on non-cancer mortality, such as age,

cannot longer be viewed as a nuisance that merely need to

be averaged over (by direct or indirect standardization). In

contrast, crude survival typically needs to be estimated for

a broad range of covariate patterns and a structured pre-

sentation of such results is important. Risk-communication

strategies that have shown strong or preliminary evidence

for improving patient understanding and decision making

include presenting absolute risks rather than relative risks

as well as natural frequencies in place of percentages [30].

Crude probabilities of death provide a good example of

where the predicted prognosis can be conveyed in terms of

natural frequencies. For example, statements like ‘‘For 100

patients similar to you, with respect to age and tumor

characteristics, 66 patients are expected to be alive

10 years after diagnosis, whereas 5 patients are expected to

die from the cancer and 29 from other causes,’’ should be

more informative to patients and clinicians than statistics

that assume that cancer is the only possible cause of death.

However, communication of cancer patient survival is

complicated by fact that it changes with elapsed time since

diagnosis. While natural frequencies can easily be reported

at a fixed point in time after diagnosis, say within 5 and

10 years, some form of visual representation of how the

risk accumulates over time is recommended [31]. We

present stacked line graphs representing the cumulative

crude probabilities of death, in addition to the 5- and

10-year probabilities quantified in terms of natural fre-

quencies. While the graphs provide a more complete pic-

ture, the prognosis after prostate cancer, the numerical

summary of the natural frequencies at fixed intervals after

diagnosis also serves as an example of how the graphs

should be interpreted.

In conclusion, with this article, we are hoping to convey

the message that producers and consumers of cancer sur-

vival statistics should be aware that different audiences are

best served by different types of statistics. In particular, we

advocate the use of crude, rather than net, survival proba-

bilities to communicate health risks between clinicians and

patients as they provide estimates of probabilities of death

in the real world in which the patients live. Even in situa-

tions where estimates of crude survival are not available,

clinicians should be aware that estimates of net survival are

based on a hypothetical world and are thus of limited use to

answer prognostic questions.

Statistical appendix

This appendix describes the statistical model used to pre-

dict crude probabilities of death from cancer and other

causes among patients diagnosed with prostate cancer in

Sweden between the years 1996 and 2008.

Period estimation of excess mortality

We fitted flexible parametric survival models with delayed

entry, thereby adapting a period approach. The baseline

excess mortality rate was modeled using 5 degrees of

freedom, df (where the interior knots were placed at the

20, 40, 60, and 80th percentiles of the distribution of the
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uncensored log survival times whereas the boundary knots

were placed at the extremes of the same distribution). The

effect of age at diagnosis on excess mortality was modeled

continuously using a restricted cubic spline with 4 df

(where the knots were placed at the 5, 25, 50, 75, and 95th

percentiles of the distribution of the observed ages at

diagnosis in our cohort). The number and location of the

knots for the splines were chosen subjectively but previous

studies have shown how the overall conclusions are

insensitive to the configuration of the knots [19, 32]. We

also carried out sensitivity analyses that confirmed our

results were insensitive to the knot positioning.

In addition to including the main effects of age at diag-

nosis, risk category, and treatment in the model, we con-

sidered possible interaction effects. The effect of treatment

was modified by age (p = 0.0025) and by risk category

(p = 0.031). The proportional excess hazards assumption

was tested by evaluating the statistical significance of

interaction terms between each covariate and the time scale.

There was evidence of all effects being time-dependent

(p (age) \0.001, p (risk category) = 0.0128 and p (treat-

ment)\0.001). The final model consisted of all main effects

as well as the statistically significant interaction terms.

The model was estimated using the stpm2 module in the

Stata software (StataCorp. 2009 Stata Statistical Software:

Release 11. College Station, TX: StataCorp LP).

Estimation of crude probabilities of death from cancer

and other causes

The crude probability of death due to cancer, Pcr; can tð Þ,
was calculating after having fitted a relative survival model

by evaluating

Pcr; canðtÞ ¼
Z t

0

S� uð ÞR uð Þk uð Þdu:

Here, R(u) and k(u) denote the relative survival and excess

mortality, respectively, estimated from the flexible parametric

model, whereas S� uð Þ represents the expected survival in the

general population. Similarly, the crude probability of death

due to other causes than cancer,Pcr; oth tð Þ, can be calculated

using

Pcr; othðtÞ ¼
Z t

0

S� uð ÞR uð Þh� uð Þdu

where the only difference is that k(u) has been substituted

by h�ðuÞ denoting the expected mortality rate in the general

population. Both S� uð Þ and h�ðuÞ are assumed known

and were retrieved from the human mortality database

(www.mortality.org). The above integrals were evaluated

numerically, and the variance estimates that were used to

estimate confidence intervals were obtained using post-

estimation commands to the stpm2 module in Stata.
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