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Abstract
Recent advances in machine learning methods have created opportunities to eliminate unfairness from algorithmic deci-
sion making. Multiple computational techniques (i.e., algorithmic fairness criteria) have arisen out of this work. Yet, urgent 
questions remain about the perceived fairness of these criteria and in which situations organizations should use them. In this 
paper, we seek to gain insight into these questions by exploring fairness perceptions of five algorithmic criteria. We focus 
on two key dimensions of fairness evaluations: distributive fairness and procedural fairness. We shed light on variation in 
the potential for different algorithmic criteria to facilitate distributive fairness. Subsequently, we discuss procedural fairness 
and provide a framework for understanding how algorithmic criteria relate to essential aspects of this construct, which helps 
to identify when a specific criterion is suitable. From a practical standpoint, we encourage organizations to recognize that 
managing fairness in machine learning systems is complex, and that adopting a blind or one-size-fits-all mentality toward 
algorithmic criteria will surely damage people’s attitudes and trust in automated technology. Instead, firms should carefully 
consider the subtle yet significant differences between these technical solutions.

Keywords  Fairness · Machine learning · Distributive fairness · Procedural fairness · Algorithm design

Introduction

Machine learning (ML) is appealing for organizations 
because it reduces tedious tasks and can enhance decision 
performance in situations where human bias and errors are 
likely (Miller, 2018; Pezzo & Beckstead, 2020; Silverman 
& Waller, 2015). As such, managers increasingly rely on 
ML algorithms to make decisions. Yet, the rise of artificial 

intelligence tools has also sparked new ethical challenges 
for business and society (Greenwood et al., 2020; Kim & 
Scheller-Wolf, 2019; Leicht-Deobald et al., 2019; Martin, 
2019a; North-Samardzic, 2019).

One crucial challenge involves ensuring that ML mod-
els make decisions that are fair and inclusive. This area of 
research is active in computer science. It has led to the devel-
opment of many statistical techniques, known collectively 
as fairness criteria, that embed notions of fairness into the 
design of algorithms. However, researchers have primarily 
conducted this work without considering people’s percep-
tions of these criteria. Consequently, we lack an understand-
ing of whether individuals believe they are fair—an impor-
tant predictor of people’s willingness to trust and support 
algorithmic decisions as well as organizations that imple-
ment them (McFarlin & Sweeney, 1992; Newman et al., 
2020). It is further unclear whether relevant differences exist 
in how people perceive these metrics. If found, such varia-
tion can be used to inform when managers and developers 
should apply a particular criterion, if at all, as they are often 
mutually incompatible.

To address these questions, we explore the perceived fair-
ness of five algorithmic criteria proposed in the computer 
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science literature. Using an organizational justice theory 
lens, we focus on two key elements that shape individuals’ 
fairness perceptions—distributive fairness (i.e., the fairness 
of decision outcomes) and procedural fairness (i.e., the fair-
ness of decision processes). Our analysis leads to several 
insights. First, we shed light on variation in the potential 
for different algorithmic criteria to facilitate distributive 
fairness. More broadly, we discern that statistical solu-
tions for fairness tend to emphasize distributive concerns. 
Subsequently, we discuss procedural fairness and propose 
a framework for understanding how algorithmic criteria 
relate to essential aspects of this construct, which helps to 
identify when a specific criterion is suitable. From a practi-
cal standpoint, our research might motivate changes to the 
way managers and developers oversee ML systems. Rather 
than adopting a blind or one-size-fits-all mentality toward 
fairness criteria, which will surely damage people’s attitudes 
and willingness to accept algorithmic decisions, we advise 
practitioners to carefully consider the subtle yet significant 
differences between these technical solutions.

Background of Fairness in ML

ML is the field of computer science referring to algorithms—
a set of machine-computable instructions that solve a prob-
lem in a finite number of steps—which derive patterns from 
prior data. ML is at the intersection of computer science, sta-
tistics, linguistics, and mathematics as a research field. The 
key objective of ML is to enable predictions that improve as 
additional data becomes available to the algorithm. While 
ML tools are promising in providing substantial increases 
in organizational efficiency and cheaper implementation of 
specific tasks, significant shortcomings should not be over-
looked, including those that may negatively impact fairness. 
Only recently did fairness and ethics issues begin to take 
a more prominent role in ML scholarship by emphasizing 
that developers should expect an approach of “awareness” to 
the problem of fairness as part of the development process 
(Dwork et al., 2012). This view has given rise to the subfield 
of fairness in ML. However, it is essential first to understand 
how ML models operate in practice.

ML involves the use of computer algorithms to create 
models from data automatically. These algorithms learn 
from existing labeled datasets where developers label the 
observed outcomes for every predictor variable, otherwise 
known as a feature (James et al., 2013). For example, a bank 
may have data profiles of applicants who filed for a mortgage 
application and the bank’s decision for each applicant. The 
developer then splits this labeled dataset into a training set 
and a test set. This process allows the ML model to train 
or tune its parameters to fit the data but leaves out part of 
the known (labeled) data to verify whether the algorithm 

produces correct predictions (Teodorescu, 2017). For a 
binary criterion variable, such as hiring a job candidate or 
not, the developer can categorize the outcome as follows: 
true positive (the organization hires the candidate), true 
negative (the organization rejects the candidate), false posi-
tive (the algorithm predicts the organization will hire the 
candidate, but it rejects the candidate), and false negative 
(the algorithm predicts the organization will reject the can-
didate, but it hires the candidate). The developer then uses 
these four values to determine the accuracy of the algorithm.

Accuracy represents the ratio of correct predictions 
(actual hires, actual rejections) versus the total number of 
prediction attempts. Although accuracy is the primary and 
often default measure used by programers to determine the 
performance of an algorithm, it does not capture any of the 
nuances in Type I or Type II errors (for an overview of types 
of classification errors and costs of such errors in differ-
ent fields, see Martin, 2019b). More broadly, accuracy is 
conceptualized solely in terms of predicted outcomes based 
on a test set—comparing the correct responses to predicted 
responses and counting the correctly predicted against total 
attempts.1

It is noteworthy that designing and managing algorithms 
from a perspective of accuracy says virtually nothing about 
notions of fairness, defined in computer science as lack of 
“any prejudice or favoritism toward an individual or group 
based on their inherent or acquired characteristics” (Mehrabi 
et al., 2019, p. 1). Algorithms that maximize the model's 
prediction accuracy may behave differently toward differ-
ent subgroups within the data, leading to misclassifica-
tion errors and unfair bias. For instance, a teacher may be 
unfairly deemed a poor worker by an ML model due to age, 
leading to their wrongful dismissal (O'Neil, 2016). A more 
well-known example is the recidivism prediction system 
COMPAS which discriminated against defendants based 
upon their race and gender (Brennan et al., 2009).

In response to these prediction pitfalls, the subfield of 
fairness in ML has focused on engineering algorithms that 
mathematically incorporate fairness ideals while maintain-
ing a level of accurate performance. Many fairness criteria 
have arisen from this work (Hardt et al., 2016; Teodorescu 
& Yao, 2021). Each criterion provides a narrow definition 
of fairness, as it must for the sake of formalism, which are 
not all satisfiable concurrently. In other words, there is no 
one universally accepted conceptualization of fairness in ML 
(Verma & Rubin, 2018). The present article discusses five 
of the most popular fairness criteria in computer science: 
fairness through unawareness, demographic parity, accuracy 

1  Actual human operators label the outcomes in the case of super-
vised learning. This paper assumes that the developers train the ML 
model on a training set created using human input.
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parity, equality of opportunity, and equalized odds. Unlike 
more inscrutable ML, researchers operationalize these defi-
nitions in terms of their tradeoffs between fairness and per-
formance accuracy (Martin, 2019b).

The most straightforward criterion is fairness through 
unawareness, where variables deemed sensitive to unfair-
ness, such as gender, age, ethnicity, and disability status, are 
dropped from the prediction model. In theory, this approach 
would make the ML model unaware and unable to discrimi-
nate based upon sensitive characteristics. However, as some 
of these variables tend to highly correlate with other features 
in the data that do end up in the model or deduced from 
other variables (the issue of “redundant encoding”; Bird 
et al., 2019), this approach simply does not work well. It 
may end up perpetuating discrimination while its overseers 
are unaware of it (Hardt et al., 2016).

Moving beyond this criterion, which is the same as not 
checking for discrimination by the algorithm, there are ‘fair-
ness-aware’ approaches, four of which we focus on here: 
demographic parity, accuracy parity, equalized odds, and 
equality of opportunity. While each of these criteria presents 
unique tradeoffs in fairness versus accuracy, they all broadly 
seek to ensure fairer outcomes across different subgroups.

A Note on Protected Attributes

It is important to note that in addition to utilizing fairness 
criteria, a separate critical step in developing fairer ML sys-
tems involves determining which features in a training 
dataset constitute protected attributes. Protected attributes 
represent demographic features such as race, gender, age, 
sexual orientation, disability status, marital status, ethnicity, 
national origin, and socioeconomic status. If a feature in the 
dataset represents a protected attribute, developers should 
never use it as a predictor in the ML model.

The computer science literature has historically relied 
upon legally protected characteristics when determining 
what qualifies as a protected attribute. In the United States, 
these protected characteristics are codified into law through 
equal opportunity in hiring (FEEO), credit lending (ECOA), 
non-discrimination based on gender or race (Civil Rights 
Act Title VII 1964), and non-discrimination based on dis-
ability (ADA 1990, Rehabilitation Act 1973). Though legal 
safeguards and laws may only capture a small strand of char-
acteristics that people believe merit protection in a given 
situation, this is a sensible starting point as fairness scholar-
ship in computer science is relatively new. Indeed, the legal 
field had implemented the concept of a protected class long 
before ML existed, representing different categories within 
a given protected attribute. The idea has expanded over time 
through acts of Congress in the United States (as were the 

laws mentioned above) and through legal scholarship debate 
(e.g., Clarke, 2017; Schwartz, 2009). As such, it was perhaps 
the most convenient method to use an already-defined set of 
protected categories from the legal literature to begin testing 
for fairness in a newer field such as ML.

Questions remain regarding whether this is an ethical or 
socially desirable approach to fairness. For example, laws 
usually take longer to negotiate or litigate than creating new 
technology; hence there is often a lag between what compa-
nies may do in practice or what is considered fair by society 
versus what is deemed lawful. Who should decide whether 
someone is part of a protected class is important and has 
real consequences for individuals’ livelihood. Currently, 
the court system mainly settles this issue (Clarke, 2017). In 
the field of ML, however, there is no universally accepted 
solution for determining whether certain features or ambigu-
ous cases in the data should be protected beyond existing 
protected attributes. Furthermore, current lawmaking and 
litigation systems for selecting protected attributes lack input 
from ethicists on what should qualify as a protected class. 
We discern that this is an opportunity to change the status 
quo and that business ethics is integral.

Algorithmic Fairness Criteria: Insights 
from Organizational Justice Theory

Business ethicists sit at the crossroads between business, 
technology, and society (Martin & Freeman, 2004). We 
integrate theory from organizational justice scholarship 
to provide a deeper understanding of algorithmic fairness 
criteria with this consideration in mind. This knowledge 
is critical for theoretical reasons as well as practical ones. 
The central theoretical problem is that organizations and 
developers must choose between the algorithmic criteria, 
as they are mutually incompatible. Yet, we do not know 
how to people will react to the use of a particular criterion. 
The central practical problem is that the advice we can 
offer to organizations who wish to implement algorith-
mic criteria is lacking, potentially creating friction with 
employees, customers, partners, and broader communities 
(Lee, 2018; Newman et al., 2020).

Organizational Justice Theory

Organizational justice theory is broadly concerned 
with people’s perceptions of fairness in the workplace, 
which includes distributive and procedural components 
(c.f. Colquitt, 2012; Colquitt & Rodell, 2015; Goldman & 



1086	 L. Morse et al.

1 3

Cropanzano, 2015; Greenberg, 2011; Khan et al., 2015).2, 3  
Distributive fairness refers to the perceived fairness of 
outcomes and is judged according to how fair a decision 
is in its effect on the distribution of rewards and resources 
(Adams, 1965; Colquitt et al., 2001). Procedural fairness 
reflects the perceived fairness of decision processes, such 
as how decisions are made (e.g., Are procedures consist-
ent? Are decisions based on accurate and bias-free infor-
mation?) It also reflects how much control individuals 
have over the decision process (e.g., Are there opportuni-
ties for correcting flawed decisions?) (Leventhal, 1980; 
Thibaut & Walker, 1975).

In the sections that follow, we describe the distributive 
and procedural fairness of five popular computational solu-
tions for resolving bias in ML. In doing so, we identify a 
central theme across this research: algorithmic criteria tend 
to emphasize distributive concerns. Informed by insights 
from organizational justice theory, we subsequently explore 
whether procedural fairness can be enhanced and consider 
the role of contextual influences in shaping justice experi-
ences. We specify some situations in which developers and 
managers might increase perceptions of procedural fairness 
for each criterion, which provides a foundation for under-
standing when a given fairness metric may be suitable.

Algorithmic Criteria Emphasize Distributive Fairness

Although our understanding of organizational justice 
research in the ML landscape is nascent, computer science 
scholars are beginning to recognize that they have designed 
fairness metrics to focus almost exclusively on distributive 
fairness (Saxena et al., 2019; Selbst et al., 2019). Indeed, a 
recent review by Robert et al. (2020) noted that researchers 
operationalize technical definitions of algorithmic fairness 
based on the equity of the outcomes received, which involves 
comparing one's inputs to obtained outputs relative to others. 
Figure 1 describes five fairness criteria that are among the 
most popular in computer science and the extent to which 
they achieve distributive fairness ideals. These metrics rep-
resent two broad approaches to fairness that have received 
substantial attention in the literature: a blindness approach 
(i.e., fairness through unawareness) and a group-focused 
approach (i.e., ensuring equality across one or several meas-
ures for all categories of a protected attribute).

Within the group-focused approach we further discern 
that researchers design some metrics to achieve parity ideals 
(i.e., an equal distribution of outcomes among subgroups 
despite differences, such as demographic parity and accu-
racy parity). At the same time, they develop other metrics to 
achieve equity ideals (i.e., an equal distribution of opportuni-
ties based on the circumstances of each subgroup, such as 
equality of opportunity and equalized odds). For simplicity, 
we focus on two metrics for each subtype in this paper. We 
expect that our critical analysis generalizes to other criteria 
that fall within these subtypes as they are considered the 
same from a distributive fairness perspective.

Importantly, we observe that some computational solu-
tions, such as fairness through unawareness, likely achieve 
relatively low levels of distributive fairness. In contrast, 

Fig. 1   Distributive fairness of 
algorithmic criteria and their 
technical effort

3  In line with organizational justice scholarship, we use the terms 
fairness and justice interchangeably. Although differences exist 
among the concepts, both are geared toward promoting equity and 
avoiding bias.

2  Organizational justice researchers have also studied fairness as a 
single dimension (e.g., Ambrose & Schminke, 2009) and as a multi-
dimensional construct comprising distributive, procedural, and inter-
actional fairness components (Colquitt et al., 2013; Karriker & Wil-
liams, 2009).



1087Do the Ends Justify the Means? Variation in the Distributive and Procedural Fairness of Machine…

1 3

others adopt more proactive techniques for mitigating bias 
and thus achieve increasingly fairer outcomes. Yet, as indi-
cated by the y-axis in the figure, each deeper intervention 
requires more significant technical effort and comes with a 
greater risk of over-correcting and forcing equality where it 
is not expected (Dwork et al., 2012).

Blindness Approach: Fairness Through Unawareness

The most commonly applied approach in organizations is 
fairness through unawareness. Developers consider this 
metric “unaware” such that it will simply ignore fairness 
information by leaving out protected attributes from the 
data such as age, sex, and race/ethnicity. It is not surpris-
ing that developers and managers have favored this tech-
nique seeing that organizations have historically adopted 
similar approaches for managing diversity and equality. For 
instance, the colorblind diversity strategy, defined by a belief 
that organizations should treat people equally no matter their 
cultural background, is still used in many occupational set-
tings and involves denying or not “seeing” race or other 
sensitive attributes (Apfelbaum et al., 2010; Podsiadlowski 
et al., 2013). Although colorblind ideologies may appear 
to function successfully on the surface, thereby promoting 
an illusion of fairness in the short-term, research indicates 
they are ineffective in rooting out perceived bias and instead 
perpetuate social inequities over time (Ely & Thomas, 2001). 
Indeed, ignoring the plausibility of discrimination often 
results in stronger perceptions of unfairness and worse out-
comes for members of minority groups (Purdie-Vaughns & 
Eibach, 2008).

Fairness through unawareness likewise fails to reduce dis-
crimination and prejudicial outcomes in practice. A critical 
flaw of this criterion is that ignoring protected attributes 
does not change the fact that other variables in an ML model 
may strongly correlate with these attributes. These correla-
tions effectively serve as proxies for the removed variables, 
making a mockery of the claim to be unaware.

For example, the algorithm used to determine credit lines 
for an Apple credit card did not include gender as an input 
yet learned to rely on inputs highly correlated with gender, 
such as historical salary data that contained hidden preju-
dices against women. Public responses to the algorithm’s 
credit lending decisions were numerous and hostile, as 
evidenced by Twitter profiles of affected applicants. Even 
Apple’s co-founder Steve Wosniak raised fairness concerns, 
questioning “whether the card might harbor some misogy-
nistic tendencies” (Knight, 2019, para. 9). Taken together, 
we contend that fairness through unawareness does little to 
ensure that individuals will perceive a fair distribution of 
rewards and resources in algorithmic decisions. This crite-
rion, therefore, achieves an unacceptably low level of dis-
tributive fairness.

Group‑Focused Parity Approach: Demographic Parity 
and Accuracy Parity

Demographic parity is a well-known fairness intervention in 
which the algorithm reaches a positive outcome at the same 
rate irrespective of the categories of a protected attribute. 
For example, if a firm’s hiring rate for one gender is 20%, 
then the hiring rate for all other values of gender should 
also be 20% irrespective of other constraints. This approach 
is more accountable than fairness through unawareness 
because the developer makes a conscious decision to tune 
the algorithm. In the hiring scenario, the developer ensures 
that the positive outcome (a recommended hire) is independ-
ent of gender. Thus, the sensitive variable is not discarded 
but rather a part of the process of ensuring equitable out-
comes (Kusner et al., 2017). From an organizational justice 
standpoint, demographic parity promotes greater distributive 
fairness than does fairness through unawareness. Particular 
challenges remain, however, that restricts this approach's 
promise in real-world settings.

Demographic parity is concerned with preventing adverse 
or disparate impacts for disadvantaged groups, yet a signifi-
cant downside is that it often fails to reach fair outcomes in 
practice. In particular, demographic parity cannot deal with 
differences between subgroups other than to assume that 
success rates are equal. In other words, it neglects individual 
unfairness, sacrificing in some cases qualified individuals 
to obtain equality at the group level. Consider a hiring sce-
nario in which an organization wishes to achieve equal hir-
ing success rates across two groups, group A and group B. 
Candidates from group A tend to be less qualified than the 
least-qualified candidate in group B. If demographic parity 
is applied, the organization would hire from the two groups 
at the same rate; however, this would likely create percep-
tions of unfairness for the qualified but rejected candidates in 
group B. In this example, demographic parity might initially 
lead management to form impressions that hiring outcomes 
are fairer due to the parity created across the two groups. 
Yet, these judgments may soon fade as people begin to real-
ize that the algorithm overlooks qualified applicants from 
one particular group.

This outcome can also engender negative attitudes toward 
candidates who would not otherwise have qualified but were 
hired to meet the parity requirement, potentially leading to a 
self-fulfilling prophecy. Imagine a company that rigorously 
hires male job applicants at a rate of 35% and indiscrimi-
nately hires female applicants at the same rate (Ghassami, 
2018). Although the acceptance rate in both gender groups is 
the same, the low effort to ensure that the algorithm chooses 
the best female candidates under demographic parity will 
likely cause female hires look like poor performers. The 
result may establish a negative track record for the female 
group.
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Like any simple solution to bias in ML, demographic 
parity is by design a blunt instrument and tends to fix one 
distributive fairness problem at the cost of exacerbating oth-
ers. Notably, demographic parity can compound outcome-
based bias against those who are members of multiple sensi-
tive categories. For instance, while developers can enforce 
equality across genders, as can equality across races, there 
is no protection against the possibility that such methods 
will exacerbate bias against specific gender-race pairings or 
other combinations of sensitive attributes (Teodorescu et al., 
2021). Such errors in fairness intensify as the data become 
more imbalanced across sensitive groups, including multi-
ple-protected groups. Thus, we propose that demographic 
parity may obtain, at best, perceptions of moderately fairer 
outcomes (i.e., a moderate level of distributive fairness) in 
practice depending on the data and parameters under which 
the algorithm must optimize.

A closely related cousin to demographic parity is accu-
racy parity. As previously discussed, the default algorithm 
performance measure in ML is accuracy, operationalized 
as the ratio between the count of correctly predicted out-
comes to the overall count of prediction attempts. While 
this measure does not distinguish between Type I and Type 
II errors, optimizing an algorithm is intuitive and straightfor-
ward. An extension of this measure to fairness would involve 
subsetting the data by the protected attribute and calculating 
the accuracy per subgroup (Zhao et al., 2019). In this case, 
the algorithm is considered fair in computer science if the 
subgroups’ accuracy is equal (or close). Accuracy parity is 
well-liked by computer scientists because accuracy is often 
the default measure in standard ML packages. Researchers 
calculate accuracy by running the trained model onto the 
test set to infer the expected behavior of the model out of 
the sample.

However, like demographic parity, several constraints are 
associated with accuracy parity that inhibit the ability to 
achieve fairer outcomes, prompting more moderate percep-
tions of distributive fairness in occupational settings. First, 
we may be trading off the false positives of one group for 
another group’s false negatives and not know about it. Sec-
ond, accuracy parity works poorly for datasets where the 
classes are imbalanced (i.e., there is no even division across 
subgroups). As an extreme example, let us assume we have a 
dataset where the model rejects 95% of job applicants, irre-
spective of other attributes. A classifier that simply returns 
“reject” for all applicants would have an accuracy of 95% 
and pass accuracy parity. This outcome, of course, would 
not be perceived as fair to the applicant pool. Thus, we turn 
to more sophisticated techniques that rely on more than just 
accuracy.

Group‑Focused Equity Approach: Equality of Opportunity 
and Equalized Odds

Equality of opportunity measures whether individuals who 
should qualify for an opportunity have the same likelihood 
of being deemed qualified by the ML model regardless of 
the value of a protected attribute. Like demographic and 
accuracy parity, this fairness metric focuses on equalizing 
positive outcomes. Specifically, it ensures that, whatever 
the value of the protected attribute, the model equalizes the 
rate of a predicted positive result for a qualified individual 
(Hardt et al., 2016; Kusner et al., 2017). Thus equality of 
opportunity is a more targeted metric that allows for demo-
graphic differences but levels the playing field by requiring 
that unfair/erroneous judgments, or false-positive rates, be 
equitably distributed. In an organizational hiring example, 
while strong male and female candidates may be of compa-
rable quality, the algorithm could detect a significant differ-
ence among the weak candidates across gender. In this case, 
weak corresponds to job performance for the firm's position, 
such as females in the weak job performance category being 
more qualified candidates than males.

The equalized odds fairness metric is a stricter version of 
equality of opportunity. It adds to the requirements that the 
true positive rate and the false positive rate are equal across 
categories of the same protected attribute (Hardt et al., 
2016). If false positive rates significantly differ between 
two categories,  individuals who belong to  the one with 
lower false positives may feel that decision outcomes are 
biased and thus feel demeaned. Essentially, instead of hav-
ing one equality condition, such as a true positive rate that 
is equal across sample subgroups by a protected attribute, 
we must now satisfy a system of two equations. It involves 
strict equality (in the pure mathematical definition) across 
both true positive and false positive rates across all popula-
tion subgroups by protected attributes. The requirement of a 
system of equations and strict equality makes this criterion 
more challenging to fulfill.

Because equality of opportunity and equalized odds take 
a more nuanced and narrow approach to ensuring equita-
ble outcomes across different subgroups, we suggest they 
potentially produce higher perceived levels of distributive 
fairness. By the same token, they tend to address very tar-
geted forms of outcome-based unfairness, which results in a 
scenario where plugging one leak could result in the emer-
gence or worsening of other leaks.

Overall, reflecting on these five criteria, we broadly con-
clude that computer scientists have made rapid progress in 
engineering algorithms that incorporate distributive fair-
ness concerns. However, there is still no known roadmap 
for applying these metrics so that people will perceive 
algorithmic decisions as fairer. This leads to the question of 
where to go from here. How can managers and organizations 
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determine whether a particular criterion is the “right” one? 
To answer this question, we draw attention to the role of pro-
cedural fairness, which we argue can provide a more robust 
understanding of when individuals will perceive a specific 
criterion as suitable.

Procedural Fairness and Algorithmic Criteria

Procedural fairness, defined as the perceived fairness of 
the methods used to make decisions (Colquitt et al., 2001), 
plays a vital role in shaping how people react to decisions. 
Six components underlie procedural fairness: consistency, 
accuracy, ethicality, representativeness, bias suppression, 
and correctability (Leventhal, 1980). Consistency reflects 
in the uniformity of decision procedures across people and 
time. Accuracy represents the extent to which methods 
utilize valid, high-quality information. Ethicality captures 
whether practices uphold moral standards and values. Rep-
resentativeness demands that procedures duly consider the 
needs and concerns of the entire group. Bias suppression 
requires that decision procedures are impartial and prevent 
favoritism by the decision maker. Lastly, correctability cap-
tures techniques that provide opportunities to challenge or 
correct flawed decisions.

Procedural fairness is essential because “just processes 
signal that [individuals] are valued and esteemed by their 
referent social groups” (Cropanzano & Stein, 2009, p. 200). 
Procedures also signal the decision maker's goals, such as 
intentions to maximize societal welfare, which provides vital 
information about why the decision maker made a particu-
lar choice (Tyler, 2003). While distributive and procedural 
fairness mutually influence justice evaluations, procedural 
fairness has been considered the more robust predictor of 
the two (Thibaut & Walker, 1975; van den Bos et al., 2001). 
Indeed, people are more willing to support an unfair out-
come when they feel the process is fair. They especially 
rely on procedural fairness when information about a deci-
sion maker’s trustworthiness is uncertain (van den Bos et al., 
1998), which is often the case for artificial intelligence sys-
tems (Glikson & Woolley, 2020).

Conversations about procedural fairness in ML are 
beginning to emerge across the fields of computer science 
and management; however, this work has almost entirely 
focused on comparing the procedural fairness of algo-
rithms to humans (e.g., Bigman et al., 2020; Lee, 2018; 
Newman et al., 2020). To date, we still know very little 
about the procedural fairness of different algorithmic cri-
teria and whether relevant differences exist in how people 
perceive them (for exceptions, see Grgić-Hlača et al., 2018 
and Lee et al., 2019). We encourage scholars and practi-
tioners to develop a deeper understanding of procedural 
fairness in this domain.

Procedural Fairness and the Role of Contextuality

While there may be multiple ways to promote procedural 
fairness in ML, we examine the situational context’s power 
to shape justice perceptions. We chose to focus on situa-
tions because managers do not always know an algorithm's 
design and data structure. Still, they may more readily take 
responsibility for learning the contexts in which algorith-
mic criteria are likely to be viewed as procedurally fair.

We reason that if organizations or developers apply a fair-
ness metric in the right setting, people will perceive it as pro-
cedurally fairer. Our discussion primarily draws from prior 
organizational justice research indicating that people react 
more positively to decisions when the situational context 
heightens the salience of procedural fairness components 
(Farrar et al., 2020; Mathur & Sarin Jain, 2020). For exam-
ple, fairness evaluations are higher when contextual condi-
tions signal a decision maker’s normatively ethical goals to 
others (as opposed to productivity goals, which often vio-
late societal moral standards). This condition satisfies the 
ethicality component of procedural fairness (Barrett-Howard 
& Tyler, 1986). Presumably, situations that signal multiple 
components will lead to stronger perceptions of procedural 
fairness.

Our assessment of the capacity for different algorithmic 
criteria to signal procedural fairness components is depicted 
in Table 1. These insights translate to specific contextual 
applications for each metric. For simplicity, we focus on 
diversity and inclusion scenarios to illustrate the value of 
our analysis. We intend to demonstrate proof of concept, not 
develop a comprehensive solution. Further, the situational 
examples we discuss may change according to the prevailing 
notions of fairness in a particular society at a given time. It 
is also important to note that our distinctions among these 
criteria derive from their general approach toward fairness 
(i.e., blindness, group-focused with emphasis on parity vs. 
equity). We expect that other metrics that fall within these 
categories are viewed similarly from a procedural fairness 
perspective.

Blindness Approach: Fairness through Unawareness

We begin with fairness through unawareness, which enforces 
willful blindness to protected attributes linked to unfairness. 
Currently, this method is the default approach for organi-
zations and developers when implementing ML models. 
However, the prevalence of fairness through unawareness 
stems more from its technical practicality and capacity to 
make decision processes remarkably consistent compared 
to human decision making, yet it severely neglects the 
remaining procedural fairness components. Because this 
metric does little to satisfy multiple procedural concerns, it 
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is doubtful whether individuals would view it favorably in 
any diversity and inclusion context.

Consider the case of Amazon’s now-disbanded recruit-
ment model that reviewed job candidates’ resumes (Das-
tin, 2018). Originally intended to filter through hundreds 
of resumes to select qualified candidates (using consistent 
procedures), Amazon’s model took an unexpected turn when 
developers discovered it to have developed a bias against 
women. The bias emerged from the data used to train the 
algorithm, which consisted of actual resumes submitted to 
Amazon over ten years. Because most job applicants in the 
data pool were male, the program determined that men were 
more qualified than women. Specifically, the model learned 
to downgrade candidates who belonged to all-female extra-
curricular groups or had graduated from all-women’s col-
leges—predictors highly correlated with gender.

In the Amazon incident, the use of fairness through una-
wareness made it challenging to determine which character-
istics the ML model was optimizing on, including whether 
protected attributes were imputed using proxy information. 
It called into question whether the algorithm achieved accu-
racy, representativeness, and bias suppression. Likewise, 
the design of fairness through unawareness did not provide 
interpretable signals to the public about the ML model's ethi-
cality, such as moral motives to hire more diverse talent. It 
also lacked mechanisms for rectifying flawed choices (cor-
rectability). A likely result is that people struggled to assess 
whether the algorithm's decisions were procedurally fair. 
By maintaining willful blindness, there is no practical way 
to counter indirect discrimination and bias when it arises. 
Together, we believe these shortcomings led to negative per-
ceptions of fairness, which intensified as unfair outcomes 
inevitably emerged.

Accordingly, we argue that fairness through unaware-
ness is rarely, if ever, suitable for practical use in diversity 
and inclusion contexts. Even if there is strong evidence that 
the algorithm’s features do not correlate with the protected 
attributes—which is seldom, if ever, true—this approach 

cannot make procedural fairness components salient beyond 
consistency. Thus, people will likely perceive it as procedur-
ally unfair. As long as algorithms are deployed in real-world 
settings and can influence individuals' fairness experiences, 
we caution against the use of fairness through unawareness.

That said, we acknowledge a possible exception to its 
preclusion. Namely, fairness through unawareness may be 
appropriate when organizations use ML models for purely 
mechanical, simple tasks. These tasks would not involve pro-
tected attributes in the data or directly impact human beings. 
Examples include character recognition, object classifica-
tion, and spam classification. Research has shown that peo-
ple regard fairness through unawareness favorably in such 
situations (Lee, 2018), likely because the model’s decisions 
to not personally affect individuals (otherwise known as low 
outcome dependence in the field of social psychology; van 
der Toorn et al., 2011).

Group‑Focused Parity Approach: Demographic Parity 
and Accuracy Parity

Next, we explore the procedural fairness of demographic 
parity and accuracy parity. Given the technical constraints 
associated with these metrics in achieving fairer outcomes, it 
is important that organizations implement them in the right 
setting so that the procedural gains can outweigh potential 
distributive losses.

Like fairness through unawareness, demographic parity 
and accuracy parity can provide high consistency in deci-
sion procedures across persons and over time. Indeed, algo-
rithms almost always surpass consistency levels achieved 
by human decision makers (Lee et al., 2019). In contrast to 
fairness through unawareness, however, demographic parity 
and accuracy parity ensure that decisions are independent of 
protected attributes, yielding higher accuracy.

These criteria are also designed with moral principles 
in mind, taking active steps to prevent disparate treatment 
and impact for disadvantaged groups. Thus, we argue they 

Table 1   Framework of algorithmic criteria and their relation to procedural fairness components

Fairness metrics Ability to signal procedural fairness components Contextual applications: 
diversity and inclusion

Consistency Accuracy Ethicality Representativeness Bias suppression Correctability

Fairness through una-
wareness

High Low Low Low Low Low Rarely suitable

Demographic Parity,
Accuracy Parity

High Moderate High High Moderate Low May be applied to 
improve representation 
of minority groups, 
such as hiring decisions

Equality of Opportunity,
Equalized Odds

High Moderate High Moderate High Low May be applied to remove 
barriers to entry, such as 
in interview and college 
admissions processes
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have higher potential to suppress bias as it arises in the deci-
sion process and deliver more interpretable signals to others 
about an ML model’s ethicality. Ethicality may be especially 
easy to make salient in practice as managers and developers 
might only need to provide a basic understanding of these 
metrics to users to convey their moral intentions. On the 
other hand, the technical limitations of these criteria may 
make it tricky for practitioners to demonstrate that bias sup-
pression has been achieved, and so we expect more mod-
erate effects on fairness judgments. Not to be overlooked, 
these criteria do little to fix poor or flawed decisions when 
they arise. Thus, they are likely interpreted as providing low 
correctability.

Perhaps most significantly, we contend that demographic 
parity and accuracy parity are unique in their powerful 
potential to address concerns related to representative-
ness.4 As part of their underlying structure, demographic 
parity and accuracy parity explicitly represent all affected 
subgroups and ensure equal rates of success between them. 
Accordingly, we encourage organizations to apply these two 
criteria in situations where concerns for representativeness 
are serious. Doing so is likely to enhance the perceived fair-
ness of these algorithms.

For example, managers who wish to hire more diverse 
talent may implement demographic parity as part of the 
automated stages of the job interview process. Managers 
should also explain their use of this criterion to job candi-
dates. Because the design of demographic parity can signal 
that members of underrepresented groups are valued and 
accepted, it may strengthen minority candidates’ sense of 
belongingness and increase their trust in the ML model (Val-
cke et al., 2020). In some cases, there is intriguing evidence 
that deploying demographic parity (or accuracy parity) can 
attract more minority candidates to an organization and 
boost a minority group's social standing. For instance, Hu 
and Chen (2018) showed that applying demographic par-
ity to hiring decisions combatted racial inequality in labor 
markets by temporarily increasing the number of minorities 
hired for entry-level positions. This subsequently improved 
the societal reputation of the minority group and contributed 
to their downstream career success. Demographic parity and 
accuracy parity, then, may strongly enhance perceived fair-
ness when properly applied.

Group‑Focused Equity Approach: Equality of Opportunity 
and Equalized Odds

Finally, we turn to equality of opportunity and equalized 
odds, which we have argued can obtain fairer outcomes than 
the previous metrics. Given their distributive strengths, firms 
might initially conclude that these metrics are the front-
runners for improving perceived fairness. Yet, they are also 
more challenging than others to implement in real-world 
settings due to their strict constraints. With these tradeoffs 
in mind, we examine the procedural fairness of these two 
criteria.

Similar to the other metrics discussed, we observe that 
equality of opportunity and equalized odds deliver highly 
consistent decision making procedures due to their auto-
mated nature. They also do not take correctability into 
account in the event of bad outcomes or errors, at least 
not without human intervention. We further observe that 
equality of opportunity and equalized odds match the 
parity-focused metrics in their capacity to signal accuracy 
and ethicality. First, these metrics ensure that decisions are 
not based on protected attributes, which likely improves 
accuracy perceptions of the ML model. Second, they are 
designed to uphold standards of ethics and morality. For 
instance, equality of opportunity promotes equity ideals by 
ensuring that qualified individuals from different subgroups 
receive positive opportunities at the same rate. Equalized 
odds establishes similar equity between subgroups across 
both positive and negative outcomes.

Importantly, we argue that equality of opportunity and 
equalized odds outshine demographic parity and accuracy par-
ity in their capacity to signal bias suppression. For one, these 
metrics apply more targeted rules to promote fair decision 
making (e.g., requiring that false-positive rates be equitably 
distributed) and thus better prevent preferential treatment from 
arising in the decision process. In the case of equalized odds, 
impressions of neutrality—a key aspect of bias suppression—
may also increase because the decision rules influence every-
one (Solomon et al., 2021). That is, all cases in the dataset are 
affected across both positive and negative outcomes. These 
procedural advances carry some costs with respect to repre-
sentativeness, as different subgroups can be treated unequally 
when equity principles are emphasized; therefore subgroups 
may not be represented in the same way.

Based on this analysis, we suggest that managers and devel-
opers might benefit most by deploying equality of opportunity 
and equalized odds in situations where bias and special treat-
ment are serious concerns. We believe that procedural fair-
ness judgments of these algorithms may be enhanced in such 
contexts. In diversity and inclusion scenarios, this may trans-
late to removing barriers to entry. As an illustration, consider 
the American National Football League (NFL), which cre-
ated the Rooney Rule in 2002 to reduce racial discrimination 

4  Closely related to representativeness is the concept of voice, which 
allows individuals from different subgroups to express their concerns, 
opinions, and values to decision makers as part of the decision pro-
cess (Thibaut & Walker, 1975). While we believe that voice is an 
influential factor to consider when examining perceived fairness, it 
falls outside Leventhal’s (1980) theory of procedural fairness crite-
ria—our current focus—and is thus beyond the scope of this paper.
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when hiring head coaches. The Rooney Rule requires football 
teams to interview at least two external minority candidates 
for head coaching positions and at least one minority candi-
date for other positions, including senior football operations, 
general managers, coordinators, and club presidents (Patra, 
2020). Three years after the NFL implemented this policy, the 
percentage of Black coaches increased from 6% to 22% (Cook, 
2021). We argue that applying equality of opportunity may 
similarly help to level the playing field among job candidates 
in automated phases of the interview process. Organizations 
should explain their use of this criterion to both recruiters and 
job candidates, emphasizing its ability to reduce favoritism and 
close the societal gap between different subgroups.

We expect that equalized odds is more appropriate when 
people care about preventing bias for both positive and 
negative outcomes. Generally speaking, this concern arises 
less frequently in real-world settings. People tend to focus 
more on whether positive opportunities are awarded across 
subgroups and pay less attention to whether adverse oppor-
tunities are equal. This criterion also has stricter technical 
constraints that lead us to question its utility in practice. 
Yet, there are some institutions that may stand to benefit by 
applying equalized odds, at least at certain times and in cer-
tain situations. For instance, universities and colleges may 
wish to implement equalized odds in the automated stages 
of the college admission process. Doing so may help to sig-
nal to the public that applicants from different backgrounds 
are equally likely to be considered if they are qualified (or 
denied if they are unqualified), thereby improving perceived 
fairness.

Discussion

This research has examined essential questions regarding 
the perceived fairness of five algorithmic criteria in ML, 
which has seen little integration with management and ethics 
research to date. Our main objective was to provide a more 
comprehensive understanding of how people may view the 
different criteria through the lens of distributive and proce-
dural fairness, which provides a navigation aid for determin-
ing when a particular metric may be suitable. We shed light 
on variation in the ability for different algorithmic metrics 
to facilitate distributive fairness, noting that obtaining fairer 
outcomes comes at the cost of more technical effort. We 
also examine differences in the extent to which these crite-
ria satisfy conditions of procedural fairness, which informs 
their contextual applications. In the spirit of interdiscipli-
nary scholarship, we sought to provide a robust discussion 
of fairness that offers sufficient breadth and depth. Our 
analysis considers the complex interplay between human 
and machine, technology and organizations, processes and 

outcomes, and inherent tensions between fairness and accu-
racy across the different disciplines.

Theoretical Implications

Several theoretical implications arise from our discussion, 
which suggest future directions. First, the present work illu-
minates the potential for behavioral ethics research to enrich 
our theoretical understanding of ML tools. Looking forward, 
we encourage organizational behavior and ethics scholars to 
further explore the relevance of distributive and procedural 
fairness for algorithmic criteria as we still have much to 
learn. One direction for future work is to examine the extent 
to which our theorizing generalizes to categories of algo-
rithmic criteria not covered in our conceptual analysis. For 
instance, computer scientists have developed metrics that 
emphasize individual fairness and causal reasoning, such 
as fairness through awareness, counterfactual fairness, and 
fairness in relational domains (Lazo, 2020). Thoughtful con-
sideration of the ways in which these criteria may connect to 
distributive and procedural fairness is needed.

In particular, we expect that certain metrics might have 
unique relationships with procedural fairness that extend 
beyond our discussion in this paper. Fairness in relational 
domains, for example, may have pronounced effects on 
both perceived accuracy and bias suppression. This cri-
terion takes a socially rich set of information (individual, 
relational, organizational, and ecological data) into account 
when making decisions (Farnadi et al., 2018). In a perfor-
mance review scenario, fairness in relational domains can 
collectively evaluate managerial opinions of an employee 
based on prior performance reviews while simultaneously 
preventing bias from a particular manager from emerging.

As we did not perform empirical studies in this paper, 
we also encourage future research to test the arguments we 
have put forward in occupational settings. Further, schol-
ars might productively build upon on our work by explor-
ing other situational contexts that might enhance the per-
ceived fairness of algorithmic criteria.

Practical Implications

In addition to theoretical implications for scholars, we also 
offer recommendations for organizations that deploy ML 
systems. As evidenced by corporate mission statements and 
company ethics codes, many, if not most, organizations state 
that they value integrity and ethical conduct. Managers and 
developers may also personally care about fairness, such as 
those who display high levels of moral character (Cohen 
& Morse, 2014; Cohen et al., 2014). For such individuals, 
an obvious implication is to avoid adopting a blindness 
or a one-size-fits-all approach toward algorithmic crite-
ria. Instead, we advise practitioners to carefully consider 
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the conceptual differences among these choices and select 
a metric that best aligns with the situation at hand when 
developing an ML model.

We also strongly recommend that practitioners broaden 
their understanding of the variables that may be sensitive 
to unfairness within a particular dataset. While the current 
standard in computer science is to focus on legally protected 
attributes, there are many more factors that can shape peo-
ple's worldviews of fairness. For example, management 
research has linked organizational tenure (Hambrick et al., 
1996), functional background and values (Jehn et al., 1999), 
politics (Chao & Moon, 2005), physical appearance (Rafaeli 
& Pratt, 1993), attitudes and personality (Harrison et al., 
1998), network ties (Beckman & Haunschild, 2002), and pay 
(Pfeffer & Langton, 1988) to fairness evaluations, though 
these are not legally protected. We acknowledge that these 
characteristics are fluid and likely fluctuate across situations, 
time, and societies. Still, it is incumbent on organizations to 
make concerted and frequent efforts to discern which fea-
tures should be protected when applying a fairness criterion.

Lastly, it is essential to note that while it would be tempt-
ing to simply deploy a fairness metric in a particular situa-
tion and, after the organization achieves some performance 
data, fail to oversee or maintain it, doing so would violate the 
correctability element of procedural fairness. Because cor-
rectability is noticeably absent from the algorithmic criteria 
we have assessed, organizations must offset this weakness by 
tasking humans with monitoring the ML model’s decisions 
and stepping in when errors and bad outcomes arise (Teo-
dorescu et al., 2021). Indeed, humans and machines must 
work together to alleviate unfairness in this new digital age 
of work. Mastering a suite of algorithmic criteria and build-
ing cross-functional talent in management teams with ML 
and business ethics backgrounds would do much to resolve 
the challenges exemplified in our paper.
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