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Abstract
Purpose Programmed death receptor ligand-1 (PD-L1) expression and tumor mutational burden (TMB) are approved screen-
ing biomarkers for immune checkpoint inhibition (ICI) in advanced triple negative breast cancer. We examined these biomark-
ers along with characterization of the tumor microenvironment (TME) between breast tumors (BrTs), axillary metastases 
(AxMs), liver metastases (LvMs), non-axillary lymph node metastases, and non-liver metastases to determine differences 
related to site of metastatic disease.
Methods 3076 unpaired biopsies from breast cancer patients were analyzed using whole transcriptome sequencing and 
NextGen DNA depicting TMB within tumor sites. The PD-L1 positivity was determined with VENTANA PD-L1 (SP142) 
assay. The immune cell fraction within the TME was calculated by QuantiSeq and MCP-counter.
Results Compared to BrT, more LvM samples had a high TMB (≥ 10 mutations/Mb) and fewer LvM samples had PD-L1+ 
expression. Evaluation of the TME revealed that LvM sites harbored lower infiltration of adaptive immune cells, such as 
 CD4+,  CD8+, and regulatory T-cells compared with the BrT foci. We saw differences in innate immune cell infiltration in 
LvM compared to BrT, including neutrophils and NK cells.
Conclusions LvMs are less likely to express PD-L1+ tumor cells but more likely to harbor high TMB as compared to BrTs. 
Unlike AxMs, LvMs represent a more immunosuppressed TME and demonstrate lower gene expression associated with 
adaptive immunity compared to BrTs. These findings suggest biopsy site be considered when interpreting results that influ-
ence ICI use for treatment and further investigation of immune composition and biomarkers expression by metastatic site.

Keywords Metastatic breast cancer · Liver metastasis · Tumor microenvironment · Tumor immune infiltration

Introduction

Inhibition of immune checkpoint regulators, such as pro-
grammed cell death protein-1 (PD-1) and its receptor PD-L1 
have improved cancer treatment outcomes [1]. While PD-L1 
expression and tumor mutational burden (TMB) have been 
used as predictive biomarkers of efficacy to immune check-
point inhibitors (ICI), their expression is often discordant 
with response [2, 3]. Recent meta-analysis of pooled PD-L1 
in patients with breast cancer of different histologies dem-
onstrated that only 24% of tumor, 33% of immune, and 25% 
of both immune and tumor cells expressed PD-L1 [1, 4]. 

The highest PD-L1 expression was seen in triple negative 
breast cancers (TNBC), in patients with higher pathologi-
cal complete response to neoadjuvant chemoimmunotherapy 
[5]. In addition, response to ICIs in patients with metastatic 
TNBC was found to correlate with PD-L1 positivity (PD-
L1+) [6]. However, there are numerous studies in which 
PD-L1 expression did not correlate with response along 
with discordance in PD-L1 expression between the primary 
and metastatic biopsy site, and there is little guidance about 
consideration of PD-L1 expression and TMB with regard to 
tumor biopsy site in the metastatic setting [7–10].

Immune cell topography at different metastatic sites can 
serve as an alternative paradigm to inform response. Immune 
TME profiling of breast tumor metastases using single-cell 
RNA sequencing relative to primary breast tumors revealed Extended author information available on the last page of the article
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greater immune-suppression with T-cell exhaustion, clonal 
expansion of regulatory T-cells (T-regs) and increased M2-like 
tumor associated macrophages (TAM) corelating with worse 
outcomes [11–13]. Tumor heterogeneity, divergent immune 
and tumor cell expression of PD-L1, and diverse immunohis-
tochemistry (IHC) assays and scoring methods make sole use 
of PD-L1+ unreliable as a predictive biomarker of response 
[14–16]. Meta-analysis evaluating the discordance rate of 
PD-L1+ showed 51.2% of immune cells within primary sites 
stained positive vs. 37.1% of metastatic foci, and 30.1% of 
tumor cells in primary sites vs. 14.6% in distant sites and on 
further analysis of studies with matched primary and meta-
static biopsies 13.6% of patients had discordance when PD-L1 
status was assessed on tumor cells, 39.5% when assessed on 
immune cells, and 47.6% when assessed on both tumor and 
immune cells [10]. Studies investigating the clinical valid-
ity and utility of tumor infiltrating lymphocyte count  (CD8+, 
 CD4+, T-helper, and dendritic cells) and PD-L1 expression as 
therapeutic biomarkers demonstrated their decreased infiltra-
tion in metastatic sites compared with primary lesions, which 
perhaps contribute to underlying ICI resistance [17, 18].

We queried 3076 unpaired breast cancer tumors consisting 
of biopsies grouped by anatomic location: breast (BrT), axil-
lary metastasis (AxM), liver metastasis (LvM), non-axillary 
lymph node metastasis (NAxLNM), and non-liver non-lymph 
node metastasis (NLvM). The primary objectives were to 
determine differences in PD-L1+ and TMB status based on 
site of biopsy and identify possible immune cell targets differ-
entially expressed in immune cells by biopsy site, particularly 
in LvM. Previous studies show that the abundance of adaptive 
immune cells is reduced at distant metastatic sites compared 
to primary sites [19, 20]. There have been mixed results about 
differences in abundance of macrophages at distant metastatic 
sites and reported decrease of T-regs [19, 20]. However, it has 
been clearest amongst previous studies of a differing TME 
in metastatic breast cancer sites [19, 20]. We focused our 
TME analysis on LvM given that up to 50% of patients with 
metastatic breast cancer present with LvM, often with very 
poor overall survival rates of 4–8 months [21, 22]. It is well 
studied that the liver is an immune suppressed organ and thus 
consideration of the immune cell components of the liver and 
other sites of distant metastasis should be considered when 
investigating disease progression or response to ICIs [23–25]

Methods

Study cohort

Tumor samples that underwent comprehensive molecu-
lar profiling at Caris Life Sciences (Phoenix, AZ) were 
retrospectively investigated for immune-related molecu-
lar features. This study was conducted in accordance with 

guidelines of the Declaration of Helsinki, Belmont report, 
and U.S. Common rule. In keeping with 45 CFR 46.101(b) 
[1], this study was performed utilizing retrospective, deiden-
tified clinical data. Therefore, this study was considered IRB 
exempt and no patient consent was necessary.

Next generation sequencing (NGS)

NGS was performed on genomic DNA isolated from for-
malin-fixed paraffin-embedded (FFPE) samples using the 
NextSeq platform (Illumina, Inc., San Diego, CA). Matched 
normal tissue was not sequenced. A custom-designed Sure-
Select XT assay was used to enrich 592 whole-gene targets 
(Agilent Technologies, Santa Clara, CA). All variants were 
detected with > 99% confidence based on allele frequency 
and amplicon coverage, with an average sequencing depth 
of coverage of > 500 and an analytic sensitivity of 5%. Prior 
to molecular testing, tumor enrichment was achieved by 
harvesting targeted tissue using manual microdissection 
techniques. Genetic variants identified were interpreted by 
board-certified molecular geneticists and categorized as 
‘pathogenic’, ‘likely pathogenic’, ‘variant of unknown signifi-
cance’, ‘likely benign’, or ‘benign’, according to the Ameri-
can College of Medical Genetics and Genomics (ACMG) 
standards. When assessing mutation frequencies of individ-
ual genes,’pathogenic’ and ‘likely pathogenic’ were counted 
as mutations while others excluded [23].

TMB

TMB included all non-synonymous missense, nonsense, 
inframe insertion/deletion and frameshift mutations per 
tumor not previously described as germline alterations in 
dbSNP151, Genome Aggregation Database (gnomAD) or 
benign variants identified by Caris geneticists. A cutoff 
point of ≥ 10 mutations per MB was used based on the 
KEYNOTE-158 pembrolizumab trial [24].

RNA expression method

FFPE specimens were scrutinized to contain a minimum of 
10% tumor content for enrichment and extraction of tumor-
specific RNA. Qiagen RNA FFPE tissue extraction kit was 
used, and the RNA quality and quantity determined via 
Agilent TapeStation. Biotinylated RNA baits were hybrid-
ized to the synthesized and purified cDNA targets and the 
bait-target complexes were amplified in a post capture PCR 
reaction. The Illumina NovaSeq 6500 was used to sequence 
the whole transcriptome from patients to an average of 60 M 
reads. Raw data were demultiplexed by Illumina Dragen BioIT 
accelerator, trimmed, counted, PCR-duplicates removed and 
aligned to human reference genome hg19 by STAR aligner. 
For transcription counting, transcripts per million (TPM) was 
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generated using the Salmon expression pipeline. Immune cell 
fraction was calculated by QuantiSeq and Microenvironment 
Cell Populations-counter (MCP-counter) [23, 25, 26]. Pre-
viously established gene signatures to evaluate M1 and M2 
macrophages, myeloid derived suppressor cells (MDSCs) and 
regulatory T-cells (T-regs) [23, 27]. We also curated gene lists 
representative of checkpoint inhibition and stimulation [28, 
29]. For specific investigation of certain immune cell popula-
tions, we used previously established gene signatures to evalu-
ate M1 macrophages, M2 macrophages, and T-regs [27].

IHC analysis

Slides were stained using automated staining techniques and 
optimized and validated per Clinical Laboratory Improve-
ment Amendments (CLIA)/Clinical Outcome Assessment 
(COA) and International Organization for Standardization 
(ISO) requirements. The VENTANA PD-L1 (SP142) assay 
was used to score PD-L1+on immune cells with staining ≥ 1% 
was considered positive. Of note, these studies were conducted 
prior to the standardization of CPS scores.

Inflamed T‑cell analysis

Tumors were categorized into non-T-cell inflamed, T-cell 
inflamed, and intermediate using defined T-cell inflamed 
expression signature consisting of 160 genes [30]. The nor-
malized expression was transformed into a scoring system in 
which each gene is defined as upregulated (+ 1), downregulated 
(−1), or unchanged (0) relative to the mean. Scores of all genes 
ranged from -160 to 160. Scores ≤ 80 were categorized as non-
T-cell inflamed while scores > 80 were categorized as T-cell 
inflamed, and the rest were intermediate [30].

Statistical analysis

Percentage of tumors with TMB ≥ 10 Mb/mutation and PD-L1+ 
were analyzed using Fisher Exact tests. TME cell fractions 
were analyzed using QuantiSeq and MCP-counter. Continuous 
variables were compared using non-parametric tests including 
Wilcoxon/Mann Whitney-U tests. p-values with multiple com-
parisons were further corrected using Benjamini–Hochberg 
method to avoid type-I error and an adjusted p-value (q-value) 
of < 0.05 was considered a significant difference.

Results

Tumor characteristics

Females made up 99.1% with median age of 60  years 
(Table 1a). Hormone receptor positive and human epidermal 
growth factor receptor 2 negative  (HR+/HER2−) was the 

most common clinical subtype (55.6%) followed by TNBC 
(27.7%), and HER2+ (8.0%) (Table 1b). In LvMs, 69.5% of 
tumors were  HR+/HER2− (Table 1b). There were 1274 BrTs, 
291 AxMs, 495 LvMs, 124 NAxLNMs, and 892 NLvMs. 
Within NLvM, bone (22.2%), lung (14.8%), and chest wall 
(13.0%) were the most common metastatic sites, respectively 
(Table 1c).

Higher frequency of TMB‑high tumors observed 
in distant metastases

TMB varied across sites with the highest variance seen in 
LvMs ranging from 2 and 99 mutations/Mb, followed by 
NLvMs (Supplemental Table 1). We noted significantly 
higher percentage of tumors classified as TMB-high ( ≥ 
10 mutations/Mb) in all distant sites as compared to BrTs 
(16.5%); AxMs (24.9%, q-value = 0.0013), LvMs (24.8%, 
q-value = 0.0002), NAxLNMs (27.7%, q-value = 0.0021), 
and NLvMs (23.9%, q-value < 0.0001) (Fig. 1a, Supple-
mental Fig. 2a). These data suggest that distant metastatic 
sites are likely to be classified as TMB-High compared with 
primary tumors.

PD‑L1 expression varied greatly by site of tumor 
growth‑ lowest in liver metastases and highest 
in the axilla

With regards to PD-L1+, LvMs has the lowest percentage 
of PD-L1+ tumors (12.1%) compared with BrTs (33.4%, 
q-value < 0.0001) while AxMs had the highest percentage of 
PD-L1+ tumors (46.4%) (Fig. 1b, Supplemental Table 2b). 
These results suggest that AxMs are more likely to harbor 
PD-L1+ tumor cells than the BrT, while LvMs are least 
likely.

Evaluation of immune cell composition using 
RNAseq suggests macrophage and T‑cell infiltration 
vary by site

Next, we investigated bulk RNA sequencing data from tumor 
samples using two computational methods QuantiSeq, and 
MCP-Counter, to quantify different immune cell fractions 
as a surrogate for differences in immune cell composition. 
Compared to BrTs, LvMs have more M2-like TAMs, defined 
as anti-inflammatory macrophages which exert an immuno-
suppressive phenotype favoring tumor progression (Fig. 2a, 
Table 2a). LvMs showed no difference in M1-like anti-tumor 
macrophages and monocytes (Fig. 2b, c, Table 2a) but did 
show significantly more myeloid dendritic cells which typi-
cally promote an anti-tumor response, (Fig. 2d, Table 2a, b). 
The two quantification methods showed opposite trends for 
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neutrophils and as such results are inconclusive (Figs. 2e, 
4c, Table 2a, b).

Evaluation of immunosuppressive lymphocytes reveal 
decreased T-regs by Quanti-Seq in LvM; T-regs were 
not calculated in MCP-Counter. Importantly, anti-tumor 
lymphocytes,  CD4+ and  CD8+ T-cells, were decreased in 
LvMs and NLvMs compared to BrT but increased in AxMs 
and NAxLNMs (Figs. 3c, 3b, 5a, Table 2). NK cells show 
opposite trends via the two quantification methods (Figs. 3d, 
5b), while B-cells decreased by MCP-Counter only (Figs. 3e, 
5c). In summary, NLvMs demonstrate a high level of 
suppressive immune cell composition as compared to BrTs 
while AxMs seem to harbor immune cells suggestive of a 
more immune-responsive environment.

Investigation of cell fractions between metastatic sites 
showed that as compared to LvMs, NLvMs show fewer 
M1-like macrophages, DCs, T and NK cells and higher 

M2-like TAMs by QuantiSeq (Figs. 2, 3, 4, 5, 6, Table 2). 
Alternatively, AxMs show increases in T-regs but also 
CD4+ T-cells and CD8+ T-cells (Figs. 2, 3, 4, 5, 6, Table 2).

Gene set enrichment analysis of immune cell 
subsets highlights varied genes of interest 
by metastatic site

To identify potential genes driving observed changes in 
immune cell composition by site, we examined gene expres-
sion in certain immune cell subsets. We found increased 
expression of inflammatory pathway genes including CCL4, 
CCL5, IFN-gamma, IL-12A, IL-1B, IL-6, SOCS3 in M1 
macrophages from BrT compared to LvM, while there 
is increased expression of M2-polarizing CCL2, CD68, 
and NOS2 in M1 macrophages from LvM relative to BrT 
(Fig. 7a, Supplemental Table 3). In M2 macrophages, we 

Table 1  A—Patient characteristics broken down by biopsy site, B—location of biopsies by subtype, C—location of non-liver/non-axilla speci-
men sites

A

Breast (BrT) 
(n = 1274) (%)

Axillary 
(AxM) 
(n = 291) (%)

Liver (LvM) 
(n = 495) (%)

Non-axillary lymph node 
(NAxLNM) (n = 124) (%)

Non-liver 
Met (NLvM) 
(n = 892) (%)

Total (n = 3076) (%)

Gender Female 1264 (99.2) 284 (97.6) 494 (99.8) 123 (99.1) 882 (98.9) 3047 (99.1)
Male 10 (0.8) 7 (2.4) 1 (0.2) 1 (0.9) 10 (1.1) 29 (0.9)

Age (Years) Range 22–94 28–89 24–92 28–88 27–93 22–93
Median 58 61 61 60.5 60 60

B

Her2+ (n = 247) (%) HR+  Her2− 
(n = 1712) (%)

TNBC (n = 853) (%) Unclear (n = 264) (%) Total

Breast (BrT) 107 (43.3) 638 (37.3) 427 (50.1) 102 (38.6) 1274
Axillary (AxM) 19 (7.7) 152 (8.9) 102 (12.0) 18 (6.8) 291
Liver (LvM) 27 (10.9) 344 (20.1) 71 (8.3) 53 (20.1) 495
Non-Axillary Lymph Node 

(NAxLNM)
8 (6.5) 61 (49.2) 46 (37.1) 9 (7.3) 124

Non-liver Met (NLvM) 94 (38.1) 578 (33.8) 253 (29.7) 91 (34.5) 892
Total 247 (8.0) 1712 (55.6) 853 (27.7) 264 (8.6) 3076

C

Non-liver/non-axilla specimen sites N = 892 (%)

Bone 198 (22.2)
Brain 93 (10.4)
Chest/chest wall 116 (13.0)
Connective tissue 43 (4.8)
GI organ 97 (10.9)
GYN organs 31 (3.5)
Lung 132 (14.8)
Other 81 (9.1)
Pleura 69 (7.7)
Skin 32 (3.6)
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noted increased expression of genes mediating inflammatory 
cytokines including IL-10, IL-12A, IL-6, TGM2, TLR-8 
and others in BrT compared to LvM (Fig. 7b, Supplemental 
Table 4).

Investigation of T-reg genes showed that nearly all 14 
genes had lower expression in LvM compared to BrT but 
higher expression in AxM (Fig. 7c; Supplemental Table 5). 
MDSC genes exhibited reduced expression of CSF3, IL4R, 
IL13, ROS1 and higher RORC, TGFB1, NOS2 expression in 
LvM relative to BrT (Fig. 7d; Supplemental Table 6).

We then investigated expression of checkpoint receptors 
and their ligands [29]. We show that most genes encoding 
checkpoints inhibiting immune response (CTLA4, LAG3, 
C10orf54, HLA-E, HLA-A, HLA-B, and TIGIT) and genes 
encoding checkpoints to promote immune response (ICOS, 
TNFRSF18, CD70, CD27, TNFSF9, CD40, and CD40LG) 
have significantly decreased expression in LvMs as 
compared to BrTs (q-value < 0.0001, < 0.001, respectively) 
and NLvMs (Fig. 7e, f; Supplemental Table 7). However, 

AxMs and NAxLNMs have higher gene expression of most 
checkpoints compared to BrTs including CTLA-4, LAG3, 
TIGIT and others (Fig. 7e, f; Supplemental Table 7). LvMs 
demonstrate lower gene expression of checkpoint inhibitors 
while AxMs exhibit increased immune up-regulating genes 
compared to BrT.

Liver metastases demonstrates the lowest 
percentage of inflamed T‑cells

An exploratory analysis using a published T-cell inflamed 
expression signature of 160 genes, revealed LvMs have a 
significantly smaller percentage of tumors with a T-cell 
inflamed signature (2.8%) compared to BrTs (12.8%; 
q-value < 0.0001) while NLvMs have a similar percent-
age (12.3%) [30]. However, NAxLNM (34.1%) and AxMs 
(30.7%) have a higher percentage of tumors with a T-cell 
inflamed signature as compared to samples from all other 
sites (Fig. 8; Supplemental Table 8).

A B

Fig. 1  A Percent tumors with TMB ≥ 10 Mutations/Mb by biopsy site for all tumors, B percent tumors with PD-L1+ for all tumors
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Analysis of data by breast cancer subtype reveals 
similar findings observed

We observed higher TMB across all distant biopsy sites 
compared to BrT in HR+ /HER2− but not in HER-2+ or 
TNBC (Supplemental Fig. 1b, Supplemental Table 2a). 
Similarly, we noted a similar pattern of decreased PD-L1+ 

tumor cells in LvM compared to BrT across all subtypes: 
HER-2+ (14.8% vs. 43.9%, q-value = 0.0110,  HR+/HER-
2− (11.0% vs. 22.1%, q-value < 0.0001), TNBC (18.3% 
vs. 48.5%, q-value < 0.0001) (Supplemental Fig.  2, 
Supplemental Table 2b).

Regarding TME analysis of LvM as compared to BrTs 
by subtype using Quanti-Seq method, the only trends that 
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Fig. 3  Expression of A T regulatory cells (Tregs), B CD4+ T-cells, C CD8+ T-cells, D Natural Killer (NK) cells. E B-cells by biopsy site meas-
ured in Cell Fraction using Quanti-Seq Method *q-value < 0.05, ** < 0.01, *** < 0.001
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were carried over from our combined analysis were the 
significant decreases seen in the T-cell subsets (T-regs, 
 CD4+ and  CD8+ T-cells) in LvMs which was observed in 
all subtypes. HR+ /HER2− demonstrated significantly more 
myeloid DCs. TNBC demonstrated significantly more NK 
cells (Supplemental Table 9b, c) which were also seen in the 
combined cohort in LvMs vs. BrTs. We see similar findings 
using the MCP-counter method whereby in LvM, there are 
significantly decreased abundance of T-cells,  CD8+ T-cells, 
cytotoxic lymphocytes, B-cells, stromal fibroblasts and 

myeloid DCs in all subtypes (Supplemental Table 10a–d). 
Thus, a great majority of comparisons by subtype primarily 
in the  HR+/HER-2− and TNBC subtypes mirror findings in 
the total population and most non-significant comparisons 
are likely secondary to small sample size. Comparisons 
within subtypes between other metastatic sites can be found 
in Supplemental Tables 9 and 10.

Fig. 4  Expression of A Myeloid DCs, B Monocytes, C Neutro-
phils, by Biopsy Site using MCP-Counter Method *q-value < 0.05, 
** < 0.01, *** < 0.001

Fig. 5  Expression of A  CD8+ T-cells, B NK cells, C B cell line-
age, by Biopsy Site Measured in Cell Fraction using MCP-Counter 
method *q-value < 0.05, ** < 0.01, *** < 0.001
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Discussion

Consistent with previous studies, our results show that 
TMB is higher in metastatic sites compared to BrTs, 
which may be a result of tumor clonal selection favoring 
features (“bottlenecking”) that are advantageous in distant 
sites [31]. We are one of the first to show that TMB level 
varies between different metastatic sites. LvM had the 
highest percentage of TMB-High tumors followed by 
NLvMs, AxMs then NAxLNMs. Evaluation of TMB from 
different metastatic sites matched by patient will be an 
important analysis to better understand if these differences 
are secondary to acquired features of the metastatic tumor 
cells themselves or if mutations may have developed from 
exposure to different TMEs.

We report that PD-L1 expression varies by metastatic 
site and is not concordant with TMB, but matches the 
organ-specific immune TME as determined by our 
RNAseq analysis, with better accuracy. For example, we 
showed LvMs have the lowest percentage of PD-L1+ 

tumors despite demonstrating high TMB. These findings 
demonstrate the incomplete picture of using PD-L1 status 
and/or TMB as a predictive marker for response to 
immunotherapy and the need to consider dominant site of 
metastasis and immune cell topography when evaluating 
a patient’s eligibility for checkpoint inhibition. For 
example, in a patient in whom disease progression is 
isolated to the liver, it may be prudent to ensure the tumor 
biopsy tested for PD-L1 is also from the liver as this may 
more accurately predict response to checkpoint inhibition. 
In our TME analysis, we demonstrated a significantly 
lower infiltration of adaptive immune cells notably  CD4+ 
and  CD8+ T-cells in LvM compared to BrT and other 
distant metastatic sites, which is consistent with findings 
from previous studies looking at liver metastasis [20, 32]. 
We also saw approximately six times the percentage of 
inflamed T-cells in BrT and NLvM compared to LvM and 
approximately a 15-fold increase in the percentage of 
inflamed T-cells in nodal metastasis compared to LvM. 
(Table 8; Supplemental Table 8) This finding is possibly 
explained by the role of liver sinusoidal endothelial cells 
(LSECs) in liver metastasis. LSECs interact with naïve 
 CD8+ T-cells and subsequently suppress their cytokine 
production and induces T-cell immune tolerance [33]. 
These hepatic nonparenchymal cells also “veto” the 
conventional DCs antigen presentation by reducing IL-12 
secretion and stunt  CD8+ T-cell priming [34, 35]. 
Furthermore, our gene expression findings show elevated 
levels of TGF-beta1 in LvM (LvM: median value 24.86 
vs. 23.31 TPM, q-value 0.004) and decreased levels of 
TLR1, TLR2, and TLR8 in LvM compared to BrT. This 
may be explained by the role of immune regulatory 
cytokines such as tumor Growth Factor-b (TGF-b), which 
is an important cytokine produced by Kupfer cells, hepatic 
s t e l l a t e  c e l l s ,  a n d  L S E C s  w h i ch  i n d u c e s 
 CD4+CD25+FOXP3+ T-reg and epithelial to mesenchymal 
transition (EMT) important in the metastatic process, and 
negative regulators of toll-like receptor signaling, which 
lead to a hyporesponsive immune state in the liver [13, 
36]. It may also be attributed to inactivation of effector 
T-cell and incomplete activation of  CD8+ T-cells [37]. In 
addition, within the liver, there appears to be antigen-
specific apoptotic pathways involving the Fas ligand and 
CD11b that could lead to  CD8+ T-cell apoptosis [38]. 
Evaluation of immune modulators that target these 
cytokines may be worthwhile when considering 
combination therapies with checkpoint inhibitors in 
patients with liver metastases. Furthermore, additional 
analysis evaluating the gene expression of  CD4+ and  CD8+ 
T-cells could help identify other genes contributing to 
 CD4+ and  CD8+ T-cell depletion in LvM. Our analysis 
revealed significantly lower T-regs in LvMs compared to 
BrTs and on investigation of signature genes in T-regs, 

Fig. 6  Expression of A Endothelial cells, B Fibroblasts, by Biopsy 
Site Measured in Cell Fraction using MCP-Counter method 
*q-value < 0.05, ** < 0.01, *** < 0.001
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decreased expression of nearly all genes including CTLA-4 
and FoxP3, similar to findings from the AURORA study 
which showed decreased T-regs in metastatic sites and 
another study on matched pair comparisons of TNBC 
patients (GSE110590) that showed abundance of T-regs 
was decreased in the liver and other metastatic sites [20, 
39]. However, the rationale behind the decrease abundance 
of T-regs in LvM is poorly understood, as in other primary 
cancers such as hepatocellular carcinoma, metastatic 
colorectal and prostate cancer to the liver, there have been 
reported to be higher numbers of T-regs in the liver and 
associated genes such as LAG3, GITR, ICOS, and CTLA-
4, which have correlated with worse outcomes [40–42]. 
One thought could be how T-regs behave in the LvM com-
pared to most other sites of tumors. T-reg differentiation 
is a result of thymus-derived Tregs (tTregs) compromising 
the majority of intratumoral Tregs, and induced Tregs 
(iTregs) that develop in peripheral tissues from conven-
tional T-cells (Tconv) via a TGF-beta-dependent manner 
[43]. LvM suppress systemic anti-tumor immunity which 
likely reduces tTreg differentiation from CD4-single posi-
tive (CD4-SP+) thymocytes reducing T-regs in peripheral 
blood circulation [43]. LvM reduce Tconv prevalence and 
overwhelm the liver’s natural physiological cytokine pro-
duction leading towards differentiation towards iTregs, 
which have been shown to produce the immunosuppressive 
cytokine IL-10 and increase FoxP3 following stimulation 
[43]. Of note, in our analysis we show increased TGF-beta 
expression in LvM compared to BrT. Furthermore, T-regs 
also may interact with  CD11b+ monocytes to alter distant 
tumor immunity and subsequently suppress PD-1 and 
CTLA-4 co-expression in  CD8+ T-cells in LvM [44]. 
These differences may contribute to the lack of response 
to immune checkpoint inhibition observed in patients with 
LvMs [20, 45]. We also reported differences in TAMs 
which are known to affect tumor growth, angiogenesis, 
immune regulation, metastasis, and chemoresistance [46]. 

M1-like macrophages secrete proinflammatory anticancer 
cytokines while M2-like macrophages favor pro-tumor 
functions leading to angiogenesis, immune-suppression, 
and tissue repair [46]. Of particular interest is the increase 
in M2-like TAMs in LvMs and NLvMs, and increased 
M2-polarizing CCL2 gene expression in LvMs which 
supports the immunosuppressive TME that has been 
described within the liver. Taken together, these data 
suggest that the TME in LvM maybe driven by innate 
immune cells that undergo phenotypic changes and/or 
molecular switching and less so by adaptive immune cells 
including T-regs. Furthermore, compared to previous data, 
our study shows differences in immune cell abundance by 
type of macrophage; we saw greater M1 macrophages in 
LvM and NLvM relative to BrT while we saw decreased 
M2 macrophages in NLvM relative to BrT [19, 20]. This 
highlights the likely differences in role of different 
phenotypes of TAMs in the metastatic TME. In contrast to 
the immune depleted microenvironment of LvM, it is 
important to note the enriched immune TME in AxMs. 
Our results demonstrate that the AxMs associated with 
increased infiltration with  CD4+,  CD8+, T-regs and B-cells 
compared with BrT biopsies. We postulate that increased 
immune response seen in tumor draining lymph nodes 
(TDLN) represents an acute inflammatory reaction to 
mitigate distant spread. Previous research comparing anti-
tumor microenvironment in TDLN vs. distant LN showed 
increased  CD8+ T-cells revealed a more robust anti-tumor 
immune response in TDLN [47–49]. Similarly, Rye et al. 
showed that metastatic LNs had higher frequency of 
activated T-regs and dysfunctional T-cell immunoreceptor 
with Ig and ITIM domains (TIGIT)-positive T-cells with 
suppressed TCR signaling suggesting effector T-cells 
exhaustion as compared to non-metastatic sentinel LNs 
[50]. The study elucidated that tumor foci within a lymph 
node had higher  CD8+ T-cells infiltration compared with 
extratumoral region. The variations of T-cell residence 
within lymph nodes correlate with tumor infiltration 
suggesting that tumor cells drive T effector cells toward 
exhaustion and promote immunosuppression by 
recruitment or increase in T-regs [50]. We hypothesize that 
increased adaptive immune cells in early metastases 
including active involvement of T-regs, such as the 
sentinel followed by non-sentinel axillary lymph nodes, 
depletes the immune response leading to a more barren 
immune TME in distant metastasis particularly in the liver. 
Of note, the clinical survival significance of AxM 
involvement remains unknown; there was no significant 
survival difference in patients who received node 
dissection in the NSABP-04 trial and in the SOUND trial 
in patients who had a sentinel node excision. [51, 52] 
However, there are still certain patients who benefit from 
node dissection such as young patients in which 

Fig.8  Percentage of T-cell inflamed, Intermediate, and non-T-cell 
Inflamed tumors across Biopsy Sites. *q-value < 0.05, ** < 0.01, 
*** < 0.001
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chemotherapy is associated with survival benefit in node 
positive disease and in ER+ breast cancer in which 
CDK4/6 inhibitor may be of benefit [53, 54]. There also 
have been significant advances in the use of ICI with the 
approval of pembrolizumab both in the neoadjuvant and 
metastatic setting in TNBC and the approval of antibody 
drug conjugates such as trastuzumab deruxtecan and 
sacituzumab govitecan [55, 56]. Thus, the contrast in TME 
between the AxM and LvM warrant further investigation 
into consideration of current ICI use based on site of 
metastasis and drug development of immune modulating 
agents that target the innate immune system to boost 
response in patients with LvM. Study limitations include 
the lack of available information about pathological stage 
along with treatments received and response to treatment. 
It is worth noting that next generation sequencing is 
typically used in patients with metastatic disease and thus 
we presume most patients in this study have metastatic 
disease. Outcome data are available for newer data sets 
through Caris however these studies were performed prior 
to this availability. Additionally, the samples were 
unpaired, and site-to-site comparisons in same patient 
could not be performed. Moreover, our cellular 
characterization of the immune TME relied on gene 
expression only, and thus future validation at the protein/
cellular level can provide further confirmation of cellular 
identity. Our findings highlight the discordance of our 
current biomarkers—PD-L1 and TMB especially in LvM 
and AxM and differences in components of the immune 
TME between metastatic sites that merit investigation 
towards strategies that consider site of metastatic disease 
and measurements of specific immune cell infiltration.
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