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Abstract
Purpose STK3 has a central role in maintaining cell homeostasis, proliferation, growth, and apoptosis. Previously, we 
investigated the functional link between STK3/MST2, and estrogen receptor in MCF-7 breast cancer cells. To expand the 
investigation, this study evaluated STK3’s higher expression and associated genes in breast cancer intrinsic subtypes using 
publicly available data.
Methods The relationship between clinical pathologic features and STK3 high expression was analyzed using descriptive 
and multivariate analysis.
Results Increased STK3 expression in breast cancer was significantly associated with higher pathological cancer stages, 
and a different expression level was observed in the intrinsic subtypes of breast cancer. Kaplan–Meier analysis showed that 
breast cancer with high STK3 had a lower survival rate in IDC patients than that with low STK3 expression (p < 0.05). The 
multivariate analysis unveiled a strong correlation between STK3 expression and the survival rate among IDC patients, dem-
onstrating hazard ratios for lower expression. In the TCGA dataset, the hazard ratio was 0.56 (95% CI 0.34–0.94, p = 0.029) 
for patients deceased with tumor, and 0.62 (95% CI 0.42–0.92, p = 0.017) for all deceased patients. Additionally, in the 
METABRIC dataset, the hazard ratio was 0.76 (95% CI 0.64–0.91, p = 0.003) for those deceased with tumor. From GSEA 
outcomes 7 gene sets were selected based on statistical significance (FDR < 0.25 and p < 0.05). Weighted Sum model (WSM) 
derived top 5% genes also have higher expression in basal and lower in luminal A in association with STK3.
Conclusion By introducing a novel bioinformatics approach that combines GSEA and WSM, the study successfully identi-
fied the top 5% of genes associated with higher expression of STK3.
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Introduction

Breast cancer have many potential causes, often including 
a combination of genetic, hormonal, environmental, and 
lifestyle factors [1]. The diagnosis and treatment of breast 

cancer can be achieved by identification prognostic risk 
factors [2]. Sometimes mutations in certain genes, such as 
BRCA1 and BRCA2, and abnormality in signaling path-
ways are linked to an increased risk, which are complex 
and tightly controlled in normal development and regula-
tions [1]. It has been shown that hippo pathways, which 
control cell proliferation, growth, and cell differentiation, 
are dysregulated in breast cancer compared to normal breast 
[3–7]. The Hippo pathway is an evolutionarily conserved 
regulator of tissue growth and cell fate during development, 
and regeneration and keeps tissues homeostasis. [8–10]. 
Mammalian Sterile 20-like kinases (STKs such as STK3 
and STK4 which, respectively, known as MST2 and MST1), 
large tumor suppressor (LATS) kinases, Salvador homolog 1 
(SAV1) scaffolding protein, monopolar spindle-one-binder 
kinase activator protein 1 (MOB1), and YAP (Yes-associated 
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protein) are the main proteins that make up the canonical 
Hippo pathway in mammals. Mutation and deregulation 
for a subset of Hippo pathway genes have been reported in 
several malignancies, including breast cancer [8]. This rela-
tionship aids in the regulation of Lats1/2-Mob1 complexes 
by MST1/2, which phosphorylates and retains YAP/TAZ 
in the cytoplasm, inactivating downstream targets [11–13]. 
MST1/2 activation has been linked to tumor suppression 
and apoptosis, according to functional investigations [14, 
15]. As a tumor suppressor, MST1 inhibits the spread of 
tumors and triggers apoptosis in breast cancer [14]. Patients 
who had diminished MST1 expression in breast cancer had a 
considerably reduced lifespan compared to individuals with 
high MST1 expression. There has been hypothesis suggest-
ing MST1 expression is a predictive factor for people with 
breast cancer [16]. An essential interaction between ER 
and MST2 in breast cancer is implied by our prior analysis, 
which showed that the excellent predictive benefit of low 
MST2 was only detected within ER-positive breast cancer 
patients as opposed to ER-negative patients. Due to the fact 
that other cancer types did not exhibit this association.

The purpose of this study is to evaluate the STK3 higher 
expression patterns in different subtypes and their asso-
ciation with pathological stages of breast cancer patients. 
Patients were classified into higher and lower expression 
phenotypes of the STK3 gene using a median-based cut-off 
expression value.

In this study, the publicly available data The Cancer 
Genome Atlas (TCGA) and Molecular Taxonomy of Breast 
Cancer International Consortium (METABRIC) are ana-
lyzed from cBioPortal which can be founded at (https:// 
www. cbiop ortal. org/) and STK3 expression is associated 
with the pathological stages and intrinsic subtypes is dis-
played in descriptive statistical form. The patient’s survival 
analysis is performed using the Kaplan–Meier method. The 
gene sets from hallmark and breast cancer-related pathways 
in the context of STK3 high and low phenotypes using Gene 
Set Enrichment Analysis (GSEA) [17] were analyzed. The 
statistically significant gene sets (pathways) that were com-
monly enriched in both datasets were selected, and the lead-
ing-edge genes were examined using Weighted Sum Model 
(WSM) and Nominal Group Technique (NGT) [18] to iden-
tify the top 5% of genes associated with STK3. Moreover, a 
consistent expression pattern was observed across both data-
sets regarding the distribution of patients among intrinsic 
subtypes. We concluded that STK3’s higher expression has a 
vital role in overall invasive ductal carcinoma (IDC) patients 
by indicating that the survivability of breast cancer patients 
is significantly decreased after 5 years (p < 0.05) compared 
to its lower expression. Furthermore, based on the clinical-
pathological stage association, it has been observed that 
patients with an advanced stage also exhibit higher expres-
sion of STK3. The basal subtype is most strongly associated 

with higher expression of STK3, while lower expression is 
correlated with luminal A-type, suggesting a connection 
between STK3 expression levels and the degree of cancer 
aggressiveness.

In general, the bioinformatic study of the genomic profile 
of breast cancer could offer a hint for discovering poten-
tial biomarkers and help with treating patients individually 
based on their gene expression. Based on our study results, 
it can be inferred that STK3’s higher expression and related 
highly ranked gene expressions have the potential to be can-
didate biomarkers for intrinsic subtypes, particularly in basal 
and luminal A breast cancer subtypes that exhibit consider-
able variation for differential analysis.

Materials and methods

Data collection

Large public databases containing cancer-related data are 
widely accessible for researchers. The study utilized two 
such databases, from cBioPortal, which provided access to 
genomic and clinical data from large studies such as TCGA 
and METABRIC.

TCGA data collection and preprocessing

The TCGA data underwent various processing steps to 
ensure consistency and accuracy in subsequent statistical 
analyses. Initially, data from 1084 patients (RNA seq count 
data and clinical data) were retrieved from the TCGA data-
base via cBioPortal. Patients with more than 70% missing 
clinical data were excluded, and missing clinical features 
were obtained using the TNM (Tumor, node, and metas-
tasis) staging system data. Unique identifiers-Case-Id for 
transcriptome data and bcr_patient_barcode for clinical 
data—were used to map clinical and transcriptomic data. 
To handle multiple transcriptomes for the same patient, 
the mean expression of transcriptomic records was used. 
To ensure an adequate sample size, the study exclusively 
examined transcriptomes from primary tumor tissues where 
as small number of patients samples (around 5 for meta-
static and 113 for solid tissue normal) were excluded from 
study. The final analysis included transcriptome data from 
780 IDC patients. All data processing and analysis were per-
formed using R software (Version 4.2.2).

METABRIC data collection and preprocessing

The METABRIC database, comprising 2509 primary breast 
tumors and 548 matched normal samples (RNA seq count 
data and clinical data), was obtained from cBioportal. The 
samples were uniquely identified using the cancer study 

https://www.cbioportal.org/
https://www.cbioportal.org/
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identifier brca_metabric. It should be noted that the nor-
mal samples only had clinical data and no transcriptomic 
records were excluded from the study. Furthermore, around 
57 patients with primary tissue were also excluded due to 
missing transcriptomic data. To ensure the quality of the 
dataset and retrieve consistent outcomes, we removed a total 
of 605 samples without transcriptomic data and merged the 
remaining clinical and transcriptomic data, which were 
mapped based on the brca_metabric identifier. To conduct 
our final analysis, we focused on 1500 IDC patients out of 
the 1904 samples in the dataset.

STK3 higher expression association with clinical 
features

Descriptive statistical analysis

Patients in both datasets were categorized into low and 
high phenotypes based on the STK3 median gene expres-
sion value. The patients with STK3 expression less than the 
median value were considered low phenotype, while those 
with expression higher than the median value were consid-
ered high phenotype. The STK3 expression was visualized in 
box plots in clinical-pathological stages as well as molecular 
subtypes of breast cancer using R programming.

Survival analysis

The survival analysis of both datasets was conducted using 
the Kaplan–Meier method in R, based on the STK3 higher 
and lower phenotypes. The analysis utilized two parame-
ters: the time from the first diagnosis to the last follow-up 
or death, and the status of patients (i.e., alive, or deceased). 
Furthermore, the Cox regression model was employed to 
examine the hazard rate of the low and high STK3 categories 
of patients’ data.

GSEA analysis

To determine whether a set of previously defined genes exhib-
its statistically significant differences between two biological 
states, a computational technique known as GSEA is utilized 
[17]. In this study, GSEA was used to identify the associated 
upregulated pathways in the STK3 higher expression pheno-
type. The Hall Mark (h.all.v2022.1.Hs.symbols) and a query-
driven gene set using the query “STK3, breast cancer, tumor 
microenvironment, nuclear translocation, genes regulations, 
hippo pathway, hypoxia, cell proliferation” from Gene card 
were used for GSEA analysis [20, 21]. Further analysis was 
performed by selecting pathways that were upregulated in 

the higher STK3 phenotype and were common to both data 
sets, with a p-value of less than 0.05 and an FDR of less than 
25%. It is worth mentioning that no gene set with a significant 
p-value and matching threshold FDR value was observed in 
the STK3 low phenotype.

Leading edge genes analysis and top 5% genes 
derivation in association with STK3

After the selection of significant pathways enriched in higher 
expression of STK3 using a threshold of NES > 1.5, p < 0.05, 
and FDR < 25% were visualized in higher and lower expres-
sion context of STK3. To analyze the mean expression of lead-
ing edge genes for each subtype, heat map visualizations were 
used. The violin plots were used to display the expression pat-
tern of significant pathways among breast cancer patients of 
different subtypes, categorized by SKT3 phenotype as either 
low or high. The line plots were used to depict the patient 
percentage for higher mean expression of leading edge genes 
across all significant pathways in TCGA and METABRIC 
datasets to observe trends of higher mean expression in the 
context of STK3’s higher phenotype across different subtypes 
of breast cancer. After all leading edge genes of significant 
pathways in SKT3 higher phenotypes were subjected to sta-
tistical analysis using WSM. The WSM used several features 
of genes, including the normalized enrichment score (NES) 
of the gene’s pathway, the running enrichment score (RES) of 
a gene in the gene sets/pathway, the total number of pathways 
that shared a given gene, and the scaled mean expression of the 
gene between the TCGA and METABRIC datasets (Table 1). 
We evaluated two sets of weights (Wt1, Wt2) from our team 
members closely working on STK3’s role in different diseases. 
The WSM was used to calculate the ranking based on the four 
criteria (Table 1). In WSM, the weights for each criterion were 
decided based on the NGT [18]. NGT is a group process that 
assists in selecting appropriate solutions to a problem based 
on the majority group member consensus. The problem was 
assigning the most moderate weights to criteria based on 
experts’ domain knowledge in the gene ranking process. This 
model enables the identification of the top 5% of genes that 
are associated with STK3.

where Ci represents gene ranking criteria shown in Table 2 
i.e. Ci

{

GeneNES,GeneRES,Genecpw,GeneExp
}

and NGT
(

Ci

)

 

is a weight to Ci assign through NGT process.

GeneRanking(WSM) =
∑

i

Ci × NGT
(

Ci

)

,
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Results

STK3 higher expression association with clinical 
characteristics

We analyzed STK3’s higher expression associated with 
the pathological stages and the patient’s distribution in 
intrinsic subtypes of breast cancer patients in TCGA and 
METABRIC datasets.

TCGA data (Fig. 1a) shows the patient proportion for 
STK3 higher expression increase precisely by moving 
from pathological lower stage I to higher stages III (I–II: 
39% to 49%, II–III: 49% to 61%). In stage IV, the patient 
distribution is observed lower compared to stage III. So, 
the results remain inconclusive due to the relatively small 
proportion of patients (2.18%) in stage IV.

Based on the METABRIC data analysis (Fig. 1b), there 
is a clear increase in the proportion of patients with high-
risk STK3 expression as breast cancer progresses from 
lower stage I to higher stages IV. Specifically, the propor-
tion of patients with high-risk STK3 expression increases 
from 43 to 51% when moving from stage I to II, from 51 to 
56% when moving from stage II to III, and from 56 to 67% 
when moving from stage III to IV. These findings suggest a 
positive association between higher STK3 expression and 
advanced stages of breast cancer.

STK3 is expressed differently amongst intrinsic molec-
ular subtypes of breast cancer in TCGA and METABRIC 
datasets (Fig. 1c, d). STK3 higher expression pattern in 
each subtype for both dataset is given below.

• Patients with Basal subtype showed higher STK3 
expression levels in both TCGA and METABRIC 
datasets, with percentages of 62% and 68%, respec-
tively. Additionally, the patient proportions of the Basal 
subtype in TCGA and METABRIC were 19.62% and 
12.40%, respectively.

• Both TCGA and METABRIC datasets showed a higher 
level of STK3 expression (58%) in patients with Lumi-
nal B subtype. The patient proportions for Luminal 
B subtype were 19.62% and 12.40% in TCGA and 
METABRIC, respectively.

• Both TCGA and METABRIC datasets showed a higher 
expression of STK3 in 54% of patients (with a ratio of 
9.23%) and 52% of patients (with a ratio of 13.00%), 
respectively in subtype Her2.

• The proportion of patients with Luminal A subtype 
exhibiting higher STK3 expression was 37% and 40% in 
TCGA and METABRIC datasets, respectively. Notably, 
Luminal A patients represented the majority of samples 
in both datasets, accounting for 49.48% and 50.00% of 
TCGA and METABRIC samples, respectively.
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The results suggest that the expression of STK3 varies 
among the intrinsic subtypes of breast cancer. Specifically, 
STK3’s higher expression is observed in the Basal subtype, 
while it is lower in the Luminal A subtype.

IDC patients’ survival in context of STK3 lower 
and higher expression

The Kaplan survival analysis for 5 to 10 years shows that 
breast cancer IDC patients with STK3 higher expression 
have low survivability compared to STK3 low expression 
both in TCGA and METABRIC data sets. The survival 

rates exhibit notable distinctions, with p-values of 0.027 and 
0.016 in TCGA for patients classified as “dead with tumor” 
and all deceased IDC patients, respectively. In the META-
BRIC dataset, the survival rate for patients labeled as “dead 
with tumor” also demonstrates a significant difference with 
a p-value of 0.003. Figure 2 depicts the details of survival 
curves in both TCGA (a, b) and METABRIC (c).

The survival rate of IDC patients significantly correlates 
with STK3 expression, as indicated by multivariate analysis. 
In the TCGA dataset, lower expression shows a hazard ratio 
of 0.56 (95% CI 0.34–0.94, p = 0.029) for patients who died 
with tumors and 0.62 (95% CI 0.42–0.92, p = 0.017) for all 

Table 2  Top 5% ranked genes 
list

Gene Average median 
GExp scaled

Max path-
ways NES

Mean RES PW relative 
score

NGT score

Wt1 | Rank Wt2 | Rank

HSPA8 0.91 1.00 0.70 0.4 0.861 | 1 0.865 | 1
HSP90AB1 1.00 0.94 0.35 0.4 0.783 | 2 0.743 | 8
MCM6 0.47 1.00 0.71 0.6 0.781 | 3 0.778 | 3
TRA2B 0.49 1.00 0.68 0.6 0.781 | 4 0.775 | 4
PRDX4 0.59 0.99 0.66 0.4 0.780 | 5 0.772 | 5
NOP56 0.51 0.99 0.72 0.6 0.776 | 6 0.780 | 2

a b

c d

Fig. 1  STK3 expression in pathological stages and subtypes of breast 
cancer of TCGA dataset (a, b) and in pathological stages and sub-
types of breast cancer of METABRIC dataset (c, d). The distribu-

tion of patients in each group is depicted beneath the whiskers of the 
respective box labels
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deceased patients. In the METABRIC dataset, the hazard 
ratio for those deceased with tumors in lower expression is 
0.76 (95% CI 0.64–0.91, p = 0.003).

Candidate Gene sets regulations in context of STK3 
low and high expression

We get the most enriched pathways in both datasets with a 
p-value less than 0.05 and an FDR value < 25% using GSE 
analysis. A total of 7 pathways are commonly enriched 
in both datasets. The enrichements plots of  7 Pathways 
(Supplementary Figure S1) shows only pathways or gen-
esets from which the top 5% of genes are associated with 
STK3 expression.

To identify signaling pathways that are differentially 
activated in breast cancer in both TCGA and META-
BRIC, GSEA was conducted between low and high STK3 
expression data sets. GSEA reveals significant differences 
(FDR 0.25%, NOM p-value % 0.05) in the enrichment of 
MSigDB Collection (h.all. v2022. Symbols [22]). We 
selected the most significantly enriched signaling path-
ways based on their NES (Supplementary Figure S1 and 
Table S1). In Supplementary Figure S1 shows that GM2_
check point, E2F targets, mitotic spindle, MTORC1 sign-
aling, MYC targets V1, and unfolded_protein_response is 
differentially enriched in STK3 high-expression pheno-
type. Hallmarks can effectively associate with their cor-
responding protein activation phenotypes thus confirming 
their biological relevance.
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Leading edge genes visualization in STK3 context

The seven significant gene sets and one selected top 
5% genes in the context of STK3 low and higher phenotype 
and in different subtypes of breast cancer were visualized 
using heat maps and violin plots to display the leading edge 
genes. The results showed that for all significant gene sets, 
patients had a higher percentage of higher expression for 
the leading edge genes in the basal subtype and a lower per-
centage in Luminal A. This trend was observed in both data 
sets, TCGA and METABRIC (Fig. 3). [Higher resolution is 
shown in supplementary Fig. 3a].

Top 5% genes derivation in association with STK3

The WSM model derived the top 5% genes associated with 
STK3 relied on GSEA-derived features such as NES, RES, 
pathways (gene sets) number, and gene expression from 
patients TCGA and METABRIC data sets. The genes that 
were identified using this approach could provide valuable 
insights into the underlying mechanisms of breast cancer 
and may ultimately aid in the development of more effec-
tive treatments for this disease. These top 5% genes are 
HSPA8, HSP90AB1, NOP56, MCM6, TRA2B, and PRDX4, 
and have literature evidence to have a role in breast cancer 

proliferation [22–27]. Table 3 highlights the detailed fea-
tures of each of the top 5% genes with overall score and 
ranks. Although, Wt1 score criteria were used, Table 2 also 
provided the gene score and overall score and ranks using 
Wt2 criteria.

Discussion

The Hippo pathway component has a substantial role in reg-
ulating the cell cycle, growth, proliferation, and maintain-
ing tissue homeostasis. Furthermore, it inhibits the develop-
ment and occurrences of malignancy tightly controlled under 
normal conditions depending on the types of signaling. In 
a study of human sarcoma tumorigenesis, the epigenetic 
alteration effect was observed for STK3(MST2) in signaling 
pathway of Sav-RASSF1-Hpo.[28]. Furthermore, STK3’s 
lower expression is correlated with poor prognosis in ovar-
ian cancer, and higher expression inhibits the cell prolifera-
tion, and migration of ovarian cancer cells and promotes 
apoptosis [29].

In a study of gastric carcinogenesis, STK3 was discovered 
to be an independent prognostic biomarker that mediates cell 
cycle progression by activating Ras-MAPK pathways [19].
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Fig. 3  a Heatmap Visualization of leading-edge genes (LEG) for sta-
tistically significant gene sets and the top 5% genes, in the context of 
STK3 in breast cancer subtypes [(BL: Basal, HR: HER2, LA: Lumi-
nal A, LB: Luminal B);(L: lowSTK3Expression, H: HighSTK3Ex-
pression)] of TCGA and METABRIC data sets. b LEG mean expres-

sion distribution across subtypes in the context of STK3 using data 
from TCGA and METABRIC. c Patterns of Patients percentage of 
LEG with high mean expression of statistically significant gene sets, 
in breast cancer subtypes Of TCGA and METABRIC datasets
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Our previous work has proved that the expression of 
two components STK3 (MST2) and SAV of the hippo 
pathway was associated with ERα phosphorylation and 
transactivation and represses ERα gene expression. Silenc-
ing of STK3 can inhibit breast cancer in vitro experiments 

using MCF-7 cells and showed that its higher expression 
leads to ERα activation in the absence of ligand [30].

We aimed to analyze STK3 as a potential prognostic 
molecular marker of poor survival. Bioinformatic analysis in 
this study showed that STK3 has higher expression levels in 
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Fig. 3  (continued)
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basal types and lower expression in luminal A type of breast 
cancer patients. Furthermore, its higher expression is closely 
related to the poor prognosis of IDC breast cancer patients.

We observed that the STK3 higher expression is associ-
ated with higher stages in both datasets, but for only TCGA 
data, the stage IV patients had comparatively low STK3 
expression. One possible reason could be a smaller number 
of patients compared to other stages, or different biological 
and molecular mechanisms are involved.

By using the statistical model WSM and NGT based rank-
ing on GSEA-derived features such as NES, enrichment 
score, and pathways number the top 5% genes were derived 
in STK3 higher phenotype-based GSEA leading edge genes. 
The genes that were identified using this approach could 
provide valuable insights into the underlying mechanisms 
of breast cancer and may ultimately aid in the development 
of more effective treatments for this disease. For example, 
HSPA8, HSP90AB1, NOP56, MCM6, TRA2B, and PRDX4, 
were identified as genes that were analyzed in STK3 higher 
expression phenotype study. These genes have already been 
observed through some preliminary studies which are evi-
dently having a role in breast cancer proliferation [22–26, 
31].

One study indicates the potential molecular mechanism 
that promotes the evolution of TNBC (triple negative breast 
cancer) related with the poor clinical outcome of TNBC 
is associated with high expression of HSPA8 [32]. High-
level expression of HSP90AB1, one of cytoplasmic HSP90 

isoforms was correlated with poor prognosis in different 
subtypes of breast cancer and was driven by chromosome 
coding region amplifications and were independent factors 
that led to death from breast cancer among patients with 
triple-negative (TNBC) and HER2-/ER + subtypes [23]. 
MCM6 is known as a specific biomarker of cancer in many 
cancer types including breast cancer. its expression level, 
and biological function in various types of cancer is com-
plicated and have remain uncleared up to date [33]. TRA2B 
is in association with several other genes and its product 
involve in breast cancer metastasis and was identified as 
cancer hall mark [26]. PRDX4 antioxidant protein has been 
shown to causally facilitate tumor initiation and propagation, 
therapeutic resistance, and subsequent recurrence of many 
types of tumors. The mechanisms of how PRDX4 works 
in different cancers requires more in depth research [31]. 
NOP56 is located at the key crossroads of many signaling 
pathways and plays an important role related to the occur-
rence and development of various tumors. Although the role 
and mechanism of NOP56 are still unclear. However, it is 
one of many methylated genes, and examining the methyla-
tion status of genes can help identify tumor-specific markers 
and therapeutic targets for cancer patients [34].

This finding suggests that these genes may play a role in 
the development of breast cancer in patients with high levels 
of STK3 expression. This study is novel to exploit STK3 
expression in different intrinsic subtypes of breast cancer at 
the more granular level using two data sets. Consideration of 
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underlying molecular mechanisms in association with hippo 
pathways genes especially STK3 could lead to develop the 
targeted therapy for a more aggressive type like basal or 
triple-negative cancer type of breast cancer and improve the 
patient’s life quality.

Several studies have implied the NGT to involve stake-
holders and gather their views and opinions to develop 
consensus-based healthcare decisions [18]. Some common 
examples include establishing end-of-life care preferences, 
prioritizing treatment decisions, highlighting chronic disease 
issues, and developing research-based guidelines. This work 
employed NGT techniques to rank genes and reach a con-
sensus on weighting gene attributes retrieved from GSEA. 
Bioinformaticians, and medical data scientists determined 
WSM model weights for Wt1 and Wt2, consequently final-
ized through NGT process. Wt1 was selected using consen-
sus-based NGT integration.

Conclusion

STK3 has been studied in breast cancer as a potential prog-
nostic molecular marker of poor survival. This study is novel 
to exploit STK3 expression in different intrinsic subtypes of 
breast cancer at the more granular level using two data sets. 
The weighted sum statistical model based on GSEA-derived 
leading edge genes in STK3 higher phenotypes are the genes 
having evidence in breast cancer proliferation. Considera-
tion of underlying molecular mechanisms in association with 
hippo pathways genes especially STK3 could lead to develop 
the targeted therapy for a more aggressive type like basal or 
triple-negative cancer type of breast cancer and improve the 
patient’s life quality.
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