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Abstract
Immune-checkpoint inhibitors have profoundly changed the treatment landscape for many tumor types. Despite marked 
improvements in disease control for highly immunogenic cancers, the clinical impact of checkpoint inhibitors in breast can-
cers to date is limited. Breast cancer is a heterogeneous disease with different levels of PD-L1 expression and variable tumor 
microenvironment (TME) composition according to molecular subtype. With emerging evidence of the role of different fac-
tors involved in immune evasion, there are promising new immunotherapy targets that will reshape early drug development 
for metastatic breast cancer. This review examines the available evidence for existing and emerging immuno-oncology (IO) 
approaches including small molecules targeting different regulators of the cancer-immunity cycle.
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Introduction

Immune-checkpoint inhibitors (ICIs) that target programmed 
cell death protein-1 (PD-1) or its ligand (PD-L1), as well 
as cytotoxic T-lymphocyte antigen 4 (CTLA-4) are now 
approved to treat multiple tumor types [1–5]. However, the 
overall response rate (ORR) as monotherapy in pre-treated 
metastatic breast cancer with PD-1 or PD-L1 ICI mono-
therapy is generally less than 20% [6, 7]. Breast cancer has 
historically been considered a non-immunogenic tumor [8]. 
Accordingly, the prevalence of predictive biomarkers of 
IO sensitivity, such as PD-L1 expression in tumor and/or 
immune cells and tumor mutation burden (TMB) is low, 
with differences according to molecular subtype, testing 
based on primary versus metastatic tumor tissue and assay 
characteristics [9–11].

Many factors are linked to the immunological quiescence 
observed in breast cancer, suggesting that more extensive 
biomarker profiling beyond TMB, tumor infiltrating lympho-
cytes (TILs) density and PD-L1 expression may be required 
to individualize immunotherapy treatments. Immunosup-
pressive cytokines including IL-6, IL-8 and TGF-β and 

tumor epithelial-to-mesenchymal transition (EMT) may have 
a role in tumor progression, metastatic spread, and immune 
resistance. Furthermore, different cells such as tumor-asso-
ciated M2 macrophages, regulatory T (Treg) and B cells, 
myeloid derived suppressor cells (MDSC), or tumor-asso-
ciated fibroblasts may also play a role in immune evasion 
[8]. Altogether, this may explain the limited response rates 
observed with single agent ICI in metastatic triple nega-
tive breast cancer (mTNBC). Immunotherapy combinations 
targeting different immunosuppressive elements within the 
TME may expand clinical responses to ICIs in metastatic 
breast cancer [12].

Thus far, PD-1 or PD-L1 ICIs in combination with 
chemotherapy are approved for the first-line treatment of 
PD-L1 expressing mTNBC. IMpassion130 showed a pro-
gression free survival (PFS) improvement in the intention-
to-treat population for nab-paclitaxel and atezolizumab 
as compared to chemotherapy alone. Although a numeri-
cally higher median overall survival (OS) was observed 
among patients with PD-L1 positive tumors by immuno-
histochemistry, no significant differences were observed in 
OS in the intention-to-treat population [13, 14]. Notably, 
the recently reported negative results of the combination 
of atezolizumab and paclitaxel in the IMpassion131 raises 
the question of the best chemotherapy backbone to use 
with ICIs [15]. KEYNOTE-355 showed a PFS improve-
ment for the combination of pembrolizumab plus either 
paclitaxel, nab-paclitaxel, or gemcitabine plus carboplatin 
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as compared to placebo-chemotherapy in mTNBC patients 
with a PD-L1 immunohistochemistry combined positive 
score (CPS) ≥ 10% (CPS ≥ 10%) [16].

While these results are an important advance for patients 
with PD-L1 positive mTNBC, there are many mTNBC 
patients who do not benefit from ICI monotherapy or 
ICI+ chemotherapy. This situation, together with the fact 
that most patients with mTNBC receive poly-agent chem-
otherapy in the (neo)-adjuvant setting, has motivated the 
development of clinical trials testing ICIs in combination 
with molecularly targeted therapies to improve efficacy [13, 
16]. There is current enthusiasm in the field for PARP inhibi-
tor and ICIs combinations based upon promising early phase 
data for patients with germline BRCA1/2 mutations [17]. 
Larger studies are ongoing to examine PARP inhibitor and 
ICIs combinations as maintenance treatment in mTNBC 
[18, 19]. Androgen blockade has additionally been a focus 
of attention due to the negative role of the androgen path-
way in T-cell activation [20–22]. Examples of combination 
treatments with androgen blockade and immunotherapy 
include (NCT03650894) and (NCT02971761). The PI3K/
AKT/mTOR pathway plays a central role in the biology of 
specific molecular subtypes of TNBC [23, 24]. Moreover, 
the activation of this axis leads to recruitment of MDSCs, 
Tregs, and PD-L1 upregulation [25, 26]. IPI-549 is an inhib-
itor of the phosphoinositide-3-kinase (PI3K)-gamma that is 
currently being evaluated in addition to atezolizumab and 
nab-paclitaxel for patients with mTNBC [27]. Investiga-
tion of the AKT inhibitor ipatasertib in combination with 
chemotherapy, with or without atezolizumab was also pur-
sued in mTNBC. Despite promising results in the Phase 
1b (NCT03800836) with an ORR of 73% for the combi-
nation of ipatasertib, atezolizumab, and chemotherapy, the 
Phase III Ipatunity 170 (NCT04177108) did not reach its 
primary endpoint and has been terminated [28]. Similarly, 
the BEGONIA trial is currently studying the role of capiva-
sertib, a small molecule inhibiting AKT, in combination 
with durvalumab and paclitaxel [29]. Another potential 
partner for ICI combinations are MEK inhibitors. In pre-
clinical models, MEK inhibition has been shown to increase 
the cytotoxic effects of paclitaxel [30]. Furthermore, Ras/
MAP pathway activation has been associated with immune 
evasion in mTNBC supporting combination strategies with 
ICIs [31]. Despite the preclinical rationale for combination 
testing, the COLET phase 2 trial did not show additive effect 
for the addition of cobimetinib to paclitaxel as compared to 
paclitaxel single agent or an increase in ORR for the com-
bination of atezolizumab and cobimetinib with either pacli-
taxel or nab-paclitaxel [32, 33]. Lastly, different trials are 
studying the potential additive effects of antibody drug con-
jugates (ADCs) and ICIs combinations. In this respect, the 
initial results from the arm 6 of the BEGONIA trial testing 
durvalumab in combination with trastuzumab deruxtecan, 

were recently presented. Confirmed responses were observed 
in 8/12 evaluable patients [34]. Sacituzumab govitecan, an 
ADC against the Trop-2 antigen and ladiratuzumab vedo-
tin in combination with pembrolizumab are currently being 
tested for mTNBC in two clinical trials (NCT04468061) and 
(NCT03310957).

The estrogen receptor (ER) positive (ER+)/HER2-
negative (HER2−) and HER2-positive (HER2+) subtypes 
account for up to 90% of BC and lack effective FDA-
approved immunotherapies [35]. An increased understand-
ing of the specific genomic and molecular pathways associ-
ated with these subtypes has enabled the development of 
different immunotherapy combinations. To date, the efficacy 
of HER2-targeted therapies in combination with ICIs for 
metastatic HER2+ BC has been limited [36–38]. For ER+/
HER2− breast tumors, lower responsiveness to IO agents 
have been observed as compared to mTNBC which could 
be secondary to lower TIL infiltration, lower values of TMB 
and PD-L1 expression [39–42]. While ICI+ chemotherapy 
is being investigated in ER+, disease specific treatment 
approaches in this molecular subtype include combinations 
of ICIs with either endocrine therapy or cyclin dependent 
kinase 4/6 (CDK-4/6) inhibitors [43–46].

All these examples suggest that more in-depth under-
standing of the molecular underpinnings leading to immune 
evasion in breast cancer may lead to the development of 
co-inhibitory or co-stimulatory agents that in addition to 
ICIs may help to overcome intrinsic immune resistance [8]. 
Selected results of clinical trials involving ICIs in combina-
tion with other targeted agents in later phases of develop-
ment are summarized in Table 1 and are not the focus of 
this review. Herein, we describe emerging IO approaches in 
breast cancer, including novel therapeutic strategies based 
on the PD-1/PD-L1 axis and small molecules targeting dif-
ferent points of the cancer-immunity cycle in early stages of 
drug development.

Novel immunotherapies as single agents 
or in combination with ICIs

Drugs targeting co‑inhibitory or co‑stimulatory 
pathways

Co‑inhibitory immune pathways

Anti-tumor responses are regulated by both stimulatory 
and inhibitory pathways that dictate antigen recognition by 
T-cells. Theoretically, the blockade of existent co-inhibitory 
pathways in the tumor and TME may enable responses in 
non-immunoreactive tumors [47]. In addition to PD-1/PD-L1 
and cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), 
other inhibitory molecules are being explored as potential 
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Table 1  Selected results of clinical trials involving ICIs in combination with targeted agents

Therapeutic class NCT ID Description Phase Primary endpoint Status Results

ICI combinations
 Endocrine ther-

apy + IO
NCT02395627 Vorinostat, tamoxifen 

and pembrolizumab 
in ER+ breast cancer

II ORR and safety Terminated ORR = 4%; TEAES 
G3/4 = 11

NCT03650894 Nivolumab, ipili-
mumab and bicalu-
tamide for HER2− 
breast cancer 
patients

II Clinical benefit rate Active n/a

NCT02971761 Pembrolizumab and 
enobosarm for 
androgen receptor 
positive mTNBC

II ORR and safety Active not recruiting n/a

NCT03280563 Fulvestrant and 
atezolizumab for 
HER2−/HR+ breast 
cancer (MOR-
PHEUS Experimen-
tal arm 2)

I, II ORR Active n/a

NCT03393845 Pembrolizumab 
plus fulvestrant in 
HER2−/HR+ breast 
cancer

II ORR Active n/a

CDK inh. + IO
NCT02779751 Study of abemaciclib 

combined with 
pembrolizumab 
in patients with 
NSCLC or HR+ /
HER2− breast 
cancer

I Safety Active not recruiting n/a

NCT02778685 Pembrolizumab, letro-
zole, and palbociclib 
in postmenopausal 
patients with meta-
static ER+ breast 
cancer

II ORR Active n/a

Anti-HER2+ IO
NCT02129556 Pembrolizumab 

and trastuzumab 
in trastuzumab 
resistant advanced 
HER2+ breast can-
cer (PANACEA)

Ib,II Safety (Ib). ORR 
(Phase II)

Completed ORR = 15% (PD-L1 +) 
and 0% (PD-L1 -); 
AES (≥ G3) = 50%

NCT02649686 Durvalumab and 
trastuzumab in 
HER2+ metastatic 
breast cancer (CCTG 
IND.229)

Ib Safety Completed ORR = 0%; No dose 
limiting toxicities

NCT02924883 Trastuzumab emtan-
sine plus atezoli-
zumab vs trastu-
zumab placebo in 
HER2+ (KATE2)

II PFS Completed PFS HR = 0.82 
(0.55–1.23)
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Table 1  (continued)

Therapeutic class NCT ID Description Phase Primary endpoint Status Results

NCT02605915 Atezolizumab 
with trastuzumab 
emtansine or trastu-
zumab+ pertuzumab 
in HER2+ breast 
cancer (GO29831)

Ib Safety Completed n/a

NCT04042701 DS8201 and pembroli-
zumab in partici-
pants with metastatic 
breast cancer

I Safety and ORR Active n/a

 PARP inhibitor + IO
NCT02734004 Olaparib and 

durvalumab for 
germline BRCA-
mutated breast can-
cer (MEDIOLA)

I, II Safety and ORR Active not recruiting ORR = 63.3%; AES 
(≥ G3) = 12%

NCT02657889 Niraparib and 
pembrolizumab 
in patients with 
mTNBC (TOPA-
CIO/KEY-
NOTE-162)

I, II Safety and ORR Active not recruiting ORR = 29%; AES 
(≥ G3) = 50%

NCT02849496 Olaparib with or with-
out atezolizumab in 
patients with HER2- 
metastatic breast 
cancer

II PFS Active n/a

 PI3K/AKT path-
way + IO

NCT03961698 Eganelisib in 
combination with 
atezolizumab and 
nab-paclitaxel 
(MARIO-3)

II Complete response 
rate

Active n/a

NCT03800836 Ipatasertib in 
combination with 
atezolizumab and 
either paclitaxel or 
nab-paclitaxel in 
mTNBC

I ORR Active not recruiting n/a

NCT04177108 Ipatasertib in combi-
nation with atezoli-
zumab and paclitaxel 
in untreated mTNBC 
(Ipatunity 170)

III PFS and OS Terminated n/a

NCT03742102 Novel anti-cancer 
agents in patients 
with mTNBC 
(BEGONIA). 
Arm 2: dur-
valumab + pacli-
taxel + capivasertib

I,II Safety and ORR Active n/a
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targets in breast cancer. Indoleamine 2,3 dioxygenase 1 (IDO) 
is a tryptophan (Trp)-catabolizing enzyme released by both 
MDSC and tumor cells negatively impacting in T-cell func-
tion [48]. Pembrolizumab in combination with the IDO1 
inhibitor epacadostat was tested in mTNBC where a 10% 
ORR was observed, not substantially different from the 
expected pembrolizumab monotherapy response rate [49].

CD73 is a cell surface enzyme that is expressed in 
TNBC and is associated with chemotherapy resistance, 
metastatic potential, and T-cell impairment. CD73 releases 
adenosine acting as a potent immunosuppressor in the 
TME [50–52]. There are ongoing studies evaluating CD73 
inhibitors for mTNBC (NCT03454451, NCT04148937, 
and NCT03549000). Adenosine can increase in the TME 
due to the action of CD73. Subsequently, activation of 
the adenosine A2A receptor (A2AR) can eventually lead 
to inhibition of the effector function of NK and T-cells 
[53–57]. CPI-444 is an adenosine A2A receptor inhibi-
tor currently under investigation as single agent or with 
atezolizumab in selected solid tumors including mTNBC 
[58]. Also, the phase I/II SYNERGY trial is evaluating 
the safety and efficacy of the combination of chemo-
therapy (paclitaxel + carboplatin) with durvalumab ± the 
anti-CD73 antibody oleclumab for patients with mTNBC 
[59]. Additionally, for early-stage luminal B breast cancer, 
oleclumab in addition to chemotherapy and radiotherapy 
is being investigated in the neoadjuvant setting prior to 

surgery [60]. Other A2AR inhibitors under investigation 
in TNBC include NIR178 and IPI-549 (NCT03742349 and 
NCT03719326, respectively).

Lymphocyte-Activation Gene 3 (LAG-3) is a marker of 
exhausted  CD8+ T-cells [61, 62], which has generated sub-
stantial interest. LAG-3 binds to MHC Class II with more 
affinity than  CD4+, acting as a negative regulator for T-cell 
expansion and promoting Treg function [63, 64]. The co-
expression of both PD-L1 and LAG-3 in TILs for metastatic 
breast cancer supports the rational for treatment combinations 
[62]. Ongoing phase I clinical trials are evaluating anti-PD-1/
L1 ICIs combined with LAG-3 inhibitors (NCT03250832). 
LAG525 (anti-LAG-3) is being explored in combination with 
the anti-PD-1 spartalizumab and carboplatin or with carbopl-
atin alone for mTNBC (NCT03499899). A soluble dimeric 
recombinant form of LAG-3 (IMP321) is being explored 
in addition to standard chemotherapy in subjects with hor-
mone receptor positive (HR+) metastatic breast cancer [65]. 
Additionally, the I-SPY trial is investigating the anti-LAG-3 
REGN3767 with the anti-PD-1 cemiplimab in the neoadju-
vant setting for operable breast cancer (NCT01042379).

TIGIT is a receptor of the Ig superfamily that when 
activated downregulates both adaptive and innate immune 
responses [66]. The phase I trial (NCT03628677) is investi-
gating AB154 (domvanalimab) a monoclonal antibody tar-
geting TIGIT alone or in combination with zimberelimab 
(anti-PD-1). B7-H4 is a PD-L1 family member that is also 

Table 1  (continued)

Therapeutic class NCT ID Description Phase Primary endpoint Status Results

 MAPK/ERK path-
way + IO

NCT02322814 Cobimetinib plus 
paclitaxel or atezoli-
zumab + pacli-
taxel or 
atezolizumab + nab-
paclitaxel in 
mTNBC

II PFS (Cohort 1) and 
ORR (Cohort 2–3)

Active not recruiting n/a

 ADC + IO
NCT03742102 Novel anti-cancer 

agents in patients 
with mTNBC 
(BEGONIA). Arm 
6: durvalumab + tras-
tuzumab deruxtecan

Ib,II Safety and ORR Active ORR = 66.7%; AES 
(≥ G3) = 38.1%

NCT04468061 Sacituzumab govite-
can ± pembroli-
zumab in mTNBC

II PFS Active n/a

NCT03310957 SGN-LIV1A and 
pembrolizumab 
for patients with 
mTNBC

I ORR and safety Active n/a

TEAES treatment emergent adverse events; AES adverse events
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being tested as a rational partner for checkpoint inhibition. 
FPA150 is an anti-B7H4 antibody currently under investi-
gation [67]. TIM-3 is an inhibitory receptor that binds to 
galectin-9 negatively impacting in IFN-gamma production 
by CD4+ T-cells. Preclinical data have shown synergistic 
effects by combining anti-PD-1 and TIM-3 blockade [68]. 
The phase I clinical trial (NCT02608268) studied the combi-
nation of MBG453 and spartalizumab in patients with solid 
tumors. The combination was well tolerated, but with an 
ORR of only 5% [69].

Co‑stimulatory immune pathways

Multiple co-stimulatory molecules regulate T-cell responses 
against cancer cells [70]. Immunotherapy combinations 
including ICIs and agents providing agonistic signals through 
co-stimulatory molecules could re-establish immune surveil-
lance [47]. OX40 and 4-1BB are members of the TNF receptor 
superfamily which contributes to T-cell activation and survival 
[71]. OX40 agonists in combination with anti-PD-1/PD-L1 
agents are under investigation for mTNBC (NCT03971409). 
4-1BB (also known as CD137) is a co-stimulatory immune 
checkpoint expressed in T-cells. The interaction with its ligand 
protects  CD8+ T-cells from apoptosis, enhances effector func-
tionalities and promotes memory cell differentiation ultimately 
leading to enhanced anti-tumor responses. Urelumab is a mon-
oclonal antibody currently being tested in early phase clinical 
trials as single agent (NCT00309023) or in combination with 
nivolumab (NCT02253992 and NCT02534506) [72]. PRS-343 
is a HER2/4-1BB bispecific construct that was investigated in 
a phase I clinical trial (NCT03330561) involving refractory 
HER2 + breast cancer. Treatment with PRS-343 was well toler-
ated with a 11% ORR [73].

STING (stimulator of interferon genes) has been identified 
as an important mediator of immune response, and STING 
agonists have been developed for the treatment of solid 
tumors. In breast cancer, STING agonists enhance innate 
and adaptive immune responses by driving the production 
of cytokines such as Type I interferons [74, 75]. Until now, 
mainly intratumoral administration of STING agonists has 
been explored given ubiquitous expression of cGAS/STING, 
narrow therapeutic index, and poor metabolic stability [76]. 
Intratumoral vaccination with 2′3′-cGAMP led to accumu-
lation of macrophages and repolarization toward a M1 phe-
notype in preclinical models [77]. The phase I clinical trial 
CA046-006 (NCT03956680) is investigating the combination 
of an intratumoral STING agonist with nivolumab and ipili-
mumab in patients with solid tumors [78], including breast 
cancer. Additionally, ongoing Phase 1 trials have begun to 
explore intravenous STING agonists in different solid tumors 
including breast cancer (NCT04420884).

Dectin-1 is a pattern recognition receptor expressed 
in dendritic cells. Dectin-1 activation is fundamental for 

NK-mediated killing of tumor cells  and polarization of 
 CD4+ T-cells into Th9 cells [79]. Mechanistically, Th9 cells 
secrete interleukin (IL)-9 improving  CD8+ T-cells responses 
[80]. Imprime PGG is an agonist of the dectin receptor. The 
IMPRIME 1 trial studied pembrolizumab and Imprime 
PGG in patients with mTNBC following progression on at 
least two prior lines of treatment. Mechanistically, Imprime 
PGG requires anti-beta glucan antibodies (ABA) to enhance 
anti-tumor immunity. Therefore, eligibility was restricted to 
patients with ABA IgG ≥ 20 mcg/ml. The ORR was 15.9% 
and the median OS was 16.4 months. Intriguingly, there 
appeared to be greater benefit for patients who were initially 
HR+ with 50% ORR, though given the small sample size 
and clinical heterogeneity of the cohort, the implications of 
this finding remain to be further characterized [81].

Oncolytic viruses

Oncolytic viruses are a promising approach to enhance T-cell 
infiltration. Oncolytic viruses are specifically engineered to 
replicate and lyse tumor cells minimizing their effects on 
normal tissues. Thus, expected effects include increasing 
T-cell priming, homing, and antagonism of immunosuppres-
sive signals in the TME. Various non-pathogenic viruses 
have been employed for this purpose [82, 83]. Talimo-
gene Laherparepvec (T-VEC) is a human herpes virus that 
induces the expression of colony-stimulating factor (GM-
CSF) through viral replication in cancer cells producing 
anti-tumor immune responses [84, 85]. The combination of 
pembrolizumab and T-VEC was feasible in metastatic mela-
noma patients with a promising 62% ORR, exceeding the 
responses observed with either T-VEC or pembrolizumab 
as single agents [86, 87]. In localized TNBC, the addition 
of T-VEC to neoadjuvant chemotherapy based on weekly 
paclitaxel followed by doxorubicin/cyclophosphamide was 
safe, with a promising pathological complete response 
observed in five out of nine patients enrolled [88]. The ongo-
ing SOLTI-1503 PROMETEO evaluates the combination of 
T-VEC with atezolizumab in patients with operable TNBC 
or Luminal B-like/HER2- breast cancer with residual disease 
after neoadjuvant chemotherapy. The primary end point of 
this study is to evaluate whether this strategy increases the 
expression of a T-cell gene signature [89].

Adoptive cell therapies

Adoptive cell therapy involves the transfer of therapeutic 
effector cells into a patient. One approach involves isolating 
TILs from the host, expansion and eventually infusion after 
lymphocyte-depleting chemotherapy. Proof-of-concept for 
this approach was demonstrated for a patient with refrac-
tory HR+ breast cancer who received TILs in combina-
tion with pembrolizumab [90]. The phase 1 clinical trial 
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(NCT00027807) explored anti-CD3-activated T-cells in 
combination with IL-2 and anti-CD3/anti-HER2 bispe-
cific antibody achieving a limited 5% ORR and manage-
able toxicity profile in HER2+ breast cancer [91]. Lastly, 
the (NCT00228358) study explored T-cell infusion primed 
with a HER2/neu vaccine. A promising ORR of 43% was 
observed [92]. The second approach within adoptive cell 
strategies, involves the use of chimeric antigen receptor 
(CAR)-T therapies. CAR-T cells are genetically modified 
T-cells to express either a tumor specific T-cell receptor 
(TCR) or a synthetic chimeric antigen receptor (CAR) that 
are able to identify specific antigens [93]. Several cancer 
antigens are currently being evaluated as potential targets 
[94]. For example, mesothelin is overexpressed in 36% of 
TNBC [95]. Clinical trials involving mesothelin-CAR-T cells 
enrolling breast cancer patients are ongoing (NCT02792114) 
and (NCT02414269) [96].

Interleukins in breast cancer

Cytokines are small peptides or glycoproteins with a short 
half-life released in response to different stimuli resulting 
in intracellular signaling and transcription modifications. 
Cytokines can have either tumor promoting or anti-cancer 
effects [97]. Recent optimization of the pharmacodynamic 
and pharmacokinetic profiles of cytokine-based agents has 
led to an increased interest in the development of clinical tri-
als of cytokines in combination with ICIs or other immuno-
therapy agents [98]. There are a variety of novel therapeutic 
cytokines that are being evaluated in breast cancer clinical 
trials. The phase Ib/II (NCT01131364) explored the safety 
and tolerability of the F16-IL2 an antibody-cytokine fusion 
protein in combination with doxorubicin in metastatic breast 
cancer with an observed clinical benefit rate (CBR) defined 
as disease stability at 8 months of 57%. Targeting IL-7 has 
also been studied [99]. In the phase Ib/II KEYNOTE-899 
trial, GX-I7, a long-acting IL-7, was evaluated in combina-
tion with pembrolizumab mTNBC. The toxicity profile was 
favorable, however, ORR was only 5.9%. IRX-, a biologic of 
physiologically derived T-helper type 1 cytokines, was stud-
ied as intratumoral injection in 16 patients with early-stage 
breast cancer before surgical resection. This approach was 
feasible and upregulation of RNA inflammatory signatures 
and TILs were observed [100].

Bispecific antibodies

Bispecific antibodies are proteins with at least two epitope 
recognizing sequences [101]. Molecular characterization 
of breast cancer subtypes has facilitated the development 
of bispecific antibodies engineered to bind to tumor spe-
cific antigens and receptors on T-cell surface [102]. TGF- β 
is a pleiotropic cytokine with a role in immune evasion in 

breast cancer [103]. M7824 targeting PD-L1 and TGF-β, 
is currently under investigation for localized HER2+ breast 
cancer (NCT03620201). KN046 is a bispecific antibody that 
blocks PD-L1 and CTLA-4 by interaction with PD-1 and 
CD80/86. The preliminary results of the (NCT03733951) 
were presented in ASCO 2020 for patients with nasopharynx 
cancer or non-small cell lung cancer. Objective responses 
were observed in 3 patients out of 26 (12%) [104]. Currently, 
NCT03872791 is evaluating KN046 alone or in combination 
with nab-paclitaxel in patients with mTNBC. MGD013 is a 
dual-affinity retargeting protein (DART) targeting both PD-1 
and LAG-3 [105]. Out of 23 patients with mTNBC, 2 partial 
responses were observed [106].

Probody

Probody therapeutics are proteolytically activated anti-
body prodrugs designed to be activated and to target spe-
cific receptors in the TME rather than in peripheral tissues 
[107]. In this regard, the results of the PROCLAIM-CX-072 
phase I clinical trial described the safety and efficacy of the 
CX-072 a PD-L1 probody therapeutic as single agent or in 
combination with Ipilimumab in patients with solid tumors. 
3 out of 12 patients with mTNBC responded when used 
as monotherapy, confirming single agent activity, and with 
response rate similar to established PD-1/L1 inhibitors. 
CX-072 both in monotherapy and in combination with ipili-
mumab was well tolerated with few immune related adverse 
events reported [108].

Cancer vaccines

T-cell priming, an initial step in the cancer-immunity cycle, 
can be enhanced by the use of cancer vaccines. Breast cancer 
vaccines have been designed by using different platforms 
with the ultimate goal of activating T-cells to recognize can-
cer cells in a variety of settings including disease preven-
tion, interception of minimal residual disease in the adju-
vant setting, and treatment of metastatic disease [109, 110]. 
MAG-Tn3 glycopeptide vaccine was engineered to activate 
 CD4+ T-cell responses by binding to a wide range of HLA-
DRB molecules. MAG-Tn3 was well tolerated and induced 
humoral responses [111]. The P10s-PADRE vaccine was 
designed to induce functional antibodies against carbohy-
drate antigens (TACAs) for patients with metastatic breast 
cancer. In the (NCT01390064) phase 1 clinical trial, IgG 
and IgM anti-P10 were long lasting and persisted high one 
year after vaccination [112]. Additional trials have explored 
using HER2 as a target for vaccine design including strate-
gies based in the HER2 protein [113, 114] or relying in viral 
vectors to HER2-specific cell-mediated or humoral immu-
nity [115, 116]. Recently, synthetic mRNA has emerged as 
novel vaccine format [117]. In this respect, TNBC-MERIT 
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(NCT02316457) is a phase 1 clinical trial assessing the 
safety and tolerability of a liposome-formulated intravenous 
RNA vaccine encoding different tumor antigens in patients 
with early-stage TNBC [118].

Epigenetic drugs

Some described mechanisms of resistance to ICIs may 
be reverted with the use of epigenetic modulation [119]. 
Lysine-specific histone demethylase 1A (LSD1) inhibitors, 
DNA methyl-transferase (DNMT) inhibitors, and histone 
deacetylase (HDAC) inhibitors can impact on adaptive 
immunity by inducing dsRNA production from endoge-
nous retrovirus genes leading to a type I interferon response 
[120–122]. Moreover, DNMT inhibitors are also known 
to influence chemokine production increasing the expres-
sion of CXCL12, a key regulator of T-cell homing [123]. 
Other examples include increased production of CXCL9 
and CXCL10 chemokines by enhancer of zeste homologue 
2 (EZH2) modulation [124].

Different approaches combining epigenetic modifiers and 
immunotherapy have been tested in breast cancer [125]. In 
ER+ endocrine-resistant metastatic breast cancer, a Phase II 
trial (NCT02395627) tested the combination of tamoxifen, 
vorinostat (HDAC inhibitor), and pembrolizumab. CBR 
defined as the sum of partial response and stable disease 
for more than 6 months was observed in 5 out of 28 patients 
(18%) [126]. The ENCORE 602 (TRIO025) Phase II trial 
tested atezolizumab with or without entinostat, an oral class 
I-selective HDAC. This trial did not show a benefit for enti-
nostat and atezolizumab compared to atezolizumab alone 
(HR: 0.87, 95% CI 0.52–1.46; p = 0.59) [127]. Lastly, the 
investigator initiated METADUR trial studied the combina-
tion of the PD-L1 ICI durvalumab and the hypomethylat-
ing agent oral azacitidine (CC-486) in ER+/HER2- breast 
cancer. This combination was shown to be safe, however, 
no clinical activity and limited pharmacodynamic changes 
were observed. Consequently, the underlying basis for the 
combination strategy could not be evaluated [128].

Immune targeted kinase inhibitors

Small molecules targeting pathways related to T-cell inhibi-
tory signals or immunosuppressive cells in the TME are a 
feasible approach and a very attractive partner for immuno-
therapy combinations. As compared to ICIs, small molecules 
can penetrate into the TME and be directed to different intra-
cellular proteins. Several tyrosine kinase inhibitors (TKIs) 
in combination with ICIs are currently under investigation 
[129]. Among them, HPK1 inhibitors have the potential to 
become a successful approach by acting in multiple steps of 
the cancer-immunity cycle [130–133]. HPK1 activation is 
linked to the MAPK/NfKB pathways and plays a negative 

regulatory role in T-cell activation and cell adhesion regu-
lation. Notably, HPK1 inhibition resulted in increased IL-2 
production in mouse T-cells [131]. CFI-402411 is an oral 
immunomodulatory kinase inhibitor currently being tested 
in a Phase 1 trial (NCT04521413) alone or in combination 
with pembrolizumab in patients with advanced solid tumors. 
BGB-15025 is another example of HPK1 inhibitor currently 
under study as single agent and in combination with anti-
PD-1 (NCT04649385).

Conclusions

While PD-1/L1 inhibitors added to chemotherapy have 
established the first clinical role for immunotherapy in 
PD-L1 + mTNBC and high risk early TNBC, this strategy is 
currently relevant only to a minority of breast cancer patients 
[13, 16, 134, 135]. Substantial unmet need remains for 
advanced disease with lower level or absent PD-L1 expres-
sion, and other subtypes of breast cancer where checkpoint 
inhibitor therapy, alone or in combination with standard 
chemotherapy, has not been shown to improve treatment 
outcomes. As novel IO compounds enter into the clinical 
arena of breast cancer drug development, there are impor-
tant questions about whether personalized interventions with 
doublets or triplets may be capable of overcoming immune 
resistance. There are many steps in the cancer-immunity 
cycle that might be susceptible to modification by novel IO 
compounds seeking to restore immune surveillance Fig. 1. 
Considering the complexity and variability of tumor-host 
immune interactions, as well as the observed differences in 
anti-tumor activity with ICIs in advanced and early-stage 
disease breast cancer according to PD-L1 expression, “one-
size-fits-all” treatment approaches are unlikely to be success-
ful. The development of robust predictive biomarkers will be 
required to individualize IO interventions in breast cancer.

The recent success of immunotherapy and chemotherapy 
combinations and the relatively limited efficacy of ICIs as 
monotherapy in breast cancer provides many important 
lessons to guide future drug development. First, better out-
comes have been observed in advanced TNBC with both 
ICIs as monotherapy or in combination with chemotherapy 
in patients selected by PD-L1 expression and this marker 
may be considered a surrogate of ongoing immunologic 
activation [13, 136, 137]. Second, the additive benefit of 
immunotherapy appears to be greater in early-stage disease 
and may not differ based upon PD-L1 expression [134]. 
Third, there are clinical factors, such as absence of liver 
metastases, low lactate dehydrogenase (LDH) levels, and 
lymph node predominant metastatic disease, associated 
with an increased responsiveness to immunotherapy in the 
metastatic setting [7]. However, several unanswered ques-
tions remain from the available clinical data, such as whether 
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loss of hormone receptor expression during evolution from 
localized to metastatic disease converts a non-immuno-
genic microenvironment to an immunogenic microenviron-
ment and whether single-agent PD-1/L1 inhibitors without 
chemotherapy might be effective in a subset of patients with 
immunogenic TNBC to minimize chemotherapy-associated 
side effects. Moreover, mechanisms of both intrinsic resist-
ance and acquired resistance to ICIs in breast cancer are 
largely unknown. Particularly with the adoption of immuno-
therapy for early disease, it will be important to understand 
which approaches may be relevant in second line settings 
for patients who initially respond to the standard first-line 
treatments. Biomarkers of acquired resistance are critical 
to develop rational combinations for the second line setting 
and beyond.

All of the above suggest that future immunotherapy 
combinations should take into account the highly com-
plex TME in breast cancer and incorporate biomarkers for 

patient selection. Establishing clear signals of activity for 
novel combinations with PD-1 or PD-L1 ICIs is challeng-
ing. To date, most studies include small, single-arm cohorts 
of highly selected patients with refractory breast cancer. 
With few responses observed, it is difficult to determine 
whether there is synergistic or even additive activity when 
the expected response rate to PD-1 or PD-L1 ICI mono-
therapy is 10–20% and is highly dependent on patient selec-
tion. Establishing proof of mechanism a priori benchmarks 
of pharmacodynamic activity will be critical to determine 
which combinations should be accelerated to randomized 
clinical trials.

We envision a future immunotherapy landscape in 
breast cancer with greater individualization of treatment 
based upon characterization of targetable tumor alterations, 
understanding of host-related factors and TME interactions, 
ongoing response monitoring and identification of adaptive 
resistance mechanisms.

Fig. 1  Selected novel therapeutics currently being tested in the immuno-oncology field and its interaction with elements of the immune-cell 
cycle ([138]. Adapted from Chen and Mellman. Immunity 2013
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