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Abstract
Purpose Results of previous studies on the associations between Forkhead box A1 (FOXA1) expression in breast cancer 
tissues and the prognosis varied depending on the follow-up durations. The present study would investigate whether there 
is a time-varying effect of FOXA1 in breast cancer tissues on the prognosis.
Methods FOXA1 expressions were evaluated in 1041 primary invasive breast tumors with tissue microarrays by immu-
nohistochemistry. Cox models with restricted cubic splines and Kaplan–Meier survival analysis were used to examine the 
associations between FOXA1 and the prognosis. Flexible parametric models were applied to explore the time-varying effect 
of FOXA1.
Results Overall, the association between FOXA1 expression and the prognosis was not significant but varied on the time 
of follow-up. Compared to FOXA1 ≤ 270 of H-score, the hazard ratios (HRs) of death for those with 271–285 of FOXA1 
expression increased from 0.35 (95% CI 0.14–0.86) at 6 months after diagnosis to 2.88 (95% CI 1.35–6.15) at 120 months 
with a crossover at around 36 months. Similar patterns were also observed for FOXA1 > 285 of H-score and for progression 
free survival (PFS). Moreover, when allowed both FOXA1 and estrogen receptor (ER) to change over time in the model 
(considering that ER had a similar time-varying effect), these time-varying effects remained for FOXA1 on both overall 
survival (OS) (P < 0.01) and PFS (P = 0.01) but were attenuated for ER (P = 0.13 for OS).
Conclusions This study revealed an independent time-varying effect of FOXA1 on breast cancer prognosis, which would 
provide an insight into the roles of FOXA1 as a marker of breast cancer prognosis and may help optimize the medication 
strategies.
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Background

Forkhead box A1 (FOXA1), as a member of FOX family 
proteins, is a master regulator in hormone-sensitive tissues 
[1]. In breast cancer, FOXA1 plays multi-functional roles. 
It is involved in the interactions of estrogen receptor (ER) 
with chromatin and promotes the development of breast 
cancer [1, 2] while it positively regulates the expression of 
tumor suppressor gene such as E-cadherin and p27 [3–5] 
and prevents tumor invasion and metastasis. In addition, 
FOXA1 is also a major determinant of endocrine therapy 
effects by mediating different ER binding profiles which 
were associated with endocrine therapy response [6–8].

The associations between FOXA1 expression in breast 
cancer tissues and the prognosis have been explored in a 
large amount of previous studies, but the results were quite 
different with positive (high expression of FOXA1 related 
to a better prognosis) [9–12], negative [13, 14], and null 
associations [15], particularly for ER-positive breast can-
cer. Intriguingly, we noticed that the positive associations 
mostly occurred in the studies with a shorter follow-up 
time (5–12 years) [9–12], whereas the null associations 
occurred mainly in the studies with a longer follow-up time 
(up to 20 years) [15, 16]. Particularly, one study reported 
a null association between FOXA1 expression level and 
distant-metastasis-free-survival during the overall follow-
up period (12.5 years) while there was an increased dis-
tant metastasis risk among patients with high expression 
level in the later period of follow-up [17]. These previous 
findings strongly suggested that the prognostic effects of 
FOXA1 on breast cancer may change with time.

In the present study, therefore, we investigated whether 
FOXA1 in breast cancer tissues have an independent time-
varying effect on the prognosis, so as to provide an insight 
into the role of FOXA1 in breast cancer and help us further 
understand the timing and duration of endocrine therapy.

Materials and methods

Study population

A total of 1063 females with pathologically diagnosed 
primary invasive breast cancer and > 1 cm of tumor size 
in diameter were recruited between January 2008 and 
December 2015 from the Cancer Center of Sun Yat‐sen 
University in Guangzhou, China. Patients who lacked 
information of FOXA1 (N = 13) were excluded from the 
study and 98.6% (N = 1041) of the included patients were 
successfully followed up until Dec 31, 2019.

Collections of demographic and clinicopathologic 
information

Demographic characteristics including age and menopausal 
status were collected in face-to-face interview by trained 
investigators using structured questionnaires. BMI and 
clinicopathologic characteristics including clinical stage, 
histological grade, ER, progesterone receptor (PR), Human 
epidermal growth factor receptor 2 (HER-2) status and pro-
liferation index factor Ki-67 (Ki-67) etc. were collected from 
medical records. Detailed definitions of ER, PR, and HER2 
status were previously described in detail [18].

Construction of tissue microarray (TMA)

Formalin-fixed and paraffin-embedded tissues of included 
patients were retrieved. Hematoxylin and eosin (HE)-stained 
sections of tissue specimens were reviewed by two experi-
enced pathologists, followed by re-slicing and re-staining 
with HE. Representative tumor tissue regions and adjacent 
normal tissue regions (If available) were marked on the re-
stained HE sections. From the marked regions, two tumor 
tissue cylinders and one adjacent normal tissue cylinder (If 
unavailable, it would be replaced with the tumor tissue) with 
a diameter of 1 mm were punched out of the corresponding 
paraffin block as donor block and placed into the TMA par-
affin block using an automatic tissue arrayer (MiniCore®, 
Mitogen, UK). The layout of the cores was determined in 
advanced by TMA Designer 2 Software. Sections of 4-μm 
cut from TMA blocks were pasted on the coded glass slides 
and then placed in the oven at 65 °C for 30 min and finally 
sealed the tissue surface with paraffin.

Immunohistochemistry (IHC)

The TMAs were baked at 60 °C for 2 h and then dewaxed 
with xylene and ethanol. Next, antigen retrieval was per-
formed in super-pressure kettle using EDTA (PH 9.0) and 
then endogenous peroxide was blocked using 3%  H2O2. 
After the preparations, slides were incubated in rabbit mon-
oclonal to FOXA1 (EPR10881)-ChIP Grade (ab170933, 
diluted 1:100, Abcam) overnight at 4 °C and labeled with 
the EnVision Detection System (Peroxidase/DAB, Rab-
bit/Mouse) (Dako K5007). Then slides were developed by 
diaminobenzidine (DAB) and were counterstained by hema-
toxylin. Finally, slides were dehydrated and mounted.

IHC stained sections were digitally imaged using Pan-
noramic Scanner and CaseViewer software. IHC staining 
was analyzed by an experienced pathologist and scored for 
staining intensity (0-no staining, 1-weak, 2-moderate and 
3-strong) and percentage of tumor cell nuclear staining 
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(0–100). Multiplying staining intensity with percentages 
yields an H score ranging from 0 to 300. Mean value of 
H-score from duplicate cores was taken.

Follow up

Patients were followed up by phone calls or out-patient visits 
every 3 months in the first year, every 6 months in the sec-
ond and third year after diagnosis and annually thereafter. 
The endpoints of this study were overall survival (OS) and 
progression free survival (PFS), which were defined as the 
time from diagnosis to death and the time from diagnosis to 
disease progression including recurrence, metastasis, and 
death, respectively. Survival status was censored at the latest 
follow-up date or Dec 31, 2019.

Statistical analysis

Kruskal–Wallis test and Mann–Whitney U test were used 
to test the associations of FOXA1 H-scores (defined as a 
continuous variable) with age, BMI, clinical stage, meno-
pausal status, histological grade and expressions of HER-2, 
ER and PR. FOXA1 H-score was modeled as continuous 
variable and fitted in a Cox proportional hazard model using 
restricted cubic splines with knots at the 5th, 35th, 65th, and 
95th percentiles to estimate the hazard ratios (HRs) and 95% 
confidence bands assuming proportional hazard (PH). Then 
FOXA1 H-score was categorized according to the results 
of restricted cubic splines and the distribution of FOXA1 
H-score. Univariate survival analyses of FOXA1 (defined 
as categorical variable) were perform using Kaplan–Meier 
method. Log-rank test was used to estimate the differences 
in survival curves of FOXA1 and to estimate the associa-
tions between demographic and clinicopathologic charac-
teristics and breast cancer prognosis to control the potential 
confounders.

Flexible parametric models were used to perform time-
varying effect analysis. The logarithm of the baseline hazard 
function was modeled as a natural cubic spline function of 
log time using a 2 degrees-of-freedom according to Akaike 
information criterion, where FOXA1 and ER were sepa-
rately treated as variables with time-dependent effect. We 
also adjusted age at diagnosis, clinical stage, histological 
grade, and ER status in the models to estimate HRs and 95% 
confidence intervals (CI) over time. To confirm the inde-
pendent time-varying effect of FOXA1, we further treated 
both FOXA1 and ER as covariates with time-dependent 
effect in the model, in which HRs and 95% CIs of FOXA1 
were calculated separately over time for patients with ER-
positive or ER-negative tumors. All analyses were conducted 
using R 3.6.2 and a two-sided P-value below 0.05 was con-
sidered as statistical significance.

Results

Demographic and clinicopathological characteristics 
and the associations with FOXA1 expression

The median age at diagnosis was 48 years (interquartile 
range: 41‐56 years). More than half of the women had a 
BMI under 23.0 (51.3%) and 58.7% of them were pre-
menopausal. A great part of the women were diagnosed 
with low histological grade (grade I/II: 73.3%), early stage 
(stage I/II: 69.6%), ER-positive (73.5%), PR-positive 
(72.8%), or HER-2 negative (61.3%) (Table 1).

FOXA1 expression was evaluated in the nucleus 
of breast cancer cells. The H-score of FOXA1 ranged 
from 0 to 300 with a median (interquartile range) of 280 
(270–285). The median  (P25,  P75) of FOXA1 H-score for 
ER-positive patients [285.0 (270.0, 285.0)] was signifi-
cantly higher than that for ER-negative patients [270.0 
(0.0, 285.0)] (P < 0.01). In addition, FOXA1 expression 
was also lower in tumors with higher grade, higher Ki-67, 
PR negative, or HER-2 negative (all P < 0.05). No marked 
differences in FOXA1 expression were observed between 
different age, BMI, menopausal status, clinical stage, 
tumor size, nodal status and metastasis (Table 1).

Prognostic effects of FOXA1 on breast cancer

Of the 1041 women, 125 died and 217 experienced 
disease progression with a median follow-up time of 
69.5 months. For OS, the risk of death was relatively flat 
until around 270 of FOXA1 H-score and then slightly 
increased from 270 to 285 of FOXA1 H-score, but for 
FOXA1 H-scores > 285, the risk of death was decreased 
(Fig. 1A), although the association between FOXA1 and 
OS was not significant (Fig. 1A, P = 0.59, Pnonlinear = 0.49). 
For PFS, similar pattern was observed (Fig. 1B, P = 0.075, 
Pnonlinear = 0.59). Based on the results of restricted cubic 
splines and the distribution of FOXA1 H-score, we catego-
rized FOXA1 H-score into three levels using tertiles as the 
cut-off points: ≤ 270, 271–285 and > 285.

In Kaplan–Meier analysis, no statistically significant 
differences were observed both for OS and PFS (log rank 
P = 0.19 and 0.88, respectively). Whereas, the survival 
probability was the highest for those with FOXA1 > 285 in 
the early period of follow-up while it changed to the lowest 
and the curves crossed over in the later period (Fig. 2).
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Time‑varying effect of FOXA1 on breast cancer 
prognosis

Significant time-varying effects of FOXA1 on breast 
cancer prognosis (both OS and PFS) were observed (all 
P < 0.01). Compared to FOXA1 ≤ 270, the HRs of death 
for the patients with H-score = 271–285 of FOXA1 expres-
sion increased from 0.35 (95% CI 0.14–0.86) at 6 months 
after diagnosis to 2.88 (95% CI 1.35–6.15) at 120 months 
with a crossover at around 36 months, and for those with 
the highest FOXA1 expression (H-score > 285), the HRs 
increased from 0.18 (95% CI 0.06–0.53) to 1.25 (95% CI 
0.66–2.81) with a crossover at around 84 months in the 
adjusted model. Similar patterns were also observed for 
PFS. (Fig. 3; Table 2).

We further found that there was also a time-varying effect 
for ER on the survival (P = 0.02 for OS and P < 0.01 for PFS, 
Additional Table 1) and ER was associated with FOXA1 
level, which suggested a potential confounding effect of 
ER on FOXA1 for the time-varying effect. Therefore, we 

allowed for the effects of both FOXA1 and ER to change 
over time in the model and let them adjust each other. It 
turned out that the time-varying effects of FOXA1 on both 
OS (P < 0.01) and PFS (P = 0.01) remained but the effect 
of ER disappeared on OS (P = 0.13). In both ER strata, the 
time-varying patterns of FOXA1 were similar to that in the 
whole population (Figs. 4, 5; Additional Tables 2, 3).

Discussion

In this study, we found that a higher FOXA1 expression level 
was associated with less aggressive characteristics of breast 
cancer, such as lower histological grade, lower Ki-67 expres-
sion, positive ER or PR. Overall, FOXA1 expression was not 
significantly associated with the prognosis of breast cancer 
patients, while there was a marked time-varying effect of 
FOXA1 on the prognosis. Compared with the low level of 
FOXA1, a high level of FOXA1 was associated with a pro-
tective effect on the survival of breast cancer patients in the 

Table 1  Demographic and clinicopathological characteristics and the associations with FOXA1

Bold character indicate statistically significant result

Factors N (%) H score
[Median  (P25,  P75)]

P Factors N (%) H score Median  (P25,  P75)] P

Age BMI (kg/m2)
 ≤ 40 247 (23.7) 277.5 (262.5, 285.0)  < 23 504 (51.3) 280.0 (270.0, 285.0)
 41–60 674 (64.7) 280.0 (265.0, 285.0) 0.13  23–24.9 229 (23.3) 277.5 (265.0, 285.0) 0.48
 ≥ 61 120 (11.5) 285.0 (270.0, 285.0)  ≥ 25 249 (25.4) 285.0 (270.0, 285.0)
 Unknown 0  Unknown 59

Menopause Histological grade
 Pre 585 (59.2) 280.0 (265.0, 285.0) 0.50  I/II 695 (73.3) 285.0 (270.0, 285.0)  < 0.01
 Post 403 (40.8) 280.0 (270.0, 285.0)  III 253 (26.7) 270.0 ( 10.0, 285.0)
 Unknown 53  Unknown 93

Ki-67 Size (cm)
 ≤ 14% 247 (25.2) 285.0 (270.0, 285.0)  < 0.01  < 2 296 (29.7) 285.0 (270.0, 285.0) 0.68
 > 14% 735 (74.8) 277.5 (255.0, 285.0)  ≥ 2 702 (70.3) 280.0 (265.0, 285.0)
 Unknown 59  Unknown 43

Nodal status Metastasis
 Yes 561 (56.2) 277.5 (262.5, 285.0) 0.30  Yes 28 ( 2.8) 280.0 (265.0, 285.0) 0.91
 No 437 (43.8) 285.0 (270.0, 285.0)  No 966 (97.2) 280.0 (270.0, 285.0)
 Unknown 43  Unknown 47

Clinical stage HER2
 I 174 (17.5) 277.5 (262.5, 285.0)  Negative 547 (61.3) 277.5 (255.0, 285.0)
 II 517 (52.1) 285.0 (270.0, 285.0) 0.46  Positive/equivocal 345 (38.7) 285.0 (270.0, 285.0) 0.04
 III/IV 302 (30.4) 280.0 (270.0, 285.0)
 Unknown 48  Unknown 149

ER PR
 Negative 263 (26.5) 270.0 ( 0.0, 285.0)  < 0.01  Negative 269 (27.2) 277.5 (120.0, 285.0)  < 0.01
 Positive 729 (73.5) 285.0 (270.0, 285.0)  Positive 721 (72.8) 285.0 (270.0, 285.0)
 Unknown 49  Unknown 51
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early years after diagnosis, but this protective effect gradu-
ally diminished with time and an adverse effect occurred in 
the later years. These time-varying effects of FOXA1 were 
independent of ER status.

In consistent with our study, a lot of previous population 
studies have also found that FOXA1 expression level was 
higher in tumors with less aggressive characteristics [16, 
19, 20]; Cellular experiments revealed that upregulation 
of FOXA1 inhibited epithelial to mesenchymal transition 
(EMT), migration and invasion in breast cancer cells [21, 
22]. Moreover, another finding of the present study that the 
significant association of a high FOXA1 expression level 
with a better prognosis of breast cancer in the early stage 
after diagnosis also supported this result.

It was a quite interesting phenomenon that the protective 
effect on breast cancer survival of a high FOXA1 expression 
level gradually diminished and shifted to a detrimental effect 
in later years after diagnosis. One of the possible reasons 

for this time-varying effect was the altered FOXA1 expres-
sion level. It has been found that FOXA1 expression level 
decreased in long-term tamoxifen-treated MCF7 cells [23] 
and ER-negative cells exposed to bisphenol A [22]. Another 
reason was the termination of endocrine therapy, which may 
result in the diminished protective effect of high FOXA1 
expression level because FOXA1 plays its role depending on 
endocrine therapy [6]; the Chinese Anti-Cancer Association 
(CSCA) Diagnosis and Treatment Guidelines for breast can-
cer (version 2008) [24] recommended ER positive patients to 
receive endocrine therapy for 5 years after surgery and most 
of the patients complied with the guideline [25], which was 
also consistent with our results that the protective effect of 
highest FOXA1 expression on cancer progression shifted to 
an detrimental effect at 60 months after diagnosis. The third 
reason was the acquisition of endocrine resistance caused 
by FOXA1 through transcription reprogramming in breast 
cancer cells with the extension of endocrine therapy time 
[8, 14, 26–28].

We found that the time-varying effects of FOXA1 on 
breast cancer were independent on ER status while the 

Fig. 1  Restricted cubic splines of FOXA1 with breast cancer (A) OS 
and (B) PFS

Fig. 2  Kaplan-Meier analyses of (A) OS and (B) PFS of FOXA1



872 Breast Cancer Research and Treatment (2021) 187:867–875

1 3

same effects of ER were affected by FOXA1 to some 
extent. This phenomenon may be explained by that 
FOXA1 was essential for sustained ER expression [29] and 
was the upstream of ER-chromatin interactions, regulating 
more than 90% of ER binding events [6, 30]. In addition, 

this result likely suggested that the time-varying effects 
of FOXA1 may also be mediated through other pathways, 
such as androgen receptor [31] and AGR2 [32, 33]. The 
exact mechanisms remained to be explored.

Fig. 3  Estimated hazard ratio of OS (A) and PFS (B) by FOXA1. 
FOXA1 ≤270 is the reference. Shading indicates the 95% CI 

Table 2  Time-varying HRs and 95% CIs for FOXA1 in association with breast cancer prognosis

Adjusted for age at diagnosis, stage, grade and ER status

FOXA1 Time (months)

6 12 36 60 96 120

OS
  ≤ 270 1.00 (reference)
 271–285 0.35 (0.14,0.86) 0.54 (0.27,1.06) 1.15 (0.73,1.82) 1.75 (1.03,2.97) 2.50 (1.25,4.98) 2.88 (1.35,6.15)

  > 285 0.18 (0.06,0.53) 0.28 (0.12,0.66) 0.56 (0.30,1.05) 0.80 (0.45,1.44) 1.09 (0.59,2.01) 1.25 (0.66,2.37)
PFS
  ≤ 270 1.00 (reference)
 271–285 0.49 (0.27,0.89) 0.69 (0.43,1.09) 1.24 (0.87,1.76) 1.69 (1.11,2.58) 2.21 (1.30,3.75) 2.46 (1.38,4.37)

  > 285 0.35 (0.18,0.70) 0.48 (0.28,0.85) 0.83 (0.55,1.27) 1.09 (0.72,1.65) 1.38 (0.89,2.14) 1.52 (0.96,2.42)

Fig. 4  Estimated HR of OS by FOXA1 with (A) ER-negative or (B) 
ER-positive tumors. FOXA1 ≤270 is the reference. Shading indicates 
the 95% CI 
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There were some limitations in this study. First, only 
patients with tumor > 1 cm were included and that may lead 
to selective bias. However, FOXA1 expression was inde-
pendent of tumor size in this study, causing non-differential 
bias on the associations between FOXA1 and prognosis. 
Second, we were unable to collect the information on the 
changes of FOXA1 over time that made us fail to make 
sure whether the time-varying effect was due to changes in 
FOXA1 expression. Third, we didn’t collect the informa-
tion about treatment which was associated with prognosis. 
However, since the treatment was determined according to 
the clinicopathological characteristics such as ER status and 
tumor stage, adjustment of these characteristics in the statis-
tic models largely controlled the confounding effects of the 
treatment. Finally, a follow-up time up to 10 years may lead 
a bias estimation in the later stage of follow-up. However, 
the crossover time-points of time-varying effects occurred 
before the median follow-up time (72.2 months), indicating 
that the results of the time-varying effect were reliable.

Conclusion

This study firstly revealed the time-varying effect of FOXA1 
on breast cancer prognosis: a higher expression of FOXA1 
was associated with a better survival in the early stage after 
diagnosis while it associated with a poor survival in the late 
stage. Similar results were observed when further treated ER 
as covariates with time-dependent effect in the model. These 
findings provided an insight into the roles of FOXA1 as a 
marker of breast cancer prognosis and argued in favor of an 
extended endocrine therapy rather than 5 years.
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