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EPIDEMIOLOGY

Associations of one‑carbon metabolism‑related gene polymorphisms 
with breast cancer risk are modulated by diet, being higher 
when adherence to the Mediterranean dietary pattern is low
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Abstract
Purpose Breast cancer is more likely attributed to a combination of genetic variations and lifestyle factors. Both one-carbon 
metabolism and diet-related factors could interfere with the carcinogenesis of breast cancer (BC), but whether diet consumed 
underlie a specific metabolism pathway could influence the impact of genetic variants on breast cancer risk remains equivocal.
Methods A case–control study of the Chinese female population (818 cases, 935 controls). 13 SNPs in eight one-carbon 
metabolism-related genes (MTHFD1, TYMS, MTRR , MAT2B, CDO1, FOLR1, UNG2, ADA) were performed. Diet was 
assessed by a validated food-frequency questionnaire. We examined the associations of the adherence to the Mediterranean 
dietary pattern (MDP) and single-nucleotide polymorphisms (SNPs) of one-carbon metabolism with breast cancer risk. We 
constructed an aggregate polygenic risk score (PRS) to test the additive effects of genetic variants and analyzed the gene–diet 
interactions.
Results High adherence (highest quartile) to the MDP decreased the risk of breast cancer among post- but not premenopausal 
women, respectively (OR = 0.54, 95% CI = 0.38 to 0.78 and 0.90, 0.53 to 1.53). Neither of the polymorphisms or haplotypes 
was associated with breast cancer risk, irrespective of menopause. However, a high PRS (highest quartile) was associated 
with more than a doubling risk in both post- and premenopausal women, respectively (OR = 1.95, 95% CI = 1.32 to 2.87 and 
2.09, 1.54 to 2.85). We found a gene–diet interaction with adherence to the MDP for aggregate PRS (P-interaction = 0.000) 
among postmenopausal women. When adherence to the MDP was low (< median), carries with high PRS (highest quartile) 
had higher BC risk (OR = 2.80, 95% CI = 1.55 to 5.07) than low PRS (lowest quartile), while adherence to the MDP was 
high (≥ median), the association disappeared (OR = 1.57, 95% CI = 0.92 to 2.66).
Conclusion High adherence to the MDP may counteract the genetic predisposition associated with one-carbon metabolism 
on breast cancer risk in postmenopausal women.

Keywords Breast cancer · Mediterranean dietary pattern (MDP) · One-carbon metabolism · Single-nucleotide 
polymorphisms (SNPs) · Polygenic risk score (PRS)

Introduction

The primary risk factors of breast cancer (BC) include over-
weight or obesity, physical inactivity, exogenous hormone 
intake (use of oral contraceptive and hormone replacement 
therapy), reproduction condition (late age at first birth and 
low parity), family history of cancer and unhealthy diet 
[1–6]. Besides, these modifiable risk factors, having a 
genetic predisposition increases a women’s lifetime risk of 
BC [7, 8], as inherited mutations in BRCA1 and BRCA2 
genes [9]. However, these genetic changes account for only a 
small proportion of breast carcinogenesis (< 10%) [10]. For 
most cases, BC is more likely attributed to a combination 
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of genetic variations and environmental or lifestyle fac-
tors. Thus, elucidating the gene–environment interactions 
is essential to unveil the molecular mechanisms involved in 
breast carcinogenesis.

A dietary pattern is a combination of lifestyle and envi-
ronmental factors and is related to an individual’s health 
outcome. A well-balanced dietary practice, such as the Med-
iterranean dietary pattern (MDP), is identified to reduce the 
risk of a variety of diseases [11]. The traditional Mediter-
ranean diet is characterized by the liberal use of olive oil; 
the high consumption of vegetables, fruits, nuts, legumes 
and unprocessed cereals; the moderate amounts of fish and 
wine; the low intake of dairy products (with the exception of 
cheeses), red meat and meat products [12]. A number of epi-
demiological studies have suggested that this dietary pattern 
had substantial health benefits and displayed inverse asso-
ciations with multiple cancer types [13]. Since the devel-
opment of cancer is generally determined by the interplay 
between extrinsic and intrinsic factors, the role of underlying 
metabolism pathways associated with the genetic variants 
might help explain the discrepancies in the published stud-
ies, inconsistent results of the association between the gene 
polymorphism and cancer risk [14–19].

One-carbon metabolism is a complicated metabolic net-
work composed of cascade reactions based on the transfer of 
one-carbon units, which is required by nucleotide synthesis, 
DNA replication, repair and methylation. The inadequate 
intake of nutrients in the daily diet could destroy the normal 
physiological process of one-carbon metabolism, associated 
with the disruption of DNA replication and repair as well 
as aberrant DNA methylation patterns, eventually leading 
to carcinogenesis [20]. Some epidemiological studies pro-
vided some promising results, which focused on MTHFR 
(rs1801131, rs1801133) and MTR (rs1805087), intake 
of folate and vitamin B6/B12 and BC risk [21, 22]. Also, 
genetic polymorphisms in the one-carbon metabolism path-
way genes encoding functional enzymes and co-enzymes 
have been suggested to influence individuals’ susceptibil-
ity to cancer, such as Methylenetetrahydrofolate reductase 
(MTHFR), methionine synthase (MTR) and thymidylate 
synthase (TYMS) [23–25]. However, in addition to these 
most common polymorphisms, the role of genetic variants 
in other one-carbon metabolism genes and their interactions 
with diet regarding BC risk remain largely unexplored, espe-
cially in the Asian female population.

Hence, we selected a series of key genes that play a role in 
the one-carbon metabolic pathway [25], and picked SNP sites 
that were previously suggested to be related to the risk of 
other cancers [26, 27]. We aim to evaluate the association 
between genetic polymorphisms of one-carbon metabolism 
and the risk of BC among Chinese women and whether 
adherence to the Mediterranean dietary pattern could modify 
the association of genetic variants with BC risk.

Materials and methods

Subjects

Subjects were from the Chinese Wuxi Exposure and Breast 
Cancer Study (2013–2014), a population-based case–con-
trol study on the role of biology, diet, lifestyle, and environ-
mental factors in the etiology of BC in Asian women. The 
subjects were all women who lived in Wuxi city, Jiangsu 
Province, China, for more than five years. Newly diagnosed 
breast cancer patients within one year were selected as the 
case group according to the local cancer registration system. 
All cases were identified according to the International Clas-
sification of Diseases for Oncology (ICD-10, code C50), 
excluding patients with secondary or recurrent BC. For those 
with multiple incident cancers, only included those with BC 
as the first original malignancy diagnosed. Controls were 
matched to the cases in a ratio of 1:1 by the same residence 
area and age (range of ± 5 years), excluding individuals with 
any cancer history. The study protocol was approved by the 
Institutional Review Boards of Jiangsu CDC, and informed 
consent was obtained from all subjects. Blood samples were 
collected from both cases and controls.

Data on diet

The usual diet was assessed by a validated, semi-quantitative 
food-frequency questionnaire (FFQ), which included 149 
items along with the recipes commonly used in China. Nutri-
ent and energy intake were calculated through the Chinese 
Food Composition Database (2018, 6th version). Dietary 
intake assessment included whether the food was consumed, 
consumption frequency (times of per day/week/month/year) 
and the average amount of food consumption at each time. 
The 149 food items in the FFQ were classified into 18 pre-
defined food groups based on similarities in nutrient profile 
and culinary usage. The validity of the FFQ has been proved 
in the previous study [28].

Mediterranean diet scale

The alternate Mediterranean diet score (aMED) established 
by Fung et al. [29] includes nine dietary components and 
ranges from 0 to 9 scores (minimum to maximum conform-
ity). One point is given to each subject when the food intake 
is equal to or above the median intake of controls for the 
following seven components regarded as healthy: grains, 
fruits, vegetables, legumes, nuts, fish, and monounsatu-
rated fat–saturated fat ratio. One point is given when the 
intake amount of a subject is less than the median intake 
of unhealthy food such as red meat or processed meat, or 
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alcohol consumption within 5–25 g/day for women as a 
specified range. The higher the score obtained from the 
questionnaire, the greater the adherence to the Mediterra-
nean dietary pattern (MDP).

Lifestyle, anthropometric, medical history 
and reproductive history data

Demographic, lifestyle characteristics, menstrual and repro-
ductive events, dietary intake, disease history and physical 
activity-related data were collected from a structured ques-
tionnaire, through in-person interviews conducted by trained 
interviewers. Anthropometric measures were obtained by 
trained personnel following the protocol. Physical activity 
was measured by referencing the Global Physical Activ-
ity Questionnaire [30]. Postmenopause was defined as an 
absence of menstruation in the past 12 months.

Genotyping assays

A total of 18 single-nucleotide polymorphisms (SNPs) 
involved in 12 one-carbon metabolism genes including 
Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), 
Thymidylate Synthetase  (TYMS), methionine synthase 
reductase (MTRR ), methionine adenosyltransferase 1A 
(MAT1A), methionine adenosyltransferase 2B (MAT2B), 
folate receptor 1 (FOLR1), cystathionine-β-synthase (CBS), 
glutaminase (GLS), DNA methyltransferases 3B (DNMT3B), 
uracil N-glycosylase 2 (UNG2), adenosine deaminase (ADA) 
and cysteine dioxygenase (CDO1), were selected for geno-
typing analysis. Genomic DNA was extracted from 200 μl 
of peripheral blood using the QIAamp DNA Blood Mini Kit 
(QIAGEN, Germany) following the manufacturer’s instruc-
tions. Purified DNA was evaluated and quantified by agarose 
gel electrophoresis and spectrophotometer methods. Experi-
mental design and SNP genotyping were carried out by the 
Sequenom MassARRAY platform. The call rate for each 
SNP among all the samples was > 95%. In addition, five per-
cent of samples were randomly selected and then repeatedly 
genotyped with a concordant rate of 100%.

Statistical analysis

Chi-square tests were carried out to examine Hardy–Wein-
berg equilibrium (HWE) in the control group. Linkage 
disequilibrium between SNPs was calculated as D’ and  r2 
values. The SNPs with strong linkage disequilibrium will 
be constructed as haplotypes for further analysis.

Polygenic risk score (PRS) is a useful way of summa-
rizing the effects of genetic variants, the weighted sum of 
the risk allele counts across one-carbon metabolism path-
way was calculated, where the weight for each associated 

individual SNP is determined by the adjusted log OR of its 
association with breast cancer risk.

Unconditional logistic regression methods were used to 
assess: (1) associations between SNP polymorphisms and 
BC risk (statistical significance should be after Benjamini 
& Yekutieli correction for multiple testing). (2) Associations 
between PRS and BC risk. (3) Associations between adher-
ence to the MDP and BC risk. The effect size of associa-
tion was assessed after adjusting the potential confounders, 
included are age at diagnosis for cases or enrollment for 
controls (by years), area (urban, rural), education (ordered 
as illiterate and primary, middle and high school, university 
and above), tobacco smoking (no, or yes: including smoking 
and second-hand smoking ≥ 3 day/week), moderate physi-
cal activity (minutes/day), oral contraceptives use (no, or 
yes: current use or ever use), hormone replacement therapy 
(no, or yes: current use or ever use), family history of breast 
cancer (no, or yes: in a first-degree relative), history of 
benign breast disease (no, or yes: including lactation mas-
titis, plasma cell mastitis, cyclomastopathy, fibroadenoma 
of breast, galactocele), age at menarche (by years), parity 
(0, 1, 2,or ≥ 3), age at first full-term delivery (by years), 
breastfeeding (no, or yes), body mass index (BMI; in kg/m2).

To examine the role of the Mediterranean dietary pat-
tern in the etiology of breast cancer, we test the interaction 
between the Mediterranean diet score and the duration of 
Mediterranean diet intake on breast cancer risk. To examine 
the synergistic effect of diet-genes on breast cancer risk, 
we test the interaction between the SNPs polymorphisms or 
their PRS and adherence to the Mediterranean dietary pat-
tern. The likelihood ratio test was used to test interactions.

All analyses were performed with R version 4.0.2 (The R 
Project for Statistical Computing, USA; http://www.r-proje 
ct.org/).

Results

From Nov 2013 to Nov 2014, a total of 1410 newly diag-
nosed breast cancer cases were identified in Wuxi City, 1072 
cases meeting the inclusion criteria and 818 of them were 
recruited in this study. 1072 controls were screened and 935 
of them were recruited. Of the 818 cases and 935 controls, 
the demographic characteristics and anthropometric meas-
ures of the subjects stratified by menopausal status are pre-
sented in Supplemental Table 1.

Characteristics and frequencies of one‑carbon 
metabolism genes

Genotype and allele frequencies of the 18 SNPs in twelve 
one-carbon metabolism pathway-related genes (MTHFD1, 
TYMS, MTRR , MAT1A, MAT2B, CDO1, FOLR1, CBS, 

http://www.r-project.org/
http://www.r-project.org/
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GLS, DNMT3B, UNG2, ADA) among cases and controls 
are shown in Table 1. Because there is no genetic varia-
tion (minor allele frequency less than 5% was found in the 
MTHFD1 T>C (rs2230491), MAT1A T>C (rs10887718), 
CBS T>C (rs11701048), GLS T > C (rs12185688) and 
DNMT3B G>A (rs13045669), they will be excluded in 
the following analyses. The results presented in this study 
were based on 13 SNPs in the eight one-carbon metabo-
lism pathway-related genes (MTHFD1 G>A (rs11627387), 
MTHFD1 T>C (rs2281603), MTHFD1 G>A (rs8003567), 
TYMS A>T (rs10502289), TYMS T>G (rs2298582), TYMS 
G>A (rs11664283), MTRR  G>C (rs16879334), MTRR  
T>C (rs2287780), MAT2B C>A (rs4869087), CDO1 
G>C (rs34869), FOLR1 T>G (rs10501409), UNG2 G>A 
(rs231622), ADA G>A (rs244072)). The genotype frequen-
cies of the SNPs included in the control group did not devi-
ate from Hardy–Weinberg equilibrium (HWE).

Associations between single‑nucleotide 
polymorphisms (SNPs) and breast cancer risk

We did not found any significant association between indi-
vidual single-nucleotide polymorphisms (SNPs) and pre-or 
postmenopausal BC risk, irrespective of an additive model 

(MM versus Mm versus mm) or a dominant model (MM 
versus Mm + mm). The genotype can be a major allele 
homozygote (MM), a heterozygote (Mm), or a minor allele 
homozygote (mm), results shown in Supplemental Table 2.

For linkage disequilibrium analysis, three considerable 
degree of linkage disequilibrium were observed between 
the MTRR  T>C (rs227780) and MTRR  G>C (rs16879334) 
(D’ = 0.99,  r2 = 1), MTHFD1 G>A (rs8003567) and 
MTHFD1 G>A (rs11627387) (D’ = 0.96,  r2 = 0.35) 
and MTHFD1 G>A (rs8003567) and MTHFD1 G>A 
(rs2281603) (D’ = 0.93,  r2 = 0.13), Fig. 1. Haplotypes with 
a frequency greater than 0.03 were constructed in the case 
group and control group, but no significant difference was 
found in the distribution of haplotypes between cases and the 
controls, results shown in Supplemental Table 3.

Associations between adherence 
to the Mediterranean dietary pattern and breast 
cancer risk

We found a consistent trend of decreasing BC risk with 
increasing aMED score, with the whole population in 
the high aMED score category (highest quartile) hav-
ing 39% reduction in risk of breast cancer (OR = 0.61, 

Table 1  Genotype and minor 
allele frequencies for the single-
nucleotide polymorphisms 
(SNPs) in one-carbon 
metabolism pathway-related 
genes

a SNP identifier based on NCBI dbSNP
b The number of cases and controls may slightly differ from those of study-subjects due to missing genotype 
values
c MAF minor allele frequency
d P value from Chi-square test performed for Hardy–Weinberg equilibrium (HWE) evaluation, using only 
controls

Gene dbSNP  IDa Risk 
(variant) 
allele

Cases/controlsb MAFc 
(cases/con-
trols)

Hardy–Wein-
bergd (P 
value)Wild-type Heterozygote Homozygote

MTHFD1 rs11627387 A 276/334 390/424 128/160 0.41/0.41 0.45
rs2230491 C 801/922 0/2 0/0 0/0 –
rs2281603 C 297/360 393/438 104/119 0.38/0.37 0.73
rs8003567 A 503/585 263/291 33/46 0.20/0.21 0.46

TYMS rs10502289 A 558/652 215/248 25/23 0.17/0.16 0.99
rs2298582 G 680/780 112/134 4/3 0.08/0.08 0.55
rs11664283 A 396/448 338/395 63/79 0.29/0.30 0.83

MTRR rs16879334 C 551/633 229/267 16/19 0.16/0.17 0.32
rs2287780 C 552/635 231/269 16/20 0.16/0.17 0.39

MAT1A rs10887718 C 767/890 33/35 0/0 0.02/0.02 –
MAT2B rs4869087 A 607/718 177/189 15/15 0.13/0.12 0.82
CDO1 rs34869 C 356/402 342/427 100/99 0.34/0.34 0.66
FOLR1 rs10501409 G 414/496 325/376 59/59 0.28/0.27 0.48
CBS rs11701048 C 782/907 17/15 0/0 0.01/0.01 –
GLS rs12185688 C 800/924 800/924 0/0 0/0 –
DNMT3B rs13045669 A 800/922 800/922 0/0 0/0 –
UNG2 rs231622 A 264/299 388/450 141/171 0.43/0.43 0.98
ADA rs244072 A 542/641 231/252 24/26 0.18/0.17 0.9
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95% CI = 0.50 to 0.76). However, the significant asso-
ciation was only among post- (OR = 0.54, 95% CI = 0.38 
to 0.78, P-trend = 0.001), but not premenopausal women 
(OR = 0.90, 95% CI = 0.53 to 1.53, P-trend = 0.824), 
Table 2.

A significant interaction was found between the Medi-
terranean diet score and the duration of Mediterranean 
diet intake on breast cancer risk in postmenopausal 
women (P-interaction = 0.020). Long-term ( ≥ median) 
adherence to MDP (highest quartile of aMED) signifi-
cantly reduces the risk of breast cancer in postmenopausal 
women, compared to short-term (< median) and lowest 
quartile of aMED (OR = 0.41, 95% CI = 0.24 to 0.68), 
Supplemental Table 4. We collected the estrogen receptor 
information of 439 of 818 cases, including 301 estrogen 
receptor-positive and 138 estrogen receptor-negative. 
We found the inverse association between MDP and 
breast cancer risk was greater and easier to detect among 
ER− tumors, Supplemental Table 5.

Associations between PRS and breast cancer risk

The PRS was normally distributed had a strong positive asso-
ciation with BC risk, Fig. 2, a relatively high PRS (highest 
quartile) was associated with more than a doubling in the risk 
of breast cancer in the whole population (OR = 2.09, 95% 
CI = 1.54 to 2.85, P-trend = 0.000). When stratification of 
menopause, the association among premenopausal women was 
slightly stronger than that for postmenopausal women, respec-
tively (OR = 2.30, 95% CI = 1.31 to 4.03, P-trend = 0.000 and 
OR = 1.95, 95% CI = 1.32 to 2.87, P-trend = 0.001), Table 2.

Gene–diet interaction between one‑carbon 
metabolism genes and adherence 
to the Mediterranean dietary pattern 
in determining breast cancer risk

In the interaction analyses, the wild-type genotype of the 
SNPs at the lowest quartile values of aMED was used as 

Fig. 1  Logarithm-transformed 
P values for the association 
between breast cancer risk and 
single-nucleotide polymor-
phisms (SNPs) of one-carbon 
metabolism genes and pattern of 
linkage disequilibrium for tag-
ging SNPs genotyped in carbon 
metabolism genes. The heatmap 
was constructed using a custom 
R script with the LDheatmap 
package in R version 4.0.2 
software



798 Breast Cancer Research and Treatment (2021) 187:793–804

1 3

the reference group. We found a nominal statistical sig-
nificance of the relevant interaction between MTHFD1 
G>A (rs8003567) polymorphisms with postmenopau-
sal breast cancer risk based on the additive and dominant 
genotypic  effects (P-interaction = 0.0260 for additive 
genotypic effects and P-interaction = 0.0465 for dominant 
genotypic effects, Supplemental Table 6. However, this 
interaction was no longer significant under the Benjamini 
& Yekutieli correction for multiple comparisons, Supple-
mental Table 7.

However, there was a significant interaction between 
adherence to the MDP and cumulative PRS in determin-
ing breast cancer risk (P-interaction = 0.006), Table 3. The 
association or not of these polymorphisms combination with 
breast cancer risk depended on the degree of adherence to 
the MDP. When adherence to the MDP was low ( < median), 
carriers with more genetic variants (highest quartile of PRS) 
had a higher risk of breast cancer (OR = 2.91, 95% CI = 1.80 
to 4.67) than that with low PRS (lowest quartile). However, 
when adherence to the MDP was high ( ≥ median), the asso-
ciation was declining (OR = 1.72, 95% CI = 1.14 to 2.60).

Further analysis for stratification of menopausal status, 
we found the relevant interaction was only among post- 
but not premenopausal women, respectively (P-interac-
tion = 0.000 and P-interaction = 0.411). When adherence 
to the MDP was low (< median score), carries with high 
PRS (highest quartile) had higher BC risk (OR = 2.80, 95% 
CI = 1.55 to 5.07) than low PRS (lowest quartile), while 
adherence to the MDP was high ( > median), the association 

disappeared (OR = 1.57, 95% CI = 0.92 to 2.66). When we 
used individual Mediterranean dietary components instead 
of MDP, we didn’t find any significant interaction between 
the specific foods and PRS on breast cancer risk, Supple-
mental Table 8.

Discussion

In this study, among 13 SNPs involved eight one-carbon 
metabolism pathway-related genes, none of them were sta-
tistically significantly associated with the pre- or postmeno-
pausal BC risk. However, we observed a high PRS had more 
than a doubling breast cancer risk irrespective of individu-
al’s menopause. These results were similar to previous stud-
ies; most low penetrance single-nucleotide polymorphisms 
(SNPs) individually have a relatively weak association with 
the risk of breast cancer while examined the risk in relation 
to the combination of polymorphism have reported a much 
stronger association [14–19]. Interestingly, when stratifica-
tion of menopause, we found the association between the 
PRS and risk of BC among premenopausal women was 
somewhat stronger than that for postmenopausal women, 
which also in agreement with existing evidence which indi-
cates that familial/genetic BC typically occurs at an earlier 
age than sporadic BC [31].

A number of previous studies using MED indices have 
consistently shown an inverse association of high adherence 
to the MDP with the risk of BC [32]. However, the effect 

Table 2  Association between alternate Mediterranean Diet Score (aMED) and polygenic risk score (PRS) with breast cancer risk, stratified by 
menopausal status

Alternate Mediterranean diet score (aMED) and Polygenic risk score (PRS) calculated as quartiles of a linear predictor
a OR from logistic regression models adjusted for age at diagnosis for cases or enrollment for controls, area, education, tobacco smoking, moder-
ate physical activity, oral contraceptives use, hormone replacement therapy, family history of breast cancer, history of benign breast disease, age 
at menarche, number of full-term births, age at first full-term delivery, breastfeeding and body mass index. Additional adjustment of menopausal 
age for postmenopausal women

All (n = 1753) Premenopausal (n = 600) Postmenopausal (n = 1153)

Case/control Adjusted  ORa (95% CI) Case/control Adjusted  ORa (95% CI) Case/control Adjusted  ORa (95% CI)

Mediterranean diet score
 Score 1 (high risk) 242/252 Ref. 52/106 Ref. 190/146 Ref.
 Score 2 233/228 1.07 (0.82, 1.39) 63/95 1.34 (0.83,2.20) 170/133 0.97 (0.69,1.35)
 Score 3 193/211 0.96 (0.73, 1.27) 58/83 1.55 (0.94,2.57) 135/128 0.77 (0.54,1.09)
 Score 4 (low risk) 150/244 0.61 (0.50, 0.76) 41/102 0.90 (0.53,1.53) 109/142 0.54 (0.38,0.78)
 P-trend 0.003 0.824 0.001

Polygenic risk score (13 SNPs)
 Score 1 (low risk) 133/212 Ref. 23/67 Ref. 110/145 Ref.
 Score 2 199/235 1.31 (0.97, 1.77) 29/82 0.93 (0.48, 1.81) 170/153 1.40 (0.99, 1.97)
 Score 3 205/233 1.49 (1.10, 2.01) 40/83 1.54 (0.81, 2.92) 165/150 1.58 (1.11, 2.25)
 Score 4 (high risk) 241/228 2.09 (1.54, 2.85) 113/140 2.30 (1.31, 4.03) 128/88 1.95 (1.32, 2.87)
 P-trend 0.000 0.000 0.001
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modification of menopausal status and estrogen receptor 
status were not consistent [33, 34]. In the current study, we 
found that adherence to the MDP could reduce post- but not 
premenopausal breast cancer risk. The possible differential 
effect by menopausal status may be due to a stronger influ-
ence of genetic factors and early life events in premenopau-
sal breast cancer [34]. Additionally, we found the inverse 
association between MDP and breast cancer risk is stronger 
among ER- tumors than ER+ tumors. There is an explana-
tion that the influence of dietary factors may be more dif-
ficult to detect in ER+ tumors because of the strong influ-
ence of hormonal factors [35]. Taken overall, our results are 
consistent with the previous review study [36]. The Mediter-
ranean diet is characterized by foods rich in fiber and anti-
oxidants, such as flavonoids, vitamins and carotenoids. Epi-
demiological evidence strongly suggested that long-standing 
consumption of plant polyphenols- rich diets could help 
against breast cancer initiation and proliferation, especially 

the anti-inflammatory and antioxidant effects of diet [34]. 
The underlying mechanisms by which the Mediterranean 
dietary pattern modulated BC risk were previously identified 
as the decrease of endogenous estrogens [37], neutraliza-
tion of free radicals to prevent DNA damage [38] as well as 
reduction of oxidative stress [39]. This also partly explains 
the heterogeneity we observed in menopause and estrogen 
receptors. The ovaries are the predominant site of estrogen 
synthesis in the premenopausal period, the contribution of 
adipocytes to the circulating pool of estrogens is negligible. 
Besides, evidence suggests that changes in fat distribution 
associated with menopause cause fat to be redistributed 
toward the abdominal region, with a preferential increase 
in visceral fat after menopause. As metabolic perturbations 
related to hormonal are induced particularly by abdominal 
adiposity, the adverse effect of inflammatory on BC may be 
much weaker during the period of premenopausal than post-
menopausal. Additionally, exposure to endogenous estrogen 

Fig. 2  Associations between Polygenic risk score (PRS), adherence 
to the Mediterranean dietary pattern (MDP) and breast cancer risk, 
stratification by menopause. a–c PRS density distribution in predict-

ing breast cancer risk. d–f PRS quartiles in predicting breast cancer 
risk. g–i Adherence to MDP affects the association between PRS and 
breast cancer risk
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is one of the strongest risk factors for breast cancer and it 
has less influence on ER- tumors than ER+ tumors, which 
results in the influence of dietary factors may be easier to 
detect among ER-tumors [34, 36]. In total, our results of 
association of MDP and BC risk supports the hypothesis that 
food components and their combinations in the MDP play 
an etiologic role related to the risk of breast cancer, which 
enhances the evidence of its role in non-Mediterranean 
country populations.

However, the main finding and novelty of our results were 
that we found the association between one-carbon metabo-
lism genes and BC risk depend on the diet consumed combi-
nation. Specifically, when the dietary pattern departed from 
an overall MDP, the effect of gene variants were signifi-
cantly associated with BC risk, while a good adherence to 
MDP blunted this association. This gene–diet interaction 
was robust among the whole population and, in particular, 
postmenopausal women. As far as we know, this is the first 
time that a significant interaction between the one-carbon 
metabolism gene and diet in determining BC risk has been 
reported in the Chinese female population.

The nutrients associated with one-carbon metabolism 
could not naturally be manufactured by the human body, 
which means they need to be obtained from foods. The dis-
ruption on the one-carbon metabolism pathway could inter-
fere with DNA-repair, DNA replication, and gene expression 

regulation, which could enhance the deleterious effect of 
genetic variants [40, 41]. That has motivated lots of studies 
focusing on the potential link between the nutrients asso-
ciated with the one-carbon metabolism pathway and car-
cinogenesis [42, 43]. A previous study showed that SNPs of 
one-carbon metabolism gene have interactions with folate 
intake to affect the BC risk [44]. However, most previous 
studies focus on the effect of individual nutrients rather than 
a combination of foods [45], which have been limited in 
interpreting the high degree of intercorrelation among vari-
ous nutrients. These associations were always weak because 
it is hard to attribute effects to single independent compo-
nent foods [41]. In this context, we choose a ‘prior’ dietary 
pattern instead of individual nutrients, which could better 
capture specific diet characteristics and cumulative effects 
of nutrients. The Mediterranean dietary pattern is character-
ized by high consumption of vegetables, fruit, legumes, and 
fish, rich in folate, choline, vitamins and methionine. Suf-
ficient levels of micronutrients play an important role in the 
one-carbon metabolism [46, 47], because specific enzymes 
and co-enzymes in one-carbon metabolism require ample 
quantities of dietary micronutrients (e.g., folate, methionine 
and other specific amino acids and  B2,  B6 and  B12 and other 
vitamins), as substrates to achieve their biological functions 
[48, 49]. In addition, one-carbon metabolism is intercon-
nected to the biological processes of DNA methylation and 

Table 3  Interaction between the Mediterranean dietary pattern and one-carbon metabolism genes on breast cancer risk

a OR from logistic regression models adjusted for age at diagnosis for cases or enrollment for controls, area, education, tobacco smoking, moder-
ate physical activity, oral contraceptives use, hormone replacement therapy, family history of breast cancer, history of benign breast disease, age 
at menarche, number of full-term births, age at first full-term delivery, breastfeeding and body mass index. Additional adjustment of menopausal 
age for postmenopausal women

Adherence to the Mediterranean diet

Low (< 5 points) High ( ≥ 5 points) P-interaction

Case/control Adjusted  ORa (95% CI) Case/control Adjusted  ORa (95% CI) Gene × AMD

Polygenic risk score (13 SNPs) 0.006
 Score 1 (low risk) 47/101 Ref. 86/111 Ref.
 Score 2 80/119 1.56 (0.97, 2.51) 119/116 1.17 (0.78, 1.76)
 Score 3 86/118 1.78 (1.11, 2.86) 119/115 1.34 (0.89, 2.02)
 Score 4 (high risk) 112/104 2.91 (1.80, 4.67) 129/124 1.72 (1.14, 2.60)

Menopausal status association by polygenic risk score (13 SNPs)
 Premenopausal 0.411
  Score 1 (low risk) 7/32 Ref. 16/35 Ref.
  Score 2 16/38 1.79 (0.60, 5.36) 13/44 0.63 (0.25, 1.63)
  Score 3 21/44 2.16 (0.74, 6.33) 19/39 1.34 (0.55, 3.27)
  Score 4 ((high risk) 52/61 3.70 (1.39, 9.84) 61/79 1.91 (0.90, 4.06)

 Postmenopausal 0.000
  Score 1 (low risk) 40/69 Ref. 70/76 Ref.
  Score 2 64/81 1.44 (0.83, 2.48) 106/72 1.34 (0.84, 2.14)
  Score 3 65/74 1.82 (1.04, 3.17) 100/76 1.42 (0.89, 2.26)
  Score 4 (high risk) 60/43 2.80 (1.55, 5.07) 68/45 1.57 (0.92, 2.66)
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DNA synthesis [50], Fig. 3. Both processes are thought to 
play key roles in carcinogenesis [51, 52]. DNA methylation 
is an epigenetic mechanism by which cells regulate gene 
expression, which involves the addition of a methyl (-CH3) 
to the 5-carbocytosine residue, predominantly in the cyto-
sine guanine dinucleotide (CPGs). Dietary micronutrients 
involved in one-carbon metabolism play an essential role in 
DNA methylation, such as folic acid, choline, betaine, ribo-
flavin, vitamins  B6 and  B12, and the amino acid methionine 
(Fig. 3) [40, 53]. Especially folic acid (or called vitamin 
 B9), whose role is crucial in the DNA methylation process, 
producing the methyl group donor, S-adenosylmethionine. 
A recent study in rural African women support that one-
carbon nutrient may affect methylation levels, dietary intake 
of one-carbon metabolites and cofactors in diet fluctuates 
with seasons. The concentration of biomarkers of maternal 
carbon metabolism nutrients during pregnancy was associ-
ated with the methylation of metastable epi-alleles in DNA 
from birth infant’s lymphocytes and hair follicles. Specifi-
cally, plasma concentrations of riboflavin and vitamin  B6 
indicate this association [54], and previous studies [55] had 
shown a positive correlation between the two biomarkers 
and carefully measured dietary intake. However, a recent 
big cross-sectional study that included 5186 adults does not 
found any log-linear association between the intake of one-
carbon metabolic nutrients and individual CpG methylation. 
The relationship between nutrients and DNA methylation is 
complicated, and there is no unified conclusion now, needs 
more in-depth study.

In addition to the robust interaction between MPD and 
PRS, we found a nominally significant interaction result in 

MTHFD1 G>A (rs8003567), which also implies that one-
carbon metabolism genes may be related to diet and BC risk 
by affecting DNA methylation. The MTHFD1 gene prod-
uct is a multifunctional enzyme possessing the activities of 
methylene-THF dehydrogenase, methenyl-THF cyclohydro-
lase and formyl-THF synthetase in the one-carbon metabo-
lism pathway [56]. It usually catalyzes sequential and revers-
ible reactions in multiple conversion of tetrahydrofolate 
(THF), the active form of folate, into 5,10-methylene-THF, 
which is essential for the de novo purine and thymidylate 
synthesis as well as the supply of one-carbon units for sub-
sequent DNA methylation. The deficiency or dysregulation 
of the MTHFD1 enzyme may influence cell division and 
global methylation pattern, eventually contributing to tumo-
rigenesis [56, 57]. Since rs8003567 is located in the intronic 
region of the MTHFD1 gene and no disease-related studies 
on SNPs have been reported before, another possible expla-
nation cannot be excluded that there are additional func-
tional genetic variants in linkage disequilibrium with these 
two SNPs that modify BC risk in Chinese female population. 
However, the interpretation of a nominally significant inter-
action should be cautious, because the corrected P values for 
multiple comparisons is no longer significant; the gene–diet 
interaction obtained may be a false-positive result. Thus, 
replication of the findings in other independent studies is 
needed before the firm conclusions can be drawn.

The strength of our study is that we focus on the genetic 
variants in the one-carbon metabolism pathway associated 
with BC risk linking a specific dietary pattern. Most of the 
previous studies historically focused on individual nutri-
ents [58, 59] and individual SNP, which could not capture 

Fig. 3  One-carbon metabolism, shading indicates the substrate is 
obtained via the diet. DHF dihydrofolate, DMG dimethyl glycine, 
SAH S-adenosylhomocysteine, SAM S-adenosylmethionine, THF tet-

rahydrofolate, DHF dihydrofolate, MET methionine, HCY homocyst-
eine, TYMS thymidylate Synthetase
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the complicated interrelationships and cumulative effects 
between nutrients and genetic variants [60]. Thus, examin-
ing the risk in relation to combinations of SNPs and diet 
may be more predictive for the in vivo situation [61, 62] 
and interpretative for disease risk and biological mechanism. 
Several limitations should also be taken into account in our 
study. First, data were collected from a case–control study, 
which might be partially influenced by the biases inherent in 
case–control designs, as selection bias, recall bias, residual 
confounding, and reverse causality, etc. Second, since the 
number of cases and controls enrolled in this project is rela-
tively small, the associations we founded require replication 
in other larger sample independent studies. Further work 
should assess associations of BC risk and the concentra-
tions of these nutrients in plasma associated with one-carbon 
metabolism and DNA methylation.

Conclusion

In conclusion, our finding demonstrates that adherence to the 
Mediterranean dietary pattern (MDP) may attenuate the del-
eterious effect of genetic factors on the risk of breast cancer 
among women of Chinese descent, in particular, postmeno-
pausal women.
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