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Abstract
Purpose As a primary risk factor and modifier of breast cancer incidence and prognosis, obesity may contribute to race dis-
parities in breast cancer outcomes. This study examined association between obesity and DNA methylation in non-Hispanic 
Black and White women diagnosed with breast cancer.
Methods Genome-wide DNA methylation was measured in the breast cancer tumor tissue of 96 women using the EPIC 
array. To examine the association between obesity and tumor methylation, linear regression models were used—regressing 
methylation β value for each cytosine and guanine (CpG) site on body mass index adjusting for covariates. Significance was 
set at false discovery rate (FDR) < 0.05. In the top 20 CpG sites, we explored the interactions with race and estrogen recep-
tor (ER) status. We used multivariable Cox-proportional hazard models to examine whether methylation in the top 20 sites 
was associated with all-cause mortality.
Results While none of the CpG sites passed the FDR threshold for significance, among the top 20 CpG sites, we observed 
interactions with race (TOMM20) and ER status (PSMB1, QSOX1 and PHF1). The same CpG sites in TOMM20, PSMB1, 
and QSOX1 were associated with all-cause mortality.
Conclusions We identified novel interactions between obesity-associated methylation and both race and ER status in genes 
that have been associated with tumor regulation. Our data suggest that dysregulation in two sites may associate with all-
cause mortality.

Keywords Breast cancer · Obesity · Epigenetics · Disparity · Mortality

Introduction

Breast cancer is the leading cause of cancer death in women; 
however, substantial heterogeneity exists in terms of prog-
nosis by race [1], estrogen receptor (ER) status [2], and 
body size [3]. As obesity is a potentially modifiable prog-
nostic factor, it is critical to understand its role in disparate 
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breast cancer outcomes. Studies have reported conflicting 
associations between obesity and breast cancer, depending 
on various factors including hormone receptor status, race, 
menopausal status, and hormone therapy use [3]. For exam-
ple, among pre-menopausal women, obesity has been asso-
ciated with reduced risk of breast cancer in some, but not 
all, studies [3–6], whereas among post-menopausal women, 
obesity is consistently associated with an increased risk of 
breast cancer [7–10], although the association may vary by 
intrinsic subtype. Following a diagnosis of breast cancer, 
obesity is associated with poor outcomes irrespective of 
menopausal status or tumor characteristics [11–14] which 
may suggest that multiple mechanisms are involved across 
the carcinogenic pathway. Given the rising rates of obesity 
in cancer patients [3, 15], and disproportionate burden of 
obesity among minority women [16, 17], it is important to 
identify the underlying mechanisms driving the association 
between body size and breast cancer prognosis.

Epigenetic mechanisms are functionally relevant changes 
to the genome that do not involve a change to the under-
lying DNA sequence and are a promising biomarker that 
can comprehensively capture the result of both genetic and 
environmental influences. DNA methylation has become 
a promising target for assessing the etiology and progres-
sion of cancers due its malleability following environmental 
and lifestyle exposures and influence on gene expression 
[18]. Cancer cells are known to display aberrant methyla-
tion patterns leading to the silencing of tumor suppressor 
genes and increased expression of oncogenes [18, 19]. As 
a potential modulator of exposure-outcome relationships, 
uncovering obesity-related perturbations in tumor tissue may 
shed light on the pathophysiology of cancer progression and 
outcomes, informing behavioral and pharmacologic targets 
for intervention.

While the relationship between obesity and breast can-
cer prognosis has been examined using candidate gene 
approaches, no study to date has used a genome-wide 
approach to assess obesity-associated methylation signa-
tures and outcomes in the tumor tissue of women diagnosed 
with a first-primary breast cancer. Thus, the purpose of this 
study was to conduct an epigenome-wide association study 
(EWAS) within breast tumor tissue to identify unknown 
CpG sites associated with obesity. We further explored 
modification by race, ER status, and downstream associa-
tions with breast cancer prognosis.

Methods

Study population

The Glenn Family Breast Satellite Tissue Bank at the Win-
ship Cancer Institute of Emory University has a history of 

collecting clinical data and storing fresh tumor specimens 
from patients receiving surgery at three local hospitals in 
the metro-Atlanta area (Emory University Hospital, Emory 
University Hospital Midtown, and Grady Memorial Hospi-
tal). We used stratified sampling to identify 99 non-Hispanic 
Black (NHB) and non-Hispanic White (NHW) women diag-
nosed between 2008 and 2017 who were ideal weight, over-
weight, or obese. This sampling strategy was implemented 
to enhance our ability to detect obesity-associated tumor 
methylation and identify potential modification by race. 
Women were eligible for inclusion if they were 21 years of 
age or older, NHB or NHW by self-report, diagnosed with a 
first-primary stage I–III breast cancer, and received surgery 
at one of the participating hospitals. Women with a previ-
ous diagnosis of breast cancer or without an available fresh 
tissue specimen were excluded.

Data collection

Anthropometric and covariate data were obtained from the 
clinical records of women undergoing surgery. The primary 
exposure, body mass index (BMI, kg/m2), was derived from 
body weight and height, obtained at the time of the diagno-
sis. Age at diagnosis, family history of breast cancer, race, 
educational attainment, history of pregnancy, menarche 
and breast feeding, hormone replacement therapy use, and 
self-reported smoking status (current/former/never) were 
similarly abstracted from the clinical record. Clinical char-
acteristics obtained from the record included: ER, proges-
terone receptor (PR), and human epidermal growth factor 
2 (HER2)-status; tumor grade; receipt of chemotherapy, 
endocrine therapy, and radiation; comorbidities; as well as 
breast cancer and all-cause mortality. Poor prognosis was 
defined as all-cause mortality (including mortality from 
breast cancer). Given the short follow-up period (10 years), 
we anticipate that any mortality would be driven, in part, by 
underlying breast cancer [20].

Methylation data

DNA methylation was measured in 99 breast tumor tissue 
samples using the Illumina Infinium MethylationEPIC Bead-
chip (Illumina, San Diego, CA, USA). Methylation assays 
were performed in accordance with the Infinium HD Meth-
ylation Assay protocol. The protocol uses bisulfite treatment 
of the DNA to convert unmethylated cytosine to uracil, 
allowing identification of methylated vs. unmethylated loci. 
Following bisulfite treatment, two site-specific probes bind 
to sequences flanking methylated and unmethylated loci. 
The fluorescent signal from the methylated probe relative 
to the total signal for both methylated and unmethylated 
probes represents the proportions of DNA strands that are 
methylated at the CpG site [21]. This is described by the 
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β-value, the proportion of probes methylated (M) divided by 
the combined methylated (M) and unmethylated (U) probes 
(β = M/[M + U]). The β-value is measured on a scale from 
0–1, where 1 indicates 100% of the cells were methylated 
at the CpG site. Three samples were removed during pre-
processing due to poor performance.

Quality control (QC) was conducted on the resulting data 
using the CpGassoc package [22]. Data points with low sig-
nal or detection p-values > 0.001 were set to missing, and 
2869 CpG sites with missing values in > 10% of the sam-
ples were removed. All final samples had non-missing data 
for ≥ 95% of CpG sites, so no samples were removed. We 
additionally filtered out probes per general masking recom-
mendations from Zhou et al. including probes with SNPs at 
a minor allele frequency > 1%, non-unique hybridization, 
probes with inconsistent mapping quality, probes with non-
unique sub-sequence, and probes with a SNP that causes a 
color channel switch from the official annotation [23]. After 
QC, 759,156 CpG sites were evaluated.

Statistical analysis

Analyses were carried out using R (www.r-proje ct.org/). 
Demographic characteristics were reported as frequencies 
or means. Mean methylation, as defined by the individual 
combined methylation β-value across the genome, was 
examined using linear regression models to assess whether 
individual mean β-values differed according to BMI, race, 
ER status, or poor prognosis, adjusting for model-specific 
covariates based on a-priori knowledge of the literature and 
causal graphical analyses [24, 25].

For the EWAS, the CpGassoc package was used to fit a 
linear regression model for each CpG site. Each regression 
modeled methylation and BMI as the primary predictor, 
adjusting for age, race, smoking status, and chip position. 
To account for potential chip-to-chip differences in meas-
urement and to adjust for batch effects, a fixed effect for 
each BeadChip was included in all models. Significance was 
defined as a false discovery rate (FDR) q-value < 0.05. Since 
the β-values can display non-normal distribution, violating 
our assumption for linear regression, we examined the resid-
uals of a select few CpG sites identified in the discovery and 
interaction analyses described below.

To assess whether the relationship between BMI and 
tumor methylation was modified by race or ER status (posi-
tive or negative), the top 20 CpG sites identified in the pri-
mary analysis were tested for interaction. For each of these 
CpG sites, we regressed the β-values on BMI with an inter-
action between BMI and race or ER status, respectively. We 
were underpowered to further explore intrinsic subtypes of 
breast cancer (ER, PR, HER2 status). All interaction analy-
ses were adjusted for age, race (only in the ER interaction 

model), and chip position. Statistical significance was set 
at p < 0.05.

To examine whether BMI-associated methylation was 
associated with mortality, multivariable Cox-proportional 
hazard ratios (HR) were used to examine associations 
between the top 20 CpG sites and all-cause mortality. Stage, 
ER status, and treatment characteristics were considered 
as potential covariates in the model but were ultimately 
excluded—as causal graphical analyses suggested that they 
were likely mediators of the exposure-outcome relationship. 
Thus, final models were adjusted for age only. In sites found 
to interact with race or ER status, we additionally presented 
stratified results.

Sensitivity analysis

We conducted post hoc sensitivity analyses, excluding 
outliers in interaction models of race and ER status which 
appeared to have been driven by one or two patients. In our 
race interaction models, we additionally restricted to women 
with BMI > 45 since NHW are not represented in this range. 
In the survival analysis, we examined models adjusting for 
(1) age and BMI, and (2) age, ER status, and stage. Finally, 
due to the potential for neoadjuvant therapy to affect the 
breast tumor epigenome, and known associations with breast 
cancer prognosis, we performed additional sensitivity analy-
ses excluding women who underwent neoadjuvant systemic 
therapy.

Results

Demographic information is included in Table 1. NHB 
women in our study sample were older (mean age = 58 and 
50 years, respectively) and had higher BMI than NHW 
women (BMI = 34.64 and 29.84 kg/m2, respectively, Sup-
plemental Fig. 1). There were no differences by ER sta-
tus, all-cause mortality, alcohol intake, and chemotherapy 
status between NHB and NHW women. When examining 
the participants mean methylation values collectively, we 
observed no differences by race, obesity status or breast can-
cer subtype, adjusting for covariates. However, overall DNA 
methylation was lower by 0.018 units (95% CI [− 0.032, 
− 0.005]) among women with 10-year mortality follow-
ing breast cancer diagnosis compared to surviving patients 
adjusting for age, BMI, race, and smoking status.

For the primary analysis assessing the epigenome-wide 
association of DNA methylation with BMI, no sites passed 
the FDR threshold for significance. Given the exploratory 
nature of the analysis and the limited sample, we determined 
a priori to further investigate the top 20 CpG sites for inter-
action with race, ER status, and all-cause mortality. The top 
20 sites are listed in Supplementary Table 1.

http://www.r-project.org/
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We first performed interaction analysis to investigate dif-
ferences in the relationship between BMI and DNA meth-
ylation in NHB vs. NHW women. The relationship between 
BMI and DNA methylation varied by race at one site. In 
NHB women, as BMI increased by 1 kg/m2, methylation 
decreased by 0.003 at cg03731251 in the TOMM20 gene, 
whereas among NHW women methylation increased by 
0.002 (p = 0.001; Fig. 1a). Following a sensitivity analy-
sis excluding two extreme values, the relationship was no 
longer significant (p = 0.053; Supplemental Fig. 2a). An 
additional sensitivity analysis restricted to women with a 
BMI < 45 excluding 11 NHB women was no longer signifi-
cant (p = 0.052; Supplemental Fig. 2b).

We performed similar tests of interaction to investigate 
the relationship between BMI and DNA methylation of the 
top 20 CpG sites by ER status. Three CpG sites, annotated to 
three genes: cg20174711 (PSMB1), cg08755040 (QSOX1), 
and cg23718418 (PHF1), were differentially associated by 
ER status. Among women who were ER-negative, as BMI 
increased by 1 kg/m2, methylation at cg20174711 in the 
PSMB1 gene decreased at 1.4 times the rate of methylation 
decrease compared to ER-positive patients (p = 0.00004; 

Fig. 1b). After a sensitivity analysis excluding one site, the 
interaction was no longer significant (p = 0.40; Supplemental 
Fig. 2c). Similarly, at the site cg08755040 in the QSOX1 
gene with each incremental increase in BMI, methylation 
among women with ER-positive cancer increased at two 
times the rate of ER-negative cancer (p < 0.0001; Fig. 1c). 
Sensitivity analyses, removing a single outlier, remained sig-
nificant (p = 0.0006, Supplemental Fig. 2d). Finally, at site 
cg23718418 (PHF1 gene), among women with ER-negative 
disease, methylation increased by 0.002 for every 1 kg/m2 
increase in BMI, whereas the increase was less than 0.0005 
for every 1 kg/m2 increase in BMI among women with ER-
positive breast cancer (p = 0.002; Fig. 1d). After exclusion of 
one site, the interaction was no longer significant (p = 0.51; 
Supplemental Fig. 2e). We additionally examined the residu-
als of the four sites described above in the EWAS models to 
assess violations of a non-normal distribution (Supplemental 
Fig. 3). These plots appear to be consistent with a normal 
distribution.

We identified three sites that were associated with 
poor prognosis (Table 2). In the TOMM20 gene, every 
1% increase in methylation in cg03731251 was associated 

Table 1  Counts and means 
(standard deviation) are 
presented for categorical 
and continuous variables, 
respectively

Total Non-Hispanic Black Non-Hispanic White

n 96 70 26
BMI mean (SD) 33.23 (9.26) 34.64 (9.86) 29.84 (6.40)
Smoking status
 Smoker 41 34 7
 Non-smoker 55 36 19

Age mean (SD) 56.28 (12.77) 58.65 (12.41) 50.1 (11.78)
Age
 ≤ 49 27 15 12
 50–59 34 26 8
 ≥ 60 35 29 6

Breast cancer Subtype
 Luminal A 63 47 16
 Luminal B 9 7 2
 Her2+ 4 3 1
 Triple-negative breast cancer 

(TNBC)
20 13 7

All-cause mortality
 Yes 25 19 6
 No 71 51 20

Alcohol
 Yes 39 27 12
 No 57 43 14

Chemo
 None 43 32 11
 Adjuvant 31 24 7
 Neoadjuvant 1 0 1
 Both 21 14 7
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with a 6% reduction in all-cause mortality (HR = 0.94; 
95% CI [0.91, 0.99]). Our estimate was robust to sub-
sequent adjustment by BMI (HR = 0.93; 95% CI [0.88, 
0.99]), as well as ER status and stage (HR = 0.93; 95% CI 
[0.89, 0.97]). Upon removing women who had undergone 
neoadjuvant therapy (n = 22), the association remained 
significant (HR = 0.91; 95% CI [0.87, 0.95]). Given the 
interaction identified between cg03731251 and race, we 
additionally examined the stratified hazard ratios for each 
model in NHW and NHB women. The effects seem to be 
primarily driven by NHB women (NHW HR [95% CI] 
1.98 [0.97, 4.04]; NHB HR [95% CI] 0.46 [0.22, 0.94]). In 
the PSMB1 gene, we also observed an inverse association 
between methylation at the cg20174711 site and all-cause 
mortality, where an 9% reduction was observed for every 
1% increase in methylation (HR = 0.91; 95% CI [0.83, 

0.99]). Our estimate remained significant when adjusting 
for BMI (HR = 0.89; 95% CI [0.79, 1.00]), ER status and 
stage (HR = 0.91; 95% CI [0.84, 0.99]). When excluding 
women who had undergone neoadjuvant therapy, the asso-
ciation similarly strengthened (HR = 0.84; 95% CI [0.76, 
0.92]). Given the observed interaction with ER status, we 
additionally examined the stratified models between ER-
positive and ER-negative tumor types. While our multi-
variable models did not reach the threshold of statistical 
significance, we observed a modest risk reduction among 
women with ER-positive tumors (ER-positive HR [95% 
CI] 0.92 [0.84, 0.98]). The QSOX1 gene was not associ-
ated with poor prognosis overall. However, among women 
who were ER-negative, every 1% increase in methylation 
was associated with a 71% reduction in all-cause mortality 

A B

C D

Fig. 1  Scatter plot and regression line depicting β-values by BMI. a Examines the interaction by race for cg03731251, b–d examine the interac-
tion by ER subtype for cg20174711, cg08755040, and cg23718418, respectively
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adjusting for age (ER-negative HR [95% CI] 0.29 [0.11, 
0.77]), although our estimate was imprecise [26, 27].

Discussion

This study is the first untargeted analysis to examine 
BMI-associated methylation in breast cancer tumor tissue 
using the EPIC array. While a greater number of women is 
required to detect robust associations between tumor DNA 
methylation and obesity, we found unique interactions 
between the top BMI-associated methylation sites and race 
and ER status. One site in the TOMM20 displayed differen-
tial associations with race. Three sites in PSMB1, QSOX1, 
and PHF1 genes showed differential associations by ER 
status. Finally, two sites near the TOMM20 and PSMB1 
genes, respectively, were associated with mortality.

Obesity and differential DNA methylation have previ-
ously been examined in 935 CpG sites of cancer-associ-
ated genes in ER-positive breast tumor tissue. Hair et al. 
found that BMI was associated with differential methyla-
tion in 30 CpG sites primarily related to immune response 
and insulin-like growth factor [28]. While none of the top 
20 sites identified in our study replicated from Hair et al., 
this is likely due to differences in arrays used (EPIC and 
Illumina GoldenGate Cancer I Panel, respectively). Hair 
et al. noted that only 7 probes of the 30 identified in their 
analysis matched directly with probes in the Illumina 
HumanMethylation 450 Beadchip panel; suggesting lim-
ited overlap with the EPIC array. Importantly, this study 
did not examine heterogeneity by race or ER status and did 
not assess downstream impacts on breast cancer outcomes. 
To our knowledge, only one previous investigation, limited 
to 13 genes, has considered interactions between obesity 
and methylation on mortality [29].

In our study, an interaction between BMI-associated 
methylation and race was found in the TOMM20 gene. 
TOMM20 is a protein coding gene which encodes for 
Tom20, a protein essential to the recognition and trans-
location of mitochondrial preproteins [30, 31]. Tom20 is 
highly expressed in breast cancer tissue [32] and may bind 
with Aryl-hydrocarbon receptor-interacting protein (AIP) 
to mediate uptake of Survivin, an anti-apoptotic protein 
[33]. In our study, NHB exhibited an inverse associa-
tion between BMI and methylation in cg03731251 of the 
TOMM20 gene, whereas NHW women exhibited a posi-
tive association between BMI and methylation. While no 
longer significant after removal of outliers, we found that 
hypomethylation at this site also associated with poor 
prognosis, but only among NHB women. Given the poten-
tial anti-apoptotic role of TOMM20, these data could sug-
gest a pathway through which obesity may differentially 
impact prognosis by race.

PSMB1 was found to interact with ER status and was 
associated with all-cause mortality. PSMB1 is a mem-
ber of the Proteasome β subunit (PSMB) family and has 
been shown to play a role in promoting breast cancer cell 
growth and migration [34]. Previous gene expression 
analyses have found differential expression of the PSMB1 
gene between ER-positive versus ER-negative tumor tis-
sue. Graham et al. found a 2.33-fold increased expression 
of PSMB1 in ER-positive compared to ER-negative tumor 
tissue [35]. In our study, as BMI increased, methylation 
decreased in both groups—albeit more pronounced in ER-
negative tumors. Hypomethylation in this CpG site also 
associated with poor prognosis. Taken together, our find-
ings suggest that CpG methylation in PSMB1 could play an 
important role in breast cancer progression and prognosis, 
given that individuals with decreased methylation had the 
more aggressive form of breast cancer (ER-negative) and 
poorer outcomes.

One site in QSOX1 was associated with ER status. Qui-
escin Sulfhydryl Oxidase 1 is an enzyme which catalyzes 
disulfide bond formation during protein folding and may 
play a role in growth regulation [36]. QSOX1 expression 
has previously been examined related to breast cancer with 
divergent findings. Pernodet et al. found that higher expres-
sion of QSOX1 was associated with reduced tumorigenesis 
and better outcomes [37]. Whereas Katchman et al. found 
higher expression of QSOX1 was associated with ER-posi-
tive tumors, higher tumor grade and poorer survival in ER-
positive tumors. However, expression was not associated 
with survival in ER-negative, HER2 or TNBC tumors [38]. 
Similarly, Soloviev et al. found elevated QSOX1 transcrip-
tion primarily in higher grade tumors, with 67% of grade 
3 tumors exceeding the normal range of transcription [39]. 
Knutsvik et al. also found higher expression of QSOX1 
was associated with poorer prognosis including high tumor 
grade, hormone receptor negativity, HER2 positivity, and 
increased tumor proliferation [40]. cg08755040 is located 
in the body of QSOX1. Methylation in the gene body has 
primarily been cited as signs of an active gene [41]. In our 
study, as BMI increased we observed similar increases in 
methylation among women with ER-positive tumors, which 
may suggest a positive association with expression. Given 
previous studies suggesting a deleterious effect of QSOX1 
when expressed, particularly in ER-positive tumors, our 
results shed light on a specific pathway through which 
increased BMI may be influencing outcomes in ER-positive 
tumor types.

One CpG site in the PHF1 gene also interacted with ER 
status. PHF1 has been previously identified as an impor-
tant regulator of histone methylation and an activator of 
the tumor suppressor p53 pathway. Moreover, it has been 
shown to be down-regulated in breast cancer tissue [42]. 
We observed an interaction with ER status, with greater 
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BMI-associated methylation in ER-negative tumors com-
pared to ER-positive tumors. Given that cg23718418 is 
located at the transcription start site, an increase in meth-
ylation may suggest decreased expression. While this may 
represent a valid mechanism underpinning the poorer prog-
nosis associated with ER-negative tumors, we observed no 
downstream associations with all-cause mortality.

Our study has several limitations. With the limited sample 
size, we were underpowered to detect a main effect between 
CpG site methylation and BMI after correcting for multiple 
comparisons. Additionally, we did not correct for multiple 
testing in our interaction and hazard analyses, so it should be 
noted that these are suggestive relationships. We also found 
that some interaction analyses were no longer significant 
after exclusion of just one or two samples. For our analyses 
examining differences by race, we had fewer NHW women 
(with a lower distribution of BMI) limiting our ability to 
make strong inferences about interactions between BMI and 
DNA methylation by race. There are also several known 
risk factors for breast cancer that were not accounted for 
in our primary analysis including breastfeeding, nulliparity, 
and hormone therapy use. However, it is unresolved whether 
these covariates associate with breast tumor methylation, 
thus age-adjusted models are likely appropriate.

With a limited sample of patients, many of our results 
did not hold following exclusion of one or two individu-
als. While these results should be interpreted with caution, 
these preliminary data shed light on plausible epigenetic 
drivers of the association between obesity and breast cancer 
prognosis. The primary strength of this study was our untar-
geted approach to examine epigenetic pathways associating 
BMI with breast cancer prognosis in a diverse population 
of women undergoing surgery for breast cancer. Additional 
research efforts with a larger, equally diverse, patient pool 
are needed to validate our preliminary findings and further 
interrogate the biologic mechanisms identified here.
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