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Abstract
Purpose There is a need for biomarkers of drug efficacy for targeted therapies in triple-negative breast cancer (TNBC). As 
a step toward this, we identify multi-omic molecular determinants of anti-TNBC efficacy in cell lines for a panel of oncol-
ogy drugs.
Methods Using 23 TNBC cell lines, drug sensitivity scores  (DSS3) were determined using a panel of investigational drugs 
and drugs approved for other indications. Molecular readouts were generated for each cell line using RNA sequencing, RNA 
targeted panels, DNA sequencing, and functional proteomics.  DSS3 values were correlated with molecular readouts using a 
FDR-corrected significance cutoff of p* < 0.05 and yielded molecular determinant panels that predict anti-TNBC efficacy.
Results Six molecular determinant panels were obtained from 12 drugs we prioritized based on their efficacy. Determinant 
panels were largely devoid of DNA mutations of the targeted pathway. Molecular determinants were obtained by correlat-
ing  DSS3 with molecular readouts. We found that co-inhibiting molecular correlate pathways leads to robust synergy across 
many cell lines.
Conclusions These findings demonstrate an integrated method to identify biomarkers of drug efficacy in TNBC where DNA 
predictions correlate poorly with drug response. Our work outlines a framework for the identification of novel molecular 
determinants and optimal companion drugs for combination therapy based on these correlates.

Keywords Triple-negative breast cancer · Molecular determinants · Combination therapy · Sequencing · Functional 
proteomics

Introduction

Triple-negative breast cancer (TNBC) is a subtype of breast 
cancer defined by the absence of estrogen receptor (ER) and 
progesterone receptor (PR) expression and no overexpres-
sion of HER2/neu. TNBC is more likely to recur and metas-
tasize, and have a higher grade than other subtypes of breast 
cancer [1, 2]. Moreover, it has few targeted approved treat-
ments; thus surgery, radiation, and chemotherapy remain the 

mainstays of therapy for TNBC. This is largely due to TNBC 
being defined by what it lacks (ER, PR, Her2), while other 
forms of breast cancer are defined by the molecular features/
targets they possess [3]. Thus far, many targeted therapies 
tested in traditionally-designed clinical trials largely with-
out any biomarker-based patient selection have not fared 
well in TNBC [3–5]. Even a well-recognized marker such 
as homologous recombination deficiency, that has been 
advanced as promising for predicting response to check-
point inhibitors, is under scrutiny in recent studies [6, 7]. 
Conversely, biomarker-guided selection for olaparib (using 
BRCA1 mutation or downregulation) and atezolizumab 
(using PD-L1 expression of immune cells) have led to FDA 
approvals of both drugs for TNBC, reflecting the observed 
improved patient outcomes [8–11]. A major reason proposed 
for the disappointing performance of targeted therapeutics in 
TNBC is the biological heterogeneity of the disease [12, 13]. 
Drugs approved on the basis of their biomarkers in TNBC, 
such as olaparib and atezolizumab, have shown promise in 
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clinical trials for the small subset of patients matching the 
biomarker. There is however, a paucity of markers to pre-
dict the degree of clinical efficacy for drugs in breast cancer 
beyond ER or HER2 status. Broad efforts to identify bio-
markers could enable larger numbers of TNBC patients to 
positively respond to targeted or conventional therapies [14]. 
These therapeutic challenges highlight the pressing clinical 
need for identifying robust biomarkers of drug efficacy in 
TNBC.

Using genetic information to inform drug discovery (and 
to “match” a drug to a patient) has been a significant focus 
since the sequencing of the human genome [15, 16]. While 
this has revolutionized how we treat specific tumors, such 
as EGFR mutant lung cancer [17], cancer-agnostic basket-
trials have led to mixed results in selecting treatments for 
patients in the clinic [18–20]. It is now recognized that every 
occurrence of cancer is specific to each individual patient, 
even among patients who share certain mutations in notable 
cancer genes, such as TP53, RB1, BRCA1/2, PIK3CA, and 
others [21, 22]. While there is a push towards a true preci-
sion medicine where each patient’s tumor is evaluated and 
treated in a tumor-specific manner [23, 24], a significant gap 
remains in how to best match the therapeutic treatments to 
an individual tumor profile.

In an effort to identify molecular correlates to predict 
drug response in TNBC, we tested a library of 78 clinically 
approved and investigational new drugs (INDs) against a 
collection of 23 highly diverse TNBC cell lines. We meas-
ured the dose–response activity for each drug in each of 23 
TNBC cell lines. Next, we determined the drug sensitivity 
score  (DSS3), a drug response metric that incorporates both 
potency and efficacy, to facilitate quantitative correlations 
across drug types in each cell line [25]. We find that DNA 
mutational status alone generally does a poor job of predict-
ing drug response in TNBC cell lines. However, using a 
combination of DNA sequencing, RNA sequencing, targeted 
RNA expression panels, and reverse-phase protein arrays 
(RPPA), we identify molecular features that correlate with 
 DSS3 values. Further, co-inhibition that targets correlating 
molecular features identifies novel synergistic combinations.

Materials and methods

Cell culture

Cells used in this manuscript, including MUM51 Cell Line, 
BT20, BT549, CAL148, CAL51, DU4475, HCC1143, 
HCC1187, HCC1599, HCC1806, HCC1937, HCC2157, 
HCC38, HCC70, HS578t, MDA-MB-157, MDA-MB-231, 
MDA-MB-436, MDA-MB-453, MDA-MB-468, MFM223, 
SUM102, SUM149, SUM159, SUM185, SUM52, 
and VARI068 Cell Line, were cultured according to 

Supplemental Table 1 following dispersion with 0.05% 
Trypsin–EDTA (Invitrogen). All cell lines were appropri-
ately validated or found to be unique by DNA short tandem 
repeat analysis (ATCC, Manassas, VA) within 6 months of 
use. All cell lines were tested and cleared from mycoplasma.

Chemicals and reagents

Chemicals were purchased from Selleckchem (Houston, 
TX), Sigma-Aldrich (St. Louis, MO), and Med Chem 
Express (Monmouth Junction, NJ). Compounds were diluted 
in DMSO (Sigma-Aldrich, D2650), except for copanlisib 
which was diluted in 10% Trifluoroacetic acid in DMSO due 
to solubility constraints (Sigma-Aldrich, T6508).

Primary antibodies used include Phospho AKT T308 
Rabbit mAb (4056L, Cell Signaling Technology (CST)), 
Phospho AKT S473 Rabbit mAb (4058S, CST), pan-AKT 
Rabbit mAb (4691S, CST), PI3 Kinase p85 Rabbit Ab 
(4292S, CST), and Monoclonal Anti-β-Actin–Peroxidase 
(3854, Sigma-Aldrich). Secondary antibody used was anti-
rabbit IgG-HRP (sc-2357, Santa Cruz Biotechnology).

Drug screening

Cells were screened in 96-well (Corning, 353072 or Costar, 
REF3610) format in triplicate. Cells were plated on day 0 at 
3000 cells per well. On day 1, drugs were added at 1:1000, 
resulting in 0.1% final DMSO concentration per well. On 
day 4, viability was measured using cell proliferation reagent 
WST-1 (Sigma, 5015944001) followed by CellTiter-Glo 
(Promega, G9242) on a Synergy 4 plate reader (Bio Tek) or 
Envision plate reader (Perkin Elmer). For Chou–Talalay syn-
ergy calculations, cells were dosed at 1:500 DMSO (1:1000 
of each drug) [26, 27].  IC50 values were determined for each 
drug and this  IC50 value was used as the middle dose, with 3 
doses twofold higher and 3 doses twofold lower, capturing 
points along the  IC50 curve for synergy calculations.

Drug sensitivity score calculation

Drug dose response data were fit to the equation 
Y = bottom + (top − bottom)∕(1 + 10(Log10IC50−X) × HillSlope) 
where X = Log10 (concentration, M) and Y =  % inhibition 
(vs. vehicle) using Graphpad Prism 7. Constraints used were 
bottom = 0 and top ≤ 100.  DSS3 values were calculated as 
described by Yadav et al. [25]. Dose response curve readouts 
used for  DSS3 calculation are listed in Supporting Informa-
tion. The  IC50 values, hillslope, maximum inhibition, and 
drug ranges were entered into the DSS package for Rstudio 
and  DSS3 values (ranging 0 to 100) were calculated.
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Molecular characterization

200,000 cells were plated in 6 cm dishes and grown for 24 h. 
DNA, RNA, and protein were collected from each of the 23 
cell lines using the Qiagen AllPrep mini kit (Qiagen, 80204) 
or RPPA lysis buffer. DNA samples were sequenced using 
the Roche Human Oncology Panel. RNA was sequenced 
using QuantSeq 3′ (Lexogen) on an Illumina NovaSeq at 
TIGEM (Naples, Italy) and using Nanostring targeted pan-
els. Protein was sent to MD Anderson for RPPA analysis. 
For full details, see Supplemental Materials and Methods.

Correlations and statistics

Molecular determinants were identified by calculating 
Pearson correlations between  DSS3 values and molecular 
readouts including DNA variants, log2 normalized RNA 
expression levels from RNA-seq, log2 Nanostring array 
counts, normalized log2 Nanostring signature scores, and 
normalized log2 RPPA protein expression levels. To reduce 
problems associated with multiple testing and to identify 
significant correlations across 23 TNBC cell lines, we 
reduced the number of tests needed by eliminating low-
count or low variability genes. From the nanostring and 
RPPA data, the bottom 15% of total counts were excluded. 
From the DNA sequencing, variants with VAFs of 0.0 or 1.0 
were eliminated from analysis. Additionally, a second table 
was constructed by generating a roll-up of mutations to the 
same gene. From RNA sequencing, the top 5000 genes were 
selected based on the highest variance-mean ratio. Using 
R, Pearson correlations p-values were adjusted for multi-
ple testing using the false discovery rate (FDR) procedure 
for each dataset. Significant molecular determinants were 
identified as those with an FDR-adjusted p*-value < 0.05. 
To visualize molecular correlates, signatures were ordered 
by  DSS3 and hierarchically clustered before visualization 
with Morpheus (Broad Institute) [28]. Mann–Whitney and 
AUC-ROC testing was calculated using GraphPad Prism 7. 
Synergy of companion drugs with copanlisib was calculated 
using CompuSyn software (ComboSyn, Inc., Paramus, NJ) 
[26, 27, 29].

Results

Identifying drugs with anti‑proliferative activity 
in TNBC cell lines

To identify molecular correlates of drug efficacy in TNBC, 
we developed a platform to correlate drug responses with 
molecular features. Seventy-eight FDA approved or inves-
tigational new drugs (IND) drugs were screened against a 
molecularly and ethnically diverse collection of 23 TNBC 

cell lines, in dose–response format. Drugs were chosen 
based on their efficacy in other solid tumors. From the 78 
compounds, 61 compounds with discernable  EC50 curves 
were identified (17 compounds were inactive across all cell 
lines tested). Drug sensitivity score 3  (DSS3) values were 
calculated for each the 61 drugs and 23 cell lines in an effort 
to compare potency and efficacy across the TNBC cell lines 
(Supplemental Table 2) [25]. The spread of  DSS3 values was 
visualized by plotting median  DSS3 value vs. interquartile 
range (IQR) of  DSS3 values (Fig. 1). We reasoned that drugs 
displaying a high dispersion in their response across cell 
lines are more informative for deriving correlations. Drugs 
with an IQR greater than 15 and/or a median  DSS3 over 20 
were prioritized for further analysis as they exhibit sufficient 
range of activity and sensitivity, and thus were amenable to 
the analyses; the resulting top 12 compounds were advanced 
for molecular correlate identification [25].

Drug response predictions based on mutation 
status alone broadly fail in TNBC cell lines

Basket clinical trials use DNA mutational state of specific 
genes to attempt to match the patient tumor profiles to pro-
spective treatments in advanced solid tumors, including 
TNBC [30]. To better understand how well basket-trial cri-
teria predict drug response in our TNBC cell line collec-
tion, we grouped  DSS3 values on the basis of their mutation 
status for drugs: copanlisib (PI3 K inhibitor), dasatinib (Src/
Abl inhibitor), trametinib (MEK1/2 inhibitor), and TAK228 
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curves. The EC50 curves were used to derive  DSS3 values. The IQR 
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(mTOR inhibitor) (Fig. 2). PI3 K mutation status predicts 
copanlisib-sensitive cells with an average DSS of 54.6 and 
insensitive average of 16.9 (Fig. 2a). This prediction was 
significant via a Mann–Whitney test with a p < 0.01 and 
an area under the receiver operating characteristic curve 
(AUC-ROC) value of 0.89 (AUC = 0.5 denotes a poor 
classifier and AUC = 1 indicates a perfect classifier) [31]. 
PTEN mutations and PTEN or PI3 K mutations yield similar 

predictions for copanlisib with AUC values of 0.84 and 
0.92, respectively. In basket-trials (NCT02465060), muta-
tions in DDR2 are used to predict dasatinib sensitivity [32]; 
however, in our TNBC cell line collection there is almost 
no statistical difference between sensitive and insensitive 
groups via a Mann–Whitney test using this criterion, with 
a poor AUC value of 0.46 (Fig. 2b). Similarly, predictions 
for trametinib (BRAF, GNA11, and NF1 [33]) and TAK228 

Fig. 2  DNA mutations alone poorly predict drug response in TNBC. 
Observing mutation status alone from basket-trial criteria, retro-
spective predictions of drug response are poor in TNBC cell lines. 
Average and spread of  DSS3 compared in 23 TNBC cell lines. AUC 
values calculated for each paired comparison. a Mutation-based pre-

dictions for copanlisib sensitivity rely on PIK3CA and PTEN muta-
tions. b Mutation-based predictions for dasatinib sensitivity rely on 
DDR2 mutations. c Mutation-based predictions for trametinib sensi-
tivity rely on BRAF, GNA11, and NF1 mutations. d Mutation-based 
predictions for TAK228 rely on TSC1/2 and mTOR
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(TSC and mTOR [34, 35]) on the basis of mutation sta-
tus (NCT02465060) fail to correctly predict differences in 
groups, with AUC values ranging from 0.11–0.59 (Fig. 2c, 
d).

Identifying molecular correlates for drug efficacy 
in TNBC cell lines using a multi‑omic approach

In an effort to improve on the current poor TNBC efficacy 
predictions based on DNA mutations alone, we elected 
to take an integrated multi-omics approach to identify 
novel molecular correlates of drug efficacy in TNBC cell 
lines. Twenty-three TNBC cell lines were molecularly 

characterized using RPPA, DNA sequencing, RNA sequenc-
ing, and targeted RNA profiling arrays.  DSS3 was linearly 
correlated with each set of molecular features for the 12 
prioritized drugs. The correlations resulted in molecular cor-
relates of drug efficacy with FDR-adjusted p < 0.05 for 6 out 
of the 12 prioritized drugs (Fig. 3 and Supplemental Fig. 1). 
Six prioritized drugs (bortezomib, romidepsin, AZD-1775, 
paclitaxel, eribulin, and mubritinib) had no molecular corre-
lates that met our selection criteria. Copanlisib  DSS3 values 
were found to correlate with the PI3 K pathway as pathway 
members were identified via DNA mutation (PIK3CA), 
RNA expression (PIK3CD), and functional proteomics 
(AKT, GSKA, Tuberin) (Fig. 3a). In addition to the PI3 K 
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pathway, we found that the RNA expression levels of other 
genes, as well as breast cancer subtype signatures, corre-
lated with copanlisib efficacy meeting our selection criteria 
and FDR threshold. Dasatinib  DSS3 values correlated with a 
novel panel of RNA gene hits, as well as three breast cancer 
subtype signatures (Fig. 3b). Trametinib  DSS3 values gave 
correlations with both DNA mutations and RNA expres-
sion levels (Fig. 3c). Previous reports have demonstrated 
that ETS2 is a downstream transcription factor of the MAPK 
pathway [36]. CCND2 levels have been shown to corre-
spond to MAPK signaling in other forms of cancer [37]. 
Additionally, TIAM1 is a parallel downstream Ras pathway 
member that has previously been reported to correspond to 
trametinib sensitivity [38]. TAK228  DSS3 values correlated 
with RNA markers as well as the Luminal A breast cancer 
subtype (Fig. 3d). TAK228 and Aurora inhibitors have previ-
ously been shown to synergize in TNBC [39]. Temsirolimus 
 DSS3 values correlate with expression levels of TNFSF8 
and SMAD4 (Supplemental Fig. 1a). Finally, we found that 
docetaxel  DSS3 values correlate with a SMAD7 missense 
mutation (Supplemental Table 3), with non-responsive cell 
lines harboring SMAD7 mutations (Supplemental Fig. 1b).

Identifying synergistic combinations of targeted 
therapies using molecular correlates

We next wanted to determine whether we could leverage 
our molecular correlates of drug efficacy to identify syner-
gistic drug combinations. Here, we focused on copanlisib 
due to its excellent anti-TNBC activity and robust selec-
tion of correlates available to discern companion drugs. We 
chose to target two molecular correlates of copanlisib drug 
response (EPHA2 and CENPE), in which their RNA expres-
sion levels are elevated in copanlisib-resistant cell lines 
and decreased in copanlisib-sensitive cell lines (Fig. 3a). 
Importantly, there are inhibitors available to target both 

EPHA2 and CENPE. We inhibited CENPE using the selec-
tive inhibitor, GSK923295, and inhibited EPHA2 using the 
selective inhibitor, ALW-II-41-27, and also the non-selective 
kinase inhibitor, dasatinib [40, 41]. We found that there a 
was significant synergy for each of the three combinations 
(GSK923295 + copanlisib, ALW-II-41-27 + copanlisib, 
and dasatinib + copanlisib) using Chou–Talalay analysis 
(Table 1). Briefly, Chou–Talalay analysis quantifies synergy 
at multiple therapeutically relevant effect levels (e.g.,  EC50, 
 EC75-) where the Chou–Talalay combination index (CI) 
defines synergy, additivity, or antagonism (0 < CI < 1 is syn-
ergism, CI = 1 is additivity, CI > 1 is antagonism). CENPE 
chemical inhibition was found to have a synergistic effect 
with copanlisib in 5 of 7 cell lines tested at an effective dose 
(ED) of 50% (0.5) and 6 of 7 lines at an ED of 75% (0.75). 
EPHA2 chemical inhibition had a synergistic effect with 
copanlisib in all 7 cell lines tested at an ED of 50 and 75%.

Copanlisib anti‑TNBC efficacy is not dependent 
on downstream AKT signaling

To examine the target engagement of copanlisib in TNBC 
cell lines, we collected cell lysates from three TNBC 
cell lines with a broad range of  DSS3 values (MDA-
MB-453 = 68.8; MDA-MB-436 = 8.9; and Cal51 = 62.0) 
treated with increasing concentrations of copanlisib. West-
ern Blot analysis demonstrates that although there is a 
20-fold difference in viability  IC50 across these three cell 
lines, PI3 K signaling is reduced over a similar concentration 
range as measured by downstream AKT activation (Fig. 4a). 
Indeed, the least growth-sensitive cell line (MDA-MB-436, 
 DSS3 = 8.9) has PI3 K-AKT pathway inhibition at 2 nM 
copanlisib (Fig. 4b, e, f). Meanwhile, PI3 K-mutated MDA-
MB-453 is growth-sensitive to copanlisib  (DSS3 = 68.8) and 
has a similar PI3 K-AKT pathway  IC50 to the insensitive 
cell line MDA-MB-436. PI3 K-mutated Cal51  (DSS3 = 62.0) 

Table 1  Combination indices 
of copanlisib with EPHA2 
(ALW-41-27 and dasatinib) or 
CEPNE (GSK923295) chemical 
knockdown using the Chou–
Talalay method

Effective dose for 50% or 75% inhibition shown as ED50 and ED75, respectively
Bold values indicate synergy, italic values indicate antagonism. NA denoted when an EC50 curve could not 
be generated for the companion drug alone. Cells are ordered with Copanlisib-sensitive cell lines at the top 
and Copanlisib-insensitive cell lines at the bottom

Cell line ALW-II-41-27 (EPHA2) Dasatinib (EPHA2) GSK923295 
(CENPE)

ED50 ED75 ED50 ED75 ED50 ED75

SUM102 0.78 0.58 0.22 0.24 0.73 0.69
MDA-MB-453 0.42 0.31 NA NA 0.64 0.67
BT20 0.61 0.32 0.33 0.45 1.2 0.86
SUM185 0.63 0.37 NA NA 0.97 0.80
Hs578T 0.39 0.33 0.21 0.19 0.34 0.61
HCC1937 0.63 0.28 0.30 0.31 0.37 0.22
MDA-MB-436 19 0.35 0.40 0.39 62 1.5
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exhibited pathway inhibition at 8 nM and cell viability  IC50 
at 31 nM (Fig. 4c–f). Taken together, these results demon-
strate that TNBC cell lines have a spectrum of sensitivity to 
PI3 K pathway inhibition that is not explained by the signal-
ing of the PI3 K-AKT pathway alone.

Discussion

Here, our work is focused on TNBC, while large pan-
cancer resources, including the Genomics of Drug Sensi-
tivity in Cancer (GDSC), have provided databases of cell 
line characterization and drug sensitivity data [42]. GDSC 
includes 22 TNBC cell lines, a similar number to the 23 
cell lines in our study. In addition to a focused collection 
of TNBC-directed drugs that were examined in our study, 
we also utilized matched samples (identical material) for 
molecular characterization and drug sensitivity studies. It 
has recently been reported that individual cell lines undergo 
molecular diversification in culture, resulting in passage-
specific changes at both the genetic and drug response level 
[43]. We utilize comprehensive molecular characterization 
of a diverse TNBC cell line collection and correlate drug 
responses to molecular readouts. From these data, we assem-
ble panels of molecular correlates of therapeutic efficacy for 
the most promising anti-TNBC drugs. Current standards for 

prediction of drug response rely almost entirely on muta-
tional changes within tumor cell DNA. Indeed, DNA-based 
biomarkers are prevalent in today’s large personalized medi-
cine trials, including NCI-MATCH, TAPUR, and LOTUS 
[30, 44]. Though these trials are considered an important 
step toward true precision medicine, a significant shortcom-
ing in these trials is that mutations alone are not generally 
robustly predictive of therapeutic response, even often in the 
case of therapies that directly target a mutated pathway. We 
found this discordance when comparing basket-trial enroll-
ment criteria to drug response in TNBC cell lines (Fig. 2). 
While mutations in PIK3CA generate stratification of cell 
line response to copanlisib, mutation-based predictions 
alone for dasatinib, trametinib, and TAK228 fail in TNBC 
cell lines. In fact, the mutation-based criteria for trametinib 
and TAK228 predict the inverse of the experimental drug 
response where selection on the basis of basket-trial criteria 
incorrectly predicts high drug efficacy for a resistant group 
of cell lines. These results highlight the need for more robust 
biomarkers of drug efficacy.

Biomarkers of drug efficacy for cell lines have been suc-
cessfully developed for other subtypes of cancer but are lack-
ing for TNBC [45–47]. In an effort to identify highly robust 
molecular correlates of drug efficacy, we screened a collec-
tion of 23 TNBC cell lines. Our collection of TNBC cell 
lines was designed to maximally represent the molecular and 
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for e. AKT pT308 and f AKT pS473, calculated by densitometry for 
pAKT/Total AKT from a–c 
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ethnic diversity of the disease. While we found 23 cell lines 
to provide robust molecular correlates for drug response, 
additional TNBC cell lines would increase our predictive 
power and ease future application of molecular correlations 
to the clinic. We thus encourage the continual development 
of additional cell line models of TNBC and other cancers. 
Our goal was to correlate drug efficacy with a variety of 
molecular markers (DNA mutation, RNA expression, and 
functional proteomics). Correlates for copanlisib were 
heavily focused around the PI3 K pathway (Fig. 3a). How-
ever, it is striking that most of the derived molecular cor-
relates for other targeted therapies did not directly include 
the drug-targeted pathway. For example, the drug efficacy 
of TAK228, an TORC1/2 inhibitor, is not correlated with 
genes or proteins from the mTOR pathway (Fig. 3d). Instead, 
TAK228 correlates strongly with AURKA, consistent with 
previously published results that demonstrated that the com-
bination of TAK228 and Aurora inhibition is highly effica-
cious in TNBC [39]. Functional proteomic studies (RPPA) 
yielded significant correlations only for copanlisib, while 
global RNA expression and targeted RNA expression panels 
yielded significant molecular correlates for five of twelve 
drugs tested. Four of the newly identified panels contain 
correlations from DNA sequencing, though copanlisib is the 
only drug wherein the mutation in PIK3CA is within the 
drug-targeted pathway. Three of the six molecular correlate 
panels were also aligned with breast cancer subtyping scores 
(determined by nanoString PAM50 analysis [48]). While we 
did run a nanostring miRNA array containing nearly 800 
well-studied miRNAs, we found no correlations that met 
our FDR-adjusted significance threshold for any of the pri-
oritized compounds.

Copanlisib, a PI3 K inhibitor, was one of the most prom-
ising compounds that we identified in TNBC cell lines. 
Notably, the PI3 K pathway has long been of great inter-
est for the treatment of TNBC, in both pre-clinical models 
and clinical trials [49–51]. TNBC presents with PIK3CA 
mutations in 20–30% of cases and low PTEN expression 
in 48% of cases [44, 52]. Together, these findings result in 
perturbation of PI3 K signaling in a significant number of 
TNBC patients. The frequent dysregulation of the PI3 K 
signaling pathway in TNBC is indicative of its importance 
in the pathogenesis of the disease. While PI3 K pathway 
inhibitors have shown some limited success in clinical tri-
als, and especially so in subgroups of patients with aberrant 
mTOR/PI3 K/PTEN signaling [53, 54], the altered signal-
ing in these cancers is not entirely explained by mutations. 
For example, the LOTUS trial identified that 48% of TNBC 
patients presented with decreased PTEN expression; how-
ever, only 29% of patients with low PTEN expression had 
corresponding PTEN genetic mutations [44]. This highlights 
a major challenge when selecting patients for clinical tri-
als: mutations are not uniquely and robustly predictive of 

response to various therapies that directly or indirectly target 
the mutations or their downstream pathways [55]. Together, 
our findings emphasize the importance of considering other 
molecular profiling methodologies, such as gene and protein 
expression levels, in the design of clinical trials, if robust 
biomarker signatures can be deduced for the individual 
compounds.

Single agent targeted therapies are known to be prone to 
resistance [56–58]. Combining multiple efficacious targeted 
agents has emerged as a strategy to prevent or delay resist-
ance (and to deal with resistance that has already emerged) 
[59–62]. It remains however a significant challenge to 
identify which drug(s) to combine with a specific targeted 
therapy. Most studies aimed at identifying companion drugs 
are performed using laborious and costly, seemingly “brute 
force”-like efforts, that explore all combinations without any 
basis for prioritization. We hypothesized that our molecular 
correlates could be used to identify optimal compounds to 
partner with a targeted agent. Notably, previous published 
work has described TAK228 and Aurora inhibitors as syn-
ergistic when administered in combination [39]. We found 
that AURKA was a correlate for TAK228, which lends sup-
port to using molecular correlates to identify drugs combi-
nations. Thus, we hypothesized that we could identify novel 
synergistic combinations on the basis of our molecular cor-
relate panels. As proof of principle for this approach, we 
selected copanlisib as the primary agent due to its excellent 
anti-TNBC efficacy. On the basis of copanlisib’s molecular 
correlate profile, EPHA2 and CENPE were prioritized cor-
relates due to their high expression in less responsive cell 
lines. We measured significant anti-TNBC efficacy between 
copanlisib and EPHA2/CENPE inhibitors. Both combina-
tions of inhibitors resulted in synergistic responses when 
administered at therapeutically relevant levels in six out of 
seven cell lines tested (Table 1). The cell line that did not 
respond to the combination (MDA-MB-436) is likely due to 
very high initial sensitivity to both of the companion drugs, 
resulting in difficulty to interpret curves and imperfect syn-
ergy analysis. Cell lines were chosen to be representative of 
the original data set, with a wide range of initial  DSS3 values 
for copanlisib, as well as varied starting expression levels 
of both EPHA2 and CENPE (Supplemental Table 2). These 
results demonstrate that our molecular correlates cannot 
only be used to predict drug response, but because of their 
robustness, also prove valuable in the rational identification 
of companion drugs and thus, also provide a method for 
prioritizing the testing of drug combinations.

Our molecular correlates are notable because they did 
not generally include the direct pathway impacted by com-
pound treatment. To better understand the relationship of 
downstream signaling to cellular viability, we measured 
downstream AKT signaling, following copanlisib treat-
ment. We then compared inhibition of the PI3  K-AKT 
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pathway to the reduced viability from copanlisib treatment 
(Fig. 4). We measured two copanlisib-sensitive cell lines 
(MDA-MB-453 and Cal51) and one growth-insensitive cell 
line (MDA-MB-436). Though MDA-MB-453 and MDA-
MB-436 have a 100-fold difference in cell viability  EC50, the 
suppression of downstream AKT signaling with copanlisib 
treatment is nearly identical. Cal51 has a fivefold differen-
tial in both cell viability  EC50 and downstream signaling 
relative to MDA-MB-453. Thus, we observed that viability 
 EC50 values between cell lines is not dependent on or cor-
related with differences in signaling suppression. Mutation 
of PI3 K thus predicts copanlisib sensitivity not because of 
elevated signaling, but likely because of a cellular addiction 
to PI3 K signaling or to signaling through other compensa-
tory pathways.

In summary, our findings propose a potential solution 
for the pressing clinical need for robust biomarkers of drug 
efficacy in TNBC. Existing biomarkers for anti-TNBC 
drugs are scarce and generally rely on DNA alterations that 
poorly predict cellular response. Herein, we identified six 
molecular correlate panels for relevant clinical compounds 
using TNBC cell lines. Our work suggests that these drugs 
could be effective clinically when paired with the correct 
molecular correlate panels to guide patient selection. Mod-
ern instrumentation, such as the nanoString nCounter, which 
enables simultaneous analysis of DNA, RNA, and protein 
in rapid manner (2–3 days), could thus be used clinically to 
obtain a multi-omics panel for each putative patient. This 
work outlines a framework for the identification of biomark-
ers and has further utility in the identification of synergistic 
target pathways based on these correlate readouts. While 
expansion to the clinic would require extensive validation 
in ex vivo patient models, we believe that a multi-omic 
approach utilizing DNA, RNA, and protein has the poten-
tial to yield more robust biomarkers than examining DNA 
mutations alone. Together our work provides key insights 
into the interplay between drug sensitivity and molecular 
signaling in TNBC.
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