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Abstract
Purpose In order to better define the breast cancer (BC) genetic risk factors in men, a germline investigation was carried 
out on 81 Male BC cases by screening the 24 genes involved in BC predisposition, genome stability maintenance and DNA 
repair mechanisms by next-generation sequencing.
Methods Germline DNAs were tested in a custom multi-gene panel focused on all coding exons and exon–intron boundaries 
of 24 selected genes using two amplicon-based assays on PGM-Ion Torrent (ThermoFisher Scientific) and MiSeq (Illumina) 
platforms. All variants were recorded and classified by using a custom pipeline.
Results Clinical pathological data and the family history of 81 Male BC cases were gathered and analysed, revealing the 
average age of onset to be 61.3 years old and that in 35 cases there was a family history of BC. Our genetic screening allowed 
us to identify a germline mutation in 22 patients (23%) in 4 genes: BRCA2, BRIP1, MUTYH and PMS2. Moreover, 12 vari-
ants of unknown clinical significance (VUS) in 9 genes (BARD1, BRCA1, BRIP1, CHEK2, ERCC1, NBN, PALB2, PMS1, 
RAD50) were predicted as potentially pathogenic by in silico analysis bringing the mutation detection rate up to 40%.
Conclusion As expected, a positive family history is a strong predictor of germline BRCA2 mutations in male BC. Under-
standing the potential pathogenicity of VUS represents an extremely urgent need for the management of BC risk in Male 
BC cases and their own families.

Keywords Male breast cancer · Next-generation sequencing · DNA repair genes · Familial breast cancer · Breast cancer 
risk in men

Introduction

Male breast cancer (Male BC) is a rare condition repre-
senting 0.5–1% of all BC cases [1]. Although, epidemio-
logic data regarding female BC is extensive, relatively lit-
tle is known about Male BC. Male BC cases tend to occur 
in patients between the ages of 60 and 70 years and often 
expressing an oestrogen receptor (ER) and progesterone 
receptor (PR) (ER > 90%, PR > 75%) [2]. Subsequently, the 
most common phenotype is the luminal subtype  (ER+ and/
or  PR+) with an occasional HER2 amplification (gener-
ally < 10%) [3, 4].

The lifetime risk of BC for men is about 1 in 833 [5]. 
Although a viral origin for BC was suggested [6], a rel-
evant genetic component underlies the pathogenesis of 
the disease. In general, BC family history among first-
degree relatives confers a 2–3-fold increase in Male BC 
risk [2]. Since the main BC susceptibility gene, BRCA1, 
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was identified in 1994 [7], strong evidence indicates that 
other than this gene also the BRCA2 confers a high Male 
BC risk [8].

The lifetime risk of BC for BRCA2-mutation male carri-
ers at the age of 70 is 6.8% and for BRCA1-mutation male 
carriers it is 1.2% [9]. BRCA2 mutations are estimated to 
be responsible for 60–76% of Male BC occurring in high-
risk BC families, whereas the frequency rate of BRCA1 
mutations ranges from 10 to 16% [10, 11]. An Italian 
multi-centre study reports BRCA2 mutations in 12% and 
BRCA1 mutations in 1% of Male BC cases [12].

PALB2 might act as a moderate-penetrance gene in 
Male BC since pathogenic variants have a higher preva-
lence in families with both female and Male BC cases 
(6.7%) than in families with only female BC cases (1%) 
[13]. Recently, CHEK2 and BRIP1 were associated with 
the moderately increased risk of Male BC; but in a less 
consistent manner than PALB2 [14].

Despite the increase in the use of multi-gene panel test-
ing, to date, a limited number of studies have investigated 
Male BC susceptibility genes. Most studies performed 
multi-gene panel testing on a limited number of Male BC 
patients, ranging from 22 to 102 [15–18]. Few studies 
assessed multi-gene panel testing on more than 500 Male 
BC patients [14, 19].

Since genetic predisposition continues to be scarcely 
understood in Male BC, our main goal was to carry out 
a germline investigation on Male BC cases to better 
define genetic risk factors. The coding sequence and the 
exon–intron boundary regions of 24 genes involved in 
breast and ovarian cancer predisposition, maintenance of 
genome stability and DNA repair mechanisms (BARD1, 
BRCA1, BRCA2, BRIP1, CDH1, CHEK2, ERCC1, MLH1, 
MSH2, MSH6, MRE11, MUTYH, NBN, PALB2, PARP1, 
PMS1, PMS2, PTEN, RAD50, RAD51C, RAD52, STK11, 
TP53, TP53BP1) were analysed by next-generation 
sequencing (NGS).

Materials and methods

Patients

Overall, 81 Male BC cases were admitted to the Univer-
sity Hospital of Pisa (AOUP) and the Tuscan Regional 
Discharge System database thanks to the collaboration 
with the Institute for Cancer Research, Prevention and 
Clinical Network (ISPRO) in Florence. For each patient, 
a blood sample, clinical information, family history and 
a written information consent were obtained. The study 
was approved by the Local Ethical Research Committee 
(Florence Health Unit).

Mutational screening

A NGS cus tom pane l  was  des igned  us ing 
AmpliSeq™Designer (https ://www.ampli seq.com/) (Ther-
moFisher Scientific) and DesignStudio (https ://desig nstud 
io.illum ina.com/) (Illumina) software to cover > 90% of 
the interested region of 24 genes (Supplementary Table 1). 
DNA was extracted from blood samples (QIAamp DNA 
Blood Midi Kit, Qiagen). Sequencing Library preparation 
was performed according to the manufacturer’s proto-
cols on the PGM-Ion Torrent (AmpliSeq™Library, One-
Touch™200 Template, Sequencing200 Kits v2, Ther-
moFisher Scientific) and MiSeq Illumina (TruSeq Custom 
Amplicon Low-Input LibraryPrep, MiSeq ReagentNano 
Kits v2, Illumina) platforms. Raw data were analysed by 
using Torrent Suite™ (ThermoFisher Scientific) and Vari-
antStudio™ (Illumina) software.

Genetic variants were filtered using MAF < 1% in 1000 
Genomes Project as a cut off. Variants were classified by 
following the 5-tier International Agency for Research 
on Cancer (IARC) system, as recommended by the IARC 
and the American College of Medical Genetics (ACMG) 
[20, 21]. The potential functional impact of Class 3 VUS 
was assessed by four bioinformatics algorithms: SIFT, 
PolyPhen-2 (PP-2), Mutation Taster, and Human Splicing 
Finder (HSF). VUS were considered “potentially patho-
genic” if simultaneously classified as deleterious by all 
tools applied. Pathogenic and “potentially pathogenic” 
variants were confirmed by capillary sequencing  (BigDye® 
Terminator v3.1-ABI3730; ThermoFisher Scientific). 
BRCA1/2 chromosomal rearrangements were excluded by 
the MLPA (P002-P045, MRC-Holland) and Coffalyser.
NET™ software (MRC-Holland).

Results

Patients

Overall, 81 Male BC patients were admitted. The age 
of BC diagnosis ranged from 38 to 88 years old (mean 
age = 61.30, SD = 11.26, 95% CI = 58.28–63.81). Invasive 
carcinoma of no special type (NST) was the most com-
mon phenotype (87%) even though a small percentage of 
papillary phenotype was reported (7.4%). They were pre-
dominantly grades 2–3, and luminal was the most common 
subtype with high percentages of ER and PR expression 
in tumour tissue  (ER+ = 95% and  PR+ = 85%). 35 cases 
had positive family history for breast/ovarian/prostate/
pancreatic cancer. 12 Patients developed BC before the 
age of 50, 10 had a diagnosis of another primitive cancer, 2 
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had a relapse and 1 had a bilateral BC. The most common 
additional cancer was prostate cancer, with a 40% (4/10) 
frequency rate.

Mutational screening

In 71 patients, 75 heterozygous rare variants were identi-
fied in 20 genes (on average 1.06 variants for each patient 
with MAF < 1%). 15 out of 75 variants were classified as 

pathogenic in 4 genes (BRCA2, BRIP1, MUTYH, PMS2). 
BRCA2 accounted for the highest percentage of pathogenic 
variants (73.3%, 11/15): 5 frameshifts, 4 splice-sites, 1 non-
sense and 1 missense variants were found in 18/81 patients 
(22.2%). In BRIP1 a total of 2 truncating mutations (1 non-
sense and 1 frameshift mutation) were detected in 2 patients 
(2.5%). One patient carried a MUTYH pathogenic missense 
mutation and one other patient carried a PMS2 truncating 
mutation (Table 1). In patients tested for variants in 24 genes 

Table 1  Pathogenic (in bold) and “potentially pathogenic” variants related to clinical data of carriers

Human Genome Variation Society (HGVS), Splice variant of unknown effect on protein (p.?), Type of mutation (Type), rsID in dbSNP, case ID 
(Case), age at diagnosis of breast cancer (BC age), type and age at diagnosis of additional cancer (AC age), Family History (FH), (HBC: Heredi-
tary Breast Cancer (HBC), Single Case (SC)

Gene HGVS nomenclature  HGVS nomenclature Type rsID Case ID BC age AC age FH

BARD1 c.1915T>C p.Cys639Arg Missense rs587781376 228 41 No SC
BRCA1 c.2018A>G p.Glu673Gly Missense Novel Ponte98p 41 No HBC

c.5468-5T>G p.? Splice rs730881498 662 51 No HBC
BRCA2 c.67+1G>A r.-38_67del106 Splice rs81002796 1206 52 No HBC

1653 54 No HBC
c.289G>T p.Glu97Ter Nonsense rs397507646 821p 72 No HBC

1009p 55 No HBC
mb167 68 No HBC
mb183 83 Prostate (44) HBC

c.316+5G>A r.68_316del249 Splice rs81002840 698 72 No HBC
c.631G>A p.Val211Ile Missense rs80358871 mb169 54 No HBC

718 38 No SC
c.3723delT p.Phe1241LeufsTer18 Frameshift rs886040491 400 65 No HBC
c.5946delT p.Ser1982ArgfsTer22 Frameshift rs80359550 mb166 56 No HBC

1233 65 No HBC
c.6468_6469delTC p.Gln2157Ilefs18 Frameshift rs80359596 1477p 66 Prostate (67) HBC
c.6678delA p.Ala2227GlnfsTer2 Frameshift rs80359620 215 47 No HBC
c.7008-2A>T p.? Splice rs81002823 mb169 54 No HBC

718 38 No SC
c.8247_8248delGA p.Lys2750AspfsTer13 Frameshift rs80359701 569 57 No HBC

1809 63 No SC
mb170 67 No SC

c.8754+4A>G p.Gly2919ValfsTer4 Splice rs81002893 1106 62 No HBC
BRIP1 c.1372G>T p.Glu458Ter Nonsense rs587780228 1626 56 No HBC

c.2684_2687delCCAT p.Ser895Ter Frameshift rs760551339 390 41 No SC
c.139C>G p.Pro47Ala Missense rs28903098 402 67 No SC

CHEK2 c.674C>A p.Pro225His Missense rs372168051 536 65 Prostate (71) SC
c.1441G>T p.Asp481Tyr Missense rs200050883 1199 40 No HBC

ERCC1 c.499C>T p.Arg167Trp Missense rs765054963 1048 76 No SC
MUTYH c.1187G>A p.Gly396Asp Missense rs36053993 386 61 No SC
NBN c.547G>A p.Ala183Thr Missense rs151070415 903 49 No HBC
PALB2 c.2816T>G p.Leu939Trp Missense rs45478192 mb171 77 No HBC

c.3428T>A p.Leu1143His Missense rs62625284 Ponte96 55 No HBC
PMS1 c.1609G>A p.Glu537Lys Missense rs151325573 mb174 76 No SC
PMS2 c.1687C>T p.Arg563Ter Nonsense rs587778618 1764 56 Kidney (57) SC
RAD50 c.1277A>G p.Gln426Arg Missense rs145428112 1483 58 Pancreas (58), 

bladder (65)
SC
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involved in DNA repair mechanism, the mutation detection 
rate was 27.1% (22/81). BC family history was referred in 
16 cases.

Overall, 39 variants in 20 genes were reported as Class 3: 
37 missense, 1 splice-site, and 1 in-frame deletion variants. 
11 Missense and 1 splice-site variants in 9 genes (BARD1, 
BRCA1, BRIP1, CHEK2, ERCC1, NBN, PALB2, PMS1, 
RAD50) (Table 1) were considered as “potentially patho-
genic” by all in silico tools. Each variant was found in one 
patient and did not co-occur with other pathogenic muta-
tions. BC family history was referred in six cases.

A total of 48 variants in 19 genes were predicted as toler-
ated or benign by at least one in silico tool and/or reported 
as “benign/likely benign” in the literature and clinical data-
bases, thus excluded from further analysis (Supplemen-
tary Tables 2, 3, 4). No rare variants were found in PTEN, 
RAD51C, RAD52, and TP53. Overall, a pathogenic or a 
“potentially pathogenic” variant was identified in 34 cases 
(34/81, 42%).

Discussion

Male BC accounts for ≈ 1% of all BC cases with an increas-
ing incidence rate. Despite its rarity, here we present a 
cohort of 81 patients. As reported in the literature, NST was 
the most common phenotype (87%) even though a small 
percentage of other phenotypes were reported (7.4%); most 
of them were grade 3 carcinomas (52%) and luminal was the 
most common subtype in our study. High ER/PR expressions 
were observed, as reported in many studies [2, 3]. Approxi-
mately 20% of Male BC patients report a family history of 
breast or ovarian cancer [22]. In this cohort, 37% (30/81) 
reported to have breast and ovarian cancer history among 
first-degree relatives. As this is a retrospective study on men 
selected from genetic counselling, this cohort may over-rep-
resent Male BC cases in a setting of cancer family history.

In this study, a germline investigation was performed by 
NGS focusing on coding and intron–exon regions of 24 can-
cer predisposition genes in a well-characterized series of 
81 Male BC cases. In total, we detected 75 rare variants in 
20 genes. 15 Variants in 4 genes were previously classified 
as pathogenic, and 12 variants in 9 genes were predicted as 
“potentially pathogenic” by a custom pipeline.

As expected, BRCA2 harboured the highest number of 
pathogenic variants (73.3%, 11/15): 18/81 patients (22.2%) 
carried pathogenic variants in BRCA2.

In our cohort the most common deleterious variant is the 
nonsense c.289G>T (p.Glu97Ter) in BRCA2, detected in 
four unrelated patients. This nonsense was identified for the 
first time in a Dutch family with history of breast and ovar-
ian cancer [23].

Although its frequency rate is extremely low worldwide, 
in the families we gathered information on over the past 
20 years was often found: 31 BC patients (male and female) 
were carriers of this variant, accounting for ≈ 20% of all 
BRCA2-mutation carriers as in the Male BC cases analysed 
(25%) here. This supports a different allelic distribution in 
Italy. In fact, evidence of founder BRCA1/2 mutations in 
geographically restricted areas was reported [24–27].

The Ashkenazi Jews founder mutation c.5946delT 
(p.Ser1982ArgfsTer22) was found in two cases. Segregation 
analysis in one of the two families revealed the presence of 
the same mutation in the proband’s 25-year-old son affected 
by pilocytic astrocytoma (Fig. 1). The co-occurrence of brain 
and breast cancers was observed in many families with carri-
ers of BRCA2 mutations. A previous case report described a 
high-grade glioma in a 19-year-old BRCA2-mutation carrier 
(c.2808_2811delACAA) [28]. Biallelic BRCA2 mutations 
were identified in glioblastoma multiforme cases [29–31].

The c.631G>A (p.Val211Ile) and c.7008-2A>T were 
found in co-occurrence in two unrelated patients. Both muta-
tions alter normal mRNA splicing, leading to the expres-
sion of a truncated protein [32]. Their co-occurrence was 
reported in a number of early onset and bilateral breast and 
ovarian cancers cases [33, 34]. Segregation analysis showed 
that both mutations affected the same allele [33]. However, 
the origin of this unusual BRCA2 allele remains unexplained.

Recent studies identified the 24 naturally occurring 
alternate splicing events associated with normal BRCA2 
mRNA processing [35, 36], and a functional study dem-
onstrated that variant alleles producing only transcripts 
lacking exon 3 should be considered to be pathogenic [37]. 
The c.316+5G>A is reported to be responsible for a nearly 
complete exon 3 skipping (95%), as quantified by fluorescent 
RT-PCR [37].

The c.8754+4A>G produced an aberrant transcript con-
taining a 46-nt insertion of intron 21 [38], which was pre-
dicted to disrupt the protein function in splicing the assay in 
a minigene, and thus classified as pathogenic [39].

In our results, truncating mutations in BRIP1 represent 
about 15% of all pathogenic mutations.

Germline mutations (c.1372G>T, p.Glu458Ter and 
c.2684_2687delCCAT, p.Ser895Ter) found in BRIP1 lead 
to truncated proteins lacking a BRCA1-interacting region. 
Recently, BRIP1 was considered as a moderate-penetrance 
BC susceptibility gene. Truncations in BRIP1 double the 
risk of developing BC [40], and events of loss of heterozy-
gosity were reported in female BC [41, 42], therefore, its 
role in Male BC requires further evaluation.

A single case of heterozygous for the pathogenic variant 
c.1187G>A was found in MUTYH. A high frequency rate of 
monoallelic MUTYH mutations in families with both breast 
and colorectal cancer is reported compared to the general 



561Breast Cancer Research and Treatment (2019) 178:557–564 

1 3

population [43]. Recently, monoallelic pathogenic variants 
were identified in 2.5% Male BC patients [44].

To our knowledge, this is the first report of a truncat-
ing mutation in PMS2 in a man affected by BC and kidney 
cancer. Germline mutations in PMS2 cause susceptibility 
to HNPCC-related tumours, but an increased incidence for 
cancers of small bowel, ovaries, breast and renal pelvis was 
observed [45]. Functional assays in yeast support the indi-
cation that MSH2 mutations contribute to the development 
and progression of breast and ovarian cancer by modulating 
BRCA1-driven tumorigenesis [46]. One primary Male BC 
was reported in a subject who also had colon cancer and 
MLH1 mutation [47].

While loss-of-function variants are easily considered 
pathogenic, the association with the disease for missense 
variants is much more difficult to assess. In order to indi-
cate the clinical utility of VUS, bioinformatics tools were 
applied: 12 variants in 9 genes were considered as “poten-
tially pathogenic” thus classified as deleterious by all tools. 
Each variant was found in a single patient and all of them 
did not co-occur with other pathogenic mutations, giving 
evidence of their potential role in cancer predisposition as 
a genetic risk factor.

Segregation analysis was performed for BRCA1 
c.2018A>G (p.Glu673Gly) because the missense was absent 
from all the database interrogated. The results supported its 
pathogenicity. The index case and his daughter inherited the 
same variant; she was affected by BC at the age of 49 years 
old (Fig. 2).

Pathogenic variants were not identified in TP53 or 
PTEN. Since Male BC is not associated with mutation in 
these genes, it is possible that men with clinical histories 
indicative of Li–Fraumeni syndrome or Cowden syndrome 
could benefit from single gene testing, potentially introduc-
ing ascertainment bias. There are some limitations to this 
study; the segregation analysis in families with “potentially 
pathogenic” variants was rarely applicable. The segregation 
data could clarify the association between Male BC and the 
“potentially pathogenic” variants identified in these families. 
In addition, the analysis of personal and familial cancer his-
tory may be limited according to the accuracy of the data 
provided.

In conclusion the results from this study revealed ~ 22% 
of Male BC patients carried mutations in BRCA2, accord-
ing to the literature. Our screening allowed us to identify a 
pathogenic mutation in genes other than BRCA2 (BRIP1, 
PMS2, MUTYH) in an additional 5% of cases. Moreover 12 
VUS were identified in 9 genes that might have a role in BC 
susceptibility.

These results support our choice to perform a multi-gene 
panel testing in Male BC patients regardless of one’s age at 
diagnosis, history of multiple primary cancers, and breast/
ovarian cancer family history.

Understanding the role and the potential pathogenicity 
of VUS in high- and moderate-penetrance genes represents 
an exciting research challenge. In clinical settings, a VUS 
diagnosis raises so many questions, particularly in healthy 
carriers. With the increase in the use of multi-gene panels, 

Fig. 1  Family Pedigree of 
one patient carrying the 
Ashkenazi Jews founder 
mutation. A 65-year-old man 
with breast cancer found 
to have BRCA2c.5946delT 
(p.Ser1982ArgfsTer22). His son 
with pilocytic astrocytoma at 
25 years had genetic counselling 
and testing showed the same 
pathogenic variant
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comprehensive genetic counselling is essential in allowing 
the right management of a VUS carrier. In our experience, 
since variant classification evolves, VUS in moderate-
penetrance genes is not used in clinical decision-making. 
Reclassification is to be communicated to carriers only 
when a VUS is reclassified as more pathogenic than previ-
ously. Surveillance examinations and screening programs 
are advised for high-penetrance VUS gene carriers only.
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