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Abstract
Purpose  The identification of biomarkers of hormonal therapy (HT) failure would allow tailored monitoring in metastatic 
breast cancer (mBC) patients. PIK3CA gene mutation is one of the most frequent events in mBC and is associated with HT 
resistance. We evaluated the early prognostic value of cell-free DNA (cfDNA) PIK3CA detection in first-line HT-treated 
mBC patients.
Methods  Between June 2012 and January 2014, 39 patients were prospectively included in a dedicated clinical trial 
(NCT01612871). Blood sampling was performed before (M0) and 4 weeks (M1), 3 months (M3) and 6 months (M6) after 
HT initiation, and at tumor progression. Patients were followed until progression or until the end of the study (2 years). 
Mutation detection was performed using droplet-based digital PCR (ddPCR). Progression-free survival (PFS) was used as 
primary endpoint.
Results  Median age at inclusion was 63 years (range 40–86). Most patients (34/39) received an aromatase inhibitor and 
presented a non-measurable disease (71.8%). PIK3CA mutations were reported in 10 (27.8%) and 5 (14.3%) cases at M0 and 
M1, respectively. The persistence of a detectable circulating mutation at M1 was highly correlated with a worse progression-
free survival (PFS), rate at 1 year: 40% versus 76.7%; p = 0.0053).
Conclusions  Four-week persistence of cfDNA PIK3CA mutation appears highly correlated with PFS.
Trial registration  NCT01612871, registered on June 6th, 2012; https​://clini​caltr​ials.gov/ct2/show/NCT01​61287​1.
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cfDNA	� Cell-free DNA
CDK	� Cyclin-dependent kinase
ER+	� Estrogen-receptor-positive
HT	� Hormonal therapy
mBC	� Metastatic breast cancer
mTOR	� Mammalian target of rapamycin
PI3K	� Phosphatidylinositol 3-kinase

PI3KCA	� PI3K catalytic subunit alpha
PFS	� Progression-free survival
RB	� Retinoblastoma
95% CI	� 95% confidence interval

Background

Hormonal therapies (HT) have improved the patients’ out-
comes in estrogen-receptor-positive (ER+) metastatic breast 
cancer (mBC). However, the effectiveness is limited by de 
novo or acquired resistance, occurring in nearly all mBC 
patients. Multiple mechanisms responsible for HT resistance 
have been proposed, including activation of various intra-
cellular pathways mainly the phosphatidylinositol 3-kinase 
(PI3K)/Akt/mammalian target of rapamycin (mTOR), and 
cyclin-dependent kinase (CDK) 4/6/retinoblastoma protein 
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(RB) pathways. The occurrence of mutations in the PI3K 
catalytic subunit alpha (PIK3CA), which generally occur in 
one of the two hotpot regions (Exon 9: E545K or E542K, 
and Exon 20: H1047R), is one of the most frequent events 
in ER + BC and has been involved in HT resistance [1–8]. 
However, the clinical impact of the PIK3CA status ana-
lyzed in tissue samples remains debated and most patients 
affected by estrogen-receptor-positive/HER2-negative 
(ER+/HER2−) tumors presented only bone metastases, a 
metastatic site associated with technical issues regarding 
pathological and biological evaluations [9, 10]. However, the 
identification of early prognostic biomarkers under HT could 
help tailoring monitoring and an early change in therapy.

The search for circulating biomarkers, easily accessible 
by blood sampling (as opposed to the biopsy of a metastasis) 
could be a preferred route especially for patients who can-
not be biopsied. Circulating cell-free tumor DNA (cfDNA) 
is a specific marker of tumor disease. Many studies, par-
ticularly in lung and colorectal cancers but also in breast 
cancer (BC), have shown that predictive factors of response 
to treatments such as KRAS, EGFR, or PI3KCA mutations 
could be detected in cfDNA [11–13]. Circulating biomarkers 
such as cfDNA may also allow a global evaluation of all the 
metastatic sites, at the time of treatment initiation and dur-
ing treatment, without the need for invasive biopsies and the 
difficulties associated with the specific requirements of bone 
metastases [7, 14, 15]. The detection of specific mutations 
on cfDNA could thus be proposed as a dynamic surrogate 
endpoint for clinical efficacy of a given treatment, allowing 
a short-term prediction of the long-term treatment outcome.

We prospectively evaluated in a bicentric clinical trial, 
the early prognostic value of cfDNA PIK3CA detection and 
dynamics in a prospective population of locally advanced or 
mBC patients receiving first-line HT to explore the prognos-
tic value of baseline and early changes of cfDNA PIK3CA 
mutations.

Methods

Study design and patients

Between June 2012 and January 2014, 39 patients with 
ER+/HER2− metastatic or locally advanced BC treated 
with first-line HT in 2 comprehensive cancer centers 
were prospectively included in a dedicated clinical trial 
(NCT01612871) aiming at the identification of circulat-
ing biomarkers associated with prognosis under HT. Serial 
blood sampling was performed before HT initiation (M0), 
at 4 weeks (M1), 3 months (M3), and 6 months (M6) after 
HT initiation, and at tumor progression (Fig. 1). Patients 
were followed until progression or until the end of the study 
(2 years follow-up). Considering the natural history of ER+/
HER2− mBC and the frequency of non-measurable disease 
in this subgroup, 1-year progression-free survival was used 
as primary endpoint. As part of the study evaluated the prog-
nostic impact of biological markers, this manuscript adheres 
to the REMARK guidelines [16, 17].

Plasma isolation and cfDNAPIK3CA determination

Plasma samples were obtained from blood collected in 
EDTA K2 tubes before 3 h after blood draw by centrifu-
gation at 1500×g for 15 min and were stored at − 80 °C 
until use. Plasma samples were processed and stored in our 
respective Biological Resources Centers (Biobank number 
BB-0033-00059), then centralized for subsequent analysis. 
Once thawed at room temperature, stored plasma were cen-
trifuged at 16,000×g for 15 min at + 4 °C and cfDNA was 
isolated from the supernatant using the QiaAmp circulat-
ing nucleic acid isolation kit (Qiagen, Courtaboeuf, France) 
according to the manufacturer’s instructions. After cfDNA 
extraction, quality of the cfDNA was evaluated with an Agi-
lent High Sensitivity DNA kit and the Bioanalyzer 2100 

Fig. 1   Design and key eligibil-
ity criteria

Tamoxifen or aromatase inhibitor
(according to the inves�gator's choice) 
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Time 0 1 month 3 months Disease progression and/or 
objec�ve response

5 ml blood sampling in EDTA tubes

- age ≥ 18 years
- first line metasta�c ER+/HER2- breast cancer, eligible for hormonal therapy
- measurable or non-measurable disease (RECIST criteria 1:1)
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instrument (Agilent Technologies, Les Ulis, France). Sub-
sequently, the circulating cfDNA concentration was quanti-
fied by fluorometry with the Qubit 2.0 Fluorometer (Life 
Technologies, Saint-Aubin, France). Mutation detection was 
performed using droplet digital PCR on a QX100™ system 
(Bio-Rad, Marnesla Coquette, France) according to a pre-
viously published method [18]. Briefly, a 20 µL reaction 
mixture containing 10 µl of 2 × ddPCR Supermix for probes 
with no dUTP (Bio-Rad), 5 µL of extracted cfDNA, 900 nM 
of each specific forward and reverse primer, and 250 nM 
of each FAM-labeled mutant probe and HEX-labeled wild-
type probe were carried out. After droplet formation using 
70 µL of generation oil (Bio-Rad) and the entire volume of 
the PCR mix, 40 µL of droplets was transferred for thermal 
cycling as follows: 95 °C for 10 min, 40 cycles of 94 °C 
for 30 s then 60 °C for 60 s followed by 98 °C for 10 min 
and cooling at 4 °C. The temperature ramp increment was 
2 °C/s for all steps. The assays targeted wild-type PIK3CA 
and mutations p.E542K, p.E545K in exon 9, and p.H1047R 
in exon 20. Primers and TaqMan hydrolysis probes were 
custom designed and provided by Bio-Rad (sequences avail-
able upon request). Genomic DNA from the T84 cell line 
(c.1624G > A, p. E542K), MCF-7 cell line (c.1633G > A, 
p.E545K), and LS174T cell line (c.3140 A > G, P.H1047R) 
were used as positive PIK3CA mutation controls. DNA from 
the LNCaPcell line (wild-type PIK3CA) was the negative 
PIK3CA mutation control. For each series of ddPCR assays, 
a non-template control was carried out.

Data analysis was performed using the QuantaSoft v1.7.4 
software. Thresholds for the detection of positive and nega-
tive droplets were set manually based on results from non-
template control wells and negative PIK3CA mutation con-
trol (LNCaP cell line). All data were evaluated above the 
threshold. All experiments were performed in duplicate. 
First, concentration of amplified fragments, FAM-labeled 
or HEX-labeled were calculated (copies/reaction) based on 
the Poisson distribution and the quantification of mutated 
and wild-type alleles was estimated with the following 
equation: λ = − ln (1 − P), where λ is the average number 
of target DNA molecules per replicate reaction and P is 
the fraction of positive end point reactions. Finally, cfDNA 
target concentration was calculated as copies/reaction and 
cfDNA concentrations were reported as number of copies/
mL of plasma. The PIK3CA mutant allele fraction (MAF 
% = number of mutated copies/µl/total number of copies/µl) 
for each sample was determined by using the QuantaSoft 
software V1.7.4 (Bio-Rad). To assess the limit of detection 
of the three assays, isogenic reference DNAs with known 
mutant allele frequency were used (Horizon Diagnostics, 
Cambridge, United Kingdom). Based on confidence inter-
vals for Poisson parameters, a sample was considered posi-
tive for a targeted mutation if the average mutant copies 
detected was four copies and above per reaction.

Statistical analyses

Data were presented by frequencies and percentages for cat-
egorical variables and by medians and ranges for continuous 
variables. The association between clinicopathological fac-
tors and PIK3CA mutations at baseline was performed by the 
Chi-square test or the Fisher’s exact test. All survival times 
were calculated from the date of inclusion to the progression 
or the death. Patients progression-free or alive were censored 
at the time of their last follow-up. Progression-free survival 
rates were analyzed using the Kaplan–Meier method and 
presented with 95% confidence intervals (95% CI). For uni-
variate analyses, the log-rank test was used for categorical 
variables and the Cox proportional hazards model for contin-
uous variables. Multivariate analyses were performed using 
the Cox proportional hazards model including significant 
covariates indicated by p < 0.10 in univariate analyses and 
hazard ratios with 95% confidence intervals were presented 
for each covariate in the models.

Results

Patients’ characteristics

The main clinical characteristics of the study population 
are summarized in Table 1. The patients’ median age at 
inclusion was 63 years (range 40–86). Most patients (34/39, 
87.2%) received an aromatase inhibitor as first-line HT 
(letrozole, n = 32, tamoxifen, n = 5, anastrozole, n = 1 and 
exemestane, n = 1 patient). Patients mainly presented with 
a non-measurable disease (n = 28, 71.8%) and 27 had bone 
metastases precluding a relevant evaluation of prognostic 
factors for response.

Response and survival

The overall objective response rate was 24.3% (2 complete 
responses, 5.4%; 7 partial responses, 18.9%), while 70.3% 
of the patients achieved stable disease. The one- and 2-year 
progression-free survival (PFS) rates were 67.6% [95% CI 
(50.0; 80.1)] and 32.4% [95% CI (18.2; 47.5)], respectively, 
with 25 progression events (64.1%) by the end of the study.

cfDNA PIK3CA determination 
and clinicopathological correlates

Plasma sample results were available for 36, 35, 33, and 
30 patients at M0, M1, M3, and M6, respectively. PIK3CA 
mutations were present in 10 (27.8%), 5 (14.3%), 3 (9.1%), 
and 4 (13.3%) cases at M0, M1, M3, and M6, respectively. 
M0 cfDNAPIK3CA mutations were detected in the helical 
domain in 6 (60%) samples (c.1624G > A, p. E542K, (n = 4), 
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c.1633G > A, p.E545K, (n = 2)) and in 4 (40%) samples in 
the catalytic kinase domain (c.3140 A > G, P.H1047R). The 
MAF ranged from 1.35% to 76.7%. M0 cfDNA PIK3CA 
mutation detection was significantly associated with the 
presence of bone metastases (10/10 patients with detectable 
mutated PIK3CA cfDNA vs. 14/25 patients without detect-
able mutated PIK3C AcfDNA, p = 0.0146; Table 2). To eval-
uate the correlation between cfDNA parameters and tumor 
burden, we analyzed the correlations between all the evalu-
ated cfDNA parameters and the number of metastatic sites 
as an indirect reflect of tumor burden (0–1 sites, N = 24 vs. 
2+ sites, N = 15). No statistically significant correlation was 
seen with any of the evaluated parameters (data not shown).

Univariate and multivariate analyses of prognostic 
factors

In univariate analyses (Supplementary Tables 1 and 2), the 
only clinical variable close to the significance threshold 
was the presence of lymph node metastases (p = 0.0615). 
Baseline cfDNA concentration and baseline PIK3CA MAF 
(%) were found to be significantly associated with PFS in 

univariate analysis, while a trend was seen for 1 month 
PIK3CA MAF (%, p = 0.069) and cfDNA concentration 
evolution (1 month—baseline).

While the presence of a cfDNA PIK3CA mutation in the 
M0 sample was not significantly associated with PFS (rate 
at 12 months: 70% [95% CI (32.9; 89.2)] versus 70.8% [95% 
CI (48.4; 84.9)]), the persistence of a detectable circulating 
mutation at M1 was highly correlated with a poorer PFS 
(rate at 12 months: 40% [95% CI (5.2; 75.3)] versus 76.7% 
[95% CI (57.2; 88.1)], p = 0.0053) (Fig. 2, Supplementary 
Table 1).

In a second step, considering the number of recorded PFS 
events, we performed four multivariate analyses using the 
lymph node metastases variable and the selected cfDNA 
variables (Supplementary Table 3). Lymph node metasta-
ses remain an independent prognostic factor in three models 
among the four models, and the model taking into account 
lymph node metastases and persistence of mutated PIK3CA 
cfDNA at 1 month was associated with higher hazard ratios.

No correlation was reported between cfDNA PIK3CA 
mutation detection, whatever the time point, and the tumor 
response.

Table 1   Patients’ characteristics 
at baseline

RECIST response evaluation criteria in solid tumors, LABC locally advanced, unresectable, breast cancer, 
CNS central nervous system

N = 39

Age at inclusion (years), median (range) 63 (40–86)
Time from initial diagnosis to inclusion (months), median (range) 7.8 (0.5–337.1)
Time from initial diagnosis to metastases (months), median (range) 3.2 (0–336.0)
 Missing 1

Measurable disease (RECIST 1.1) 11 (28.2%)
Body Mass Index at inclusion, median (Range) 25.6 (18.9–43.8)
 Missing 9

ECOG Performance status
 0 28 (73.7%)
 1 10 (26.3%)
 Missing 1

Number of metastatic sites, n (%) 0 (LABC)
 0 1 (2.6%)
 1 23 (59.0%)
 2 8 (20.5%)
 3 5 (12.8%)
 4 2 (5.1%)

Metastases localization (n = 38, 1 patient with LABC), n (%)
 Bone 27 (71.1%)
 CNS 0
 Cutaneous 3 (7.9%)
 Lymph nodes 11 (28.9%)
 Serous 0
 Liver 4 (10.5%)
 Lung 12 (31.6%)
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Discussion

In metastatic breast cancer (mBC), the evolutionary 
process under therapeutic pressure and genomic insta-
bility leads to the emergence of clonal populations har-
boring mutations associated with resistance to antican-
cer therapies [8]. At the same time, identification of the 
different clonal populations by multiple biopsies of the 
different metastatic sites is difficult, especially in ER+/
HER2− mBC. Indeed, they frequently develop bone 
metastases, a metastatic site associated with technical 
issues for molecular analyses. Liquid biopsy appears, in 
this context, a sensitive and specific, minimally invasive 
method to identify and monitor mutations of interest [15, 
19, 20].

The clinical impact of the tissue PIK3CA status remains 
unknown in different breast cancer histologic types, molecu-
lar subtypes as well as under various therapeutic strategies, 
such as in first-line HT [21]. For example, in an ancillary 
analysis of the MONALEESA-2 phase III study evaluating 
the first-line association of CDK4/6 inhibitor ribociclib and 

letrozole, ribociclib treatment benefit was maintained irre-
spective of the PIK3CA mutation status [22].

At the same time, identification of circulating cfDNA 
PIK3CA mutations has recently been reported to be associ-
ated with clinical behavior and response to anti-PI3K tar-
geted therapies. In the randomized phase III BELLE-2 trial 
evaluating the impact of buparlisib, a PI3K inhibitor, asso-
ciated with fulvestrant, tissue-based evaluation of the PI3K 
pathway activation (based on PI3KCA activating mutations 
or loss of PTEN expression) was not predictive of buparlisib 
efficacy [14]. However, in the same population, a significant 
difference in PFS was reported in the buparlisib group ver-
sus the placebo group in patients with detectable cfDNA 
PIK3CA mutations, while there was no difference between 
the groups of patients with no detectable cfDNA PIK3CA 
mutations. At the same time, the overlap between tissue 
and cfDNA PIK3CA mutations detection was partial in this 
study, as for the 446 patients with known tumor and cfDNA 
PIK3CA status, overall concordance was only 77%, empha-
sizing the evolutionary process occurring during metastasis.

Recently, the SOLAR-1 study showed alpelisib, a selec-
tive PI3K alpha-specific inhibitor, associated with fulvestrant 
nearly doubled median PFS (11.0 vs. 5.7 months) in HR+/
HER2− advanced breast cancer patients with a PIK3CA 
mutation compared to fulvestrant alone [23]. Alpelisib is 
now FDA-approved for women with a PIK3CA mutation in 
HR+/HER2− advanced breast cancer and the use of liquid 
biopsy will become widespread for women with advanced 
BC, thus prompting the interest for identification of reliable, 
minimally invasive, biomarkers of sensitivity/resistance in 
this population.

In our dedicated prospective clinical trial, in a first-line 
HT setting, the 4-week persistence or occurrence of a cfDNA 
PIK3CA mutation, and not the baseline cfDNA PIK3CA 
mutation status, appeared highly correlated with PFS. Evo-
lution of specific cfDNA mutations could increase the prog-
nostic value of this biomarker. Our results are in accordance 
with those recently reported by O’Leary and colleagues [24]. 
In their ancillary analysis of the pivotal PALOMA-3 trial 
evaluating the impact of the addition of palbociclib to ful-
vestrant, 22% of the baseline plasma samples were positive 
for a PIK3CA mutation in ctDNA. No statistically significant 
association was seen between the baseline PIK3CA status in 
ctDNA and PFS in patients treated with palbociclib and ful-
vestrant. However, assessment of the effect of the dynamic 
changes in cfDNA showed a decrease of mutated PIK3CA 
(and not ESR1) ctDNA level after 15 days of palbociclib and 
fulvestrant treatment, strongly correlated with PFS.

Early identification of a population of mBC harbor-
ing persistent cfDNA PIK3CA mutations could allow the 
future evaluation, in a selected population with an unfa-
vorable prognosis, of anti-PI3K targeted therapies com-
bined with HT and/or CDK4/6 inhibitors, considering the 

Table 2   Clinicopathological correlates with PIK3CA mutations, base-
line

WHO World Health Organization

Baseline PIK3CA mutations No Yes p value

WHO performance status (n = 35) 0.6936
 0 19 (76%) 7 (70%)
 1 6 (24%) 3 (30%)

Metastases localization (n = 35)
 Bone metastases 0.0146
  No 11 (44%) 0
  Yes 14 (56%) 10 (100%)

 SNC metastases NA
  No 25 (100%) 10 (100%)
  Yes 0 0

 Cutaneous metastases 0.1902
  No 24 (96%) 8 (80%)
  Yes 1 (4%) 2 (20%)

 Lymph nodes metastases 1.0000
  No 17 (68%) 7 (70%)
  Yes 8 (32%) 3 (30%)

 Serous metastases NA
  No 25 (100%) 10 (100%)
  Yes 0 0

 Liver metastases 1.0000
  No 23 (92%) 9 (90%)
  Yes 2 (8%) 1 (10%)

 Lung metastases 1.0000
  No 16 (64%) 7 (70%)
  Yes 9 (36%) 3 (30%)
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reported synergistic effect of these two classes of drugs 
[25, 26]. Indeed, focus on relevant biomarker identifica-
tion on early samples could allow, in the better scenario 
case, an early adaptation of the treatment, as the aim of a 
prognostic and/or predictive biomarker is to allow a better 
identification of a given population early in the therapeutic 

process. Later time samplings, while of scientific interest, 
appear less useful considering this tailoring concept.

Although the analysis of early changes in mutation con-
tent of cfDNA seems an attractive biomarker [27], there is 
no consensus on the best technical approach. Digital PCR 
is an accurate and rapid methodology, easy to implement 

Fig. 2   Progression-free survival 
(PFS) depending on the pres-
ence (black curve) or absence 
(gray curve) of a PIK3CA 
activating mutation at baseline 
(a) and after 1 month of treat-
ment (b)
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in the clinical setting and that compares favorably in terms 
of sensitivity and cost to the next generation sequencing. 
In addition, compared to standard real-time PCR, digital 
PCR can achieve a higher sensitivity and an absolute quan-
tification of targeted mutations.

Our study has some limitations, among which the rela-
tively small number of patients, precluding a global sta-
tistically valid multivariate analysis as, considering the 
number of events, it would have violated the 10 events 
per 1 variable rule [28], inducing greater risks of bias. 
To circumvent this limitation, we performed four separate 
multivariate analyses. In these multivariate analyses, of 
the considered cfDNA variables, persistence of mutated 
PIK3CA cfDNA at 1 month was associated with the better 
hazard ratios and appeared the more consistent consid-
ering the clinical impact and the published literature on 
cfDNA value under treatment. Also, only hotspot muta-
tions in the PIK3CA gene were assayed. However, these 
hotspot mutations are expected to represent 80% of the 
total PIK3CA gene mutations in HR+/HER2− mBC [29]. 
These results need to be confirmed in a separated data set 
including a greater number of patients and events.

Conclusion

Our study provides a proof of concept and attests of the 
feasibility of cfDNA analysis for patients with ER+ locally 
advanced or metastatic BC. Early identification of this 
population with cfDNA PIK3CA mutations allows the 
identification of a population affected by an unfavorable 
prognosis. Dedicated and ancillary studies of anti-PI3K 
targeted therapies are warranted in order to determine the 
optimal time point to evaluate this new biomarker.
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