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Abstract
Purpose The aim of this study is to explore new salivary biomarkers to discriminate breast cancer patients from healthy 
controls.
Methods Saliva samples were collected after 9 h fasting and were immediately stored at − 80 °C. Capillary electrophoresis 
and liquid chromatography with mass spectrometry were used to quantify hundreds of hydrophilic metabolites. Conventional 
statistical analyses and artificial intelligence-based methods were used to assess the discrimination abilities of the quantified 
metabolites. A multiple logistic regression (MLR) model and an alternative decision tree (ADTree)-based machine learning 
method were used. The generalization abilities of these mathematical models were validated in various computational tests, 
such as cross-validation and resampling methods.
Results One hundred sixty-six unstimulated saliva samples were collected from 101 patients with invasive carcinoma of the 
breast (IC), 23 patients with ductal carcinoma in situ (DCIS), and 42 healthy controls (C). Of the 260 quantified metabolites, 
polyamines were significantly elevated in the saliva of patients with breast cancer. Spermine showed the highest area under 
the receiver operating characteristic curves [0.766; 95% confidence interval (CI) 0.671–0.840, P < 0.0001] to discriminate 
IC from C. In addition to spermine, polyamines and their acetylated forms were elevated in IC only. Two hundred each of 
two-fold, five-fold, and ten-fold cross-validation using different random values were conducted and the MLR model had 
slightly better accuracy. The ADTree with an ensemble approach showed higher accuracy (0.912; 95% CI 0.838–0.961, 
P < 0.0001). These prediction models also included spermine as a predictive factor.
Conclusions These data indicated that combinations of salivary metabolomics with the ADTree-based machine learning 
methods show potential for non-invasive screening of breast cancer.
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Introduction

Breast cancer is one of the most common diseases world-
wide. Approximately 2.09 million new cases were diagnosed 
and 627,000 related deaths occurred globally in 2018 [1]. 

Although the incidence of breast cancer remains high in the 
United States and Europe, both incidence and mortality have 
shown a decreasing trend in these countries [2, 3]. However, 
in Japan, the incidence of breast cancer has been increasing 
substantially, and mortality has not shown a decreasing trend 
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[4]. These trends are partially due to differences in receiv-
ing rates of screening mammography in these countries. 
Although screening mammography provides age-specific 
reductions in breast cancer mortality [5], the receiving rate 
of mammography in Japan is roughly half of the United 
States and Europe [6].

Organized screening has reduced breast cancer mortal-
ity despite various substantial effects such as overdiagnosis, 
high cost, radiation exposure, and false positive biopsy rec-
ommendation [7–10]. Saliva, an informative biofluid that 
reflects systemic disease and enables easy, safe, and cost-
effective collection, shows the potential for screening vari-
ous types of cancers [11–13]. In addition to the detection of 
cancers in the oral cavity [14], various salivary biomarkers 
have been explored [15].

Various types of novel biomarkers in saliva have been 
reported for detecting breast cancer, such as epidermal 
growth factor (EGF), human epidermal growth factor recep-
tor 2 (HER2), vascular endothelial growth factor (VEGF), 
carcinoembryonic antigen (CEA), cancer antigen 15-3 
(CA15-3), and tumor suppressor oncogene protein (p53) 
[16–19]. Recent omics technologies, such as transcriptom-
ics, proteomics, and glycoproteomics, can simultaneously 
quantify hundreds of molecules and patterns to discriminate 
patients with breast cancer from healthy subjects [20–23].

Metabolomics is a technology that enables profiling of 
metabolites and has the potential for screening of breast 
cancer [24–28]. Because it cannot quantify all metabolites 
by a single method, a limited number of molecules showing 
similar chemical properties, e.g., lipids, are profiled. Various 
analytical approaches are used in sample analysis, including 
nuclear magnetic resonance imaging and mass spectrometry 
(MS). Separation techniques, such as capillary electrophore-
sis (CE) [24] or liquid chromatography (LC) [29], are used 
before MS depending on the molecules of interest.

Hydrophilic metabolites, such as amino acids and poly-
amines, can reportedly be used to discriminate patients 
with breast cancer from healthy controls [24–26, 29]. We 
previously observed the elevation of polyamines in saliva 
collected from patients with pancreatic cancer [30]. In this 
study, we conducted comprehensive metabolomics of hydro-
philic metabolites and assessed their discrimination abilities 
using machine learning methods.

Methods

Subjects

This study was a cross-sectional study for exploring breast 
cancer-specific salivary metabolites. The sample size of this 
study was the number we could recruit within the study peri-
ods. All patients had histologically diagnosed with breast 

cancer. None had received any prior treatment, including 
hormone therapy, chemotherapy, molecularly targeted ther-
apy, radiotherapy, surgery, or alternative therapy. Healthy 
controls were volunteer healthcare workers in our hospi-
tal. They had no history of any cancer. Two women in the 
healthy controls had fibrocystic disease confirmed by needle 
biopsy.

This study was conducted according to the Declaration 
of Helsinki principles. The study protocol was approved by 
the ethics committees of Keio University (No.20120143), 
Teikyo University (No.15-047-2), and Kitasato Univer-
sity, Kitasato Institutional Hospital (No.17006). Written, 
informed consent was obtained from all participants who 
agreed to serve as saliva donors.

Saliva collection

Saliva was collected as described previously [31]. Subjects 
were allowed only water after 9:00 p.m. on the day prior 
to collection. All samples were collected between 9:00 and 
11:00 a.m. The subjects were required to brush their teeth 
without toothpaste on the day collection and could not use 
lipstick, drink water, smoke, brush their teeth, or exercise 
intensively 1 h before saliva collection. A polypropylene 
straw 1.1 cm in diameter was used to assist in collection. 
Subjects were required to gently gargle with water just 
before saliva collection. Approximately 400 µL of unstimu-
lated saliva was collected and stored in 50 cc polypropylene 
tubes on ice to prevent degeneration of salivary metabolites 
[32]. After collection, saliva samples were immediately 
stored at − 80 °C.

Saliva preparation and metabolomics analyses

The saliva samples were analyzed by two methods. CE-time-
of-flight-MS (TOF–MS) was used for non-targeted analyses 
of hydrophilic metabolites, and LC-triple quadrupole MS 
(QQQMS) was used for accurate quantification of polyam-
ines as described previously with slight modifications [32, 
33]. Frozen saliva was thawed at 4 °C for approximately 
1.5 h and subsequently dissolved using a Vortex mixer at 
room temperature (Thermo Fisher Scientific, Waltham, MA, 
USA). Ten microliters of each sample were then used in 
LC–MS analysis, and the rest in CE-MS analysis.

For LC–MS analysis, saliva was mixed with methanol 
(90 µL) containing 149.6 mM ammonium hydroxide (1% 
(v/v) ammonia solution) and 0.9 µM internal standards 
 (d8-spermine,  d8-spermidine,  d6-N1-acetylspermidine, 
 d3-N1-acetylspermine,  d6-N1,N8-diacetylspermidine, 
 d6-N1,N12-diacetylspermine, hypoxanthine-13C,15N, 
1,6-diaminohexane, 13C,15N-Arg, 13C,15N-Lys, 13C,15N-Met, 
13C,15N-Pro, 13C,15N-Trp,  d3-Leu, and  d5-Phe). After cen-
trifugation at 15,780×g for 10 min at 4 °C, the supernatant 
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was transferred to a fresh tube and vacuum-dried. The sam-
ple was reconstituted with 90% methanol (10 µL) and water 
(30 µL), and then vortexed and centrifuged at 15,780×g 
for 10 min at 4 °C. One microliter of supernatant was then 
injected into the LC–MS.

For CE-MS, saliva was centrifuged through a 5 kDa-cut-
off filter (EMD Millipore, Billerica, MA, USA) at 9100×g 
for at least 2.5 h at 4  °C. The filtrate (45 µL) was transferred 
to a 1.5 mL Eppendorf tube with 2 mM of internal standards 
(methionine sulfone, 2-[N-morpholino]-ethanesulfonic acid 
(MES), d-camphol-10-sulfonic acid, sodium salt, 3-amino-
pyrrolidine, and trimesate). The instrumentation and meas-
urement conditions used for LC-QQQMS and CE-TOFMS 
were as described previously [32–34].

Processing of raw data was conducted by following the 
typical data processing flow [35]. LC–MS data were pro-
cessed using Agilent MassHunter Qualitative Analysis and 
Quantitative Analysis software, including the MassHunter 
Optimizer and the Dynamic Multiple Reaction Monitoring 
Mode (DMRM) software (version B.08.00; Agilent Tech-
nologies, Santa Clara, CA, USA). Polyamine concentrations 
were calculated based on the peak area of corresponding 
internal standards. CE-MS data were analyzed by Master-
Hands (Keio University, Tsuruoka, Japan) [24] with noise 
filtering, subtraction of baselines, peak integration for each 
sliced electropherogram, estimation of accurate m/z in mass 
spectrometry, alignment of multiple datasets to generate 
peak matrices, and identification of each peak by matching 
m/z values and corrected migration times to correspond-
ing entries in a standard library. Metabolite concentrations 
in CE-MS were calculated based on the ratio of peak area 
divided by the area of the internal standards in the samples 
and standard compound mixtures. Polyamine LC–MS data 
were used for subsequent analyses since their peaks were 
redundantly detected by both methods.

Data analysis

Collected data were classified into three groups; inva-
sive carcinoma (IC), ductal carcinoma in  situ (DCIS), 
and controls (C). To use only reliable quantification data, 
metabolites detected in less than 50% of IC samples were 
eliminated, and metabolites detected below the quantifica-
tion limit in more than 20 samples were eliminated. The 
remaining metabolites were subsequently analyzed. The 
Mann–Whitney test was used for comparisons between two 
groups, C versus IC. Q-values were calculated by correct-
ing P-values using a false discovery rate (FDR) consider-
ing multiple independent tests. The Kruskal–Wallis test and 
Dunn’s post test were used for comparisons between three 
groups.

To assess the predictive ability of metabolite combi-
nations, a multiple logistic regression (MLR) model was 

developed to differentiate IC from C. Prior to the develop-
ment of the model, stepwise feature selection was conducted 
to identify the minimum independent features. The threshold 
to remove a feature was P = 0.05. To evaluate the generali-
zation ability of the model, k-fold cross-validations (k-CV) 
were conducted, i.e., the datasets were randomly split into 
training and validation datasets in (k−1):1 ratio. The model 
was developed using training data and evaluated by valida-
tion data. This process was repeated k times, and generaliza-
tion ability was calculated based on prediction using valida-
tion data. We conducted 200 each of two-fold, five-fold, and 
ten-fold CV using different random values.

We also utilized an alternative decision tree (ADTree), 
an improved form of conventional if–then decision tree-
based machine learning methods [36]. To enhance predic-
tion accuracy, an ensemble approach was used, i.e., multiple 
ADTree models were developed, and their predictions were 
integrated to differentiate IC from C. Three-step analyses 
were conducted. First, to eliminate the bias in the number 
of datasets, bias-controlled resampling was conducted, i.e., 
individual data were randomly selected with redundant 
selection. Second, an ensemble ADTree was developed 
using the data from the first step. Among several ensemble 
methods, we utilized bagging methods, i.e., multiple models 
were developed based on multiple datasets generated by ran-
dom resampling. Model parameters, including the number 
of nodes in a tree (boosting number) and the number of trees 
(bagging number), were determined by two-fold CV. Third, 
the development model was used to predict the probability 
of IC using the original data. To assess generalization abil-
ity, bootstrap-like analyses were conducted (called resam-
pling analyses), i.e., individual data were randomly selected 
with redundant selection, and development and validation of 
the models were conducted. This process was repeated 200 
times with different random values.

JMP Pro (ver. 14.1.0; SAS Institute Inc., Cary, NC, USA), 
GraphPad Prism (ver. 7.0.3; GraphPad Software, Inc., La 
Jolla, CA, USA), MeV TM4 (ver. 4.9.0; http://mev.tm4.org), 
and Weka (ver. 3.6.13; University of Waikato, Hamilton, 
New Zealand) were used for analyses.

Results

Table 1 summarizes information related to the subjects 
enrolled in this study. Saliva samples were collected from 
three groups including C (n = 42), DCIS (n = 23), and IC 
(n = 101). Benign breast diseases (n = 2) were included in the 
C group. The IC group included invasive ductal carcinoma 
of non-specific type (n = 95), mucinous carcinoma (n = 2), 
invasive lobular carcinoma (n = 2), apocrine carcinoma 
(n = 1), and invasive micropapillary carcinoma (n = 1). Two 
hundred sixty metabolites were detected using CE-TOFMS 

http://mev.tm4.org
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and LC-QQQMS analyses. Of these, 105 were frequently 
detected in samples collected from patients with breast can-
cer (≥ 50%) and used for subsequent analyses. Comparisons 

between C and IC resulted in 31 metabolites showing P-val-
ues< 0.05 (Mann–Whitney test); among these, 26 showed 
Q-values< 0.05 (FDR-corrected P-value). The holistic view 
of 31 metabolites concentrations is depicted in a heatmap 
(Fig. 1). Amino acids other than aspartic acid (Asp) had 
Q-values < 0.05. Polyamines and their acetylated forms also 
had Q-values < 0.05.

Figure 2 shows the fold changes of 26 metabolites with 
Q-values < 0.05 between the IC and C groups. Figure 3 
shows comparisons among the quantified concentrations of 
the top eight-ranked metabolites in Fig. 2 from all 3 groups. 
Seven metabolites except N1-acetylspermine revealed sig-
nificant differences (P-value < 0.05, Kruskal–Wallis test 
with Dunn’s post test) between C and IC and no significant 
differences between C and DCIS. This finding indicated IC-
specific elevation of metabolite concentrations. Additionally, 
N1-acetylspermine revealed significant difference not only 
between C and IC but also between DCIS and IC.

Discrimination of IC from C was evaluated using receiver 
operating characteristic (ROC) curves. Among all quanti-
fied metabolites, spermine showed the best area under 
ROC curves (AUC), 0.766 [95% confidence interval (CI) 
0.671–0.840] (Fig. 4a). To assess the predictive ability of 
combinations of multiple metabolites, an MLR model was 
developed. Stepwise feature selection selected spermine and 
ribulose-5-phosphate (Ru5P) from the metabolites show-
ing Q-value < 0.05 (Table 2). The developed MLR model 
yielded an AUC of 0.790 (95% CI 0.699–0.859) (Fig. 4a). 
The spermine and MLR models were evaluated by CV with 
three division ratios (k-fold, k = 2, 5, 10), and the median 
AUC values after 200 CVs were almost constant, 0.752–754 
and 0.774–0.775, respectively. The difference between the 
upper and lower 95% CI was small, e.g., 0.747–0.751 and 
0.766–0.771 for the spermine and MLR models, respec-
tively, in the case of k = 2. Small differences were also 
observed in k = 5 and 10 (Fig. 5).

We also developed an ADTree model and integrated 
multiple ADTree models generated by bagging methods 
(ADTree + Bagging). The boosting and bagging numbers 
were optimized at 7 and 9, respectively. The ADTree and 
multiple ADTree models yielded AUC values of 0.880 (95% 
CI 0.798–0.931) and 0.919 (95% CI 0.838–0.961), respec-
tively. The former model is depicted in Fig. 6a. The concept 
of the ADTree + Bagging model is described in Fig. 6b. 
The ADTree + Bagging model included nine ADTree mod-
els, and the averaged value of each ADTree was used for 
prediction. The number of parameters used in this model 
is summarized in Fig. 6c. The generalization ability of the 
spermine model and the other three models were evaluated 
by resampling tests (Fig. 7). The median AUC values after 
200 resamplings increased for the spermine (AUC = 0.772), 
MLR (AUC = 0.796), ADTree (AUC = 0.834), and 
ADTree + Bagging (AUC = 0.864) models. These AUC 

Table 1  Subject characteristics

ER estrogen receptor, PgR progesterone receptor, HER2 human epi-
dermal growth factor receptor 2, IC invasive carcinoma, DCIS ductal 
carcinoma in situ, N/A not available

Group IC DCIS Control
(n = 101) (n = 23) (n = 42)

Age, years
 Median 54 49 51
 (Range) (34–89) (39–80) (23–80)

Clinical T
 Tis 0 23
 T1 44 0
 T2 48 0
 T3 2 0
 T4 3 0
 Unknown 4 0

Clinical nodal status
 Positive 12 0
 Negative 87 23
 Unknown 2 0

Clinical stage
 0 0 23
 I 44 0
 II 46 0
 III 5 0
 IV 2 0

Nuclear grade
 NG1 58 14
 NG2 18 1
 NG3 21 1
 Unknown 4 7

Hormone receptor status
 ER+ and/or PgR+ 81 22
 ER− and PgR− 20 1

HER2 status
 Positive 13 N/A
 Negative 88
 Unknown 0

Ki-67 labeling Index (%)
 < 15 46 N/A
 ≥15 51
 Unknown 4

Subtype
 Luminal A-like 41 N/A
 Luminal B-like 32
 HER2-positive 13
 Triple-negative 15
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values showed significant differences in each other model 
(P < 0.01, Kruskal–Wallis test with Dunn’s post test). The 
differences between the ROC curves of the spermine model 
and the other combined models are summarized in Table 3. 
Figure 4b showed the predicted probabilities of IC calcu-
lated by ADtree + Bagging model.

Metabolite comparisons in the analysis of each sub-
type (luminal A-like, luminal B-like, HER2-positive, and 
triple-negative) showed that five metabolite levels were sig-
nificantly different between the luminal A-like and B-like 
subtypes, while N-acetylneuraminate was only significantly 
different between luminal A-like and triple-negative sub-
types. No metabolites were significantly different among the 
other subtypes (Fig. 8).

Discussion

The aim of this study was to discriminate breast cancer 
patients from healthy controls using saliva metabolomics. 
Charged hydrophilic metabolites were comprehensively 
analyzed using CE-TOFMS, and polyamines were profiled 
with CE-TOFMS and their measurements optimized using 
LC-QQQMS to achieve more sensitize quantification. 
Patients with breast cancer showed higher concentrations 

of polyamines and amino acids (Figs. 1, 2) in saliva than 
controls. Figure 3 indicated that the elevation of these 
salivary metabolites was specific to IC. In general, con-
centrations of polyamines and their acetylated forms are 
elevated in cancer tissues. Although our reprocess could 
reduce the chance to identify some metabolites to specific 
IC subgroups, our data also showed high concentrations 
of polyamines and their acetylated forms after eliminat-
ing some metabolites according to our exclusion criteria. 
Therefore, we think our reprocess is appropriate. Elevated 
concentration of salivary amino acids was consistent with 
another report [29]. Lactate, an end product of glycolysis, 
was included in our oral cancer saliva data [14]. Our previ-
ous study found that carnitine and choline were elevated in 
saliva collected from patients with oral cancer [37].

DCIS has a very good prognosis compared to IC [38]. 
To solve one of the current issues about overdiagnosis and 
overtreatment of screen-detected DCIS [39, 40], several 
clinical trials are now in progress to evaluate the safety of 
active surveillance for low-risk DCIS [41, 42]. Therefore, 
discriminating IC from controls is more beneficial than 
discriminating DCIS from controls and we built predictive 
models to discriminate IC from controls without using the 
metabolites profile of DCIS group in our study.

Fig. 1  Heatmap showing salivary metabolite concentration. Metabo-
lites with P-values < 0.05 (Mann–Whitney test) in comparisons 
between C and IC + DCIS were detected. The absolute concentration 
of each metabolite was divided by the average of those in C. Higher 

and lower concentrations are indicated in red and blue, respectively. 
White indicates the averaged concentration in C. Metabolites showing 
Q-values < 0.05 are highlighted in orange
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Among the quantified metabolites, spermine showed 
the highest AUC values for discriminating IC from C. The 
combined MLR model consisting of spermine and Ru5P 
(Table 2) showed better AUC values (Table 4) than each 
component model alone. Features were selected using the 
threshold P = 0.05 to eliminate redundant elements, and only 
these two metabolites remained. This indicates the positive 
correlation between other metabolites and spermine and/or 
Ru5P, suggesting less additional predictive abilities. In fact, 
no significant difference was observed between the ROC 
curves of the spermine and MLR models (Table 3). Sper-
mine alone showed high enough predictive ability, but other 
combination methods should be utilized to enhance the pre-
dictive ability of multiple metabolites.

The ADTree model showed better AUC values than 
spermine and MLR model (Table  4). Furthermore, 
ADTree + Bagging showed the best AUC values (Table 4). 
Only this model showed significant differences in ROC 
curves compared to those of all other models (Table 3). Com-
pared to the MLR model, the features of the ADTree + Bag-
ging model are difficult to evaluate due to their complexity. 
However, spermine and Ru5P were connected to the root 
node in the ADTree model (Fig. 6a), which indicated that the 
concentrations of these metabolites were always used in pre-
diction. Thus, these metabolites contributed greatly to pre-
diction in single ADTree models. Since the ADTree + Bag-
ging model is complicated (Fig. 6b), we simply counted 
the usage of each metabolite in the model. Spermine and 
Ru5P were ranked first and second in the ADTree + Bagging 
model (Fig. 6c). Taken together, even in this machine learn-
ing method, spermine and Ru5P were important predictive 
factors in differentiating IC from C.

Fig. 2  Fold change of averaged concentration of IC/C. *Q-val-
ues < 0.05, **Q-values < 0.01, and ***Q-values < 0.001 (FDR-cor-
rected Mann–Whitney test)
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Fig. 3  Absolute concentrations of salivary polyamines and amino acids. Horizontal bars indicate median and 95% confidential intervals. P-val-
ues calculated by Kruskal–Wallis test are shown. *P-values < 0.05, **P-values < 0.01, and ***P-values < 0.001 (Dunn’s post test)
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Activation of polyamine synthesis in tumor tissue and 
spread to the surrounding environment has been well 
described [43]. Ornithine is a precursor metabolite of 

polyamine in the urea cycle. Ornithine decarboxylase 
(ODC) (EC 4.1.1.17) converts ornithine to putrescine, 
and putrescine is converted to spermidine by spermidine 
synthase (SRM) and S-adenosylmethionine, which is pro-
vided by methionine pathways. Spermidine/spermine-
N1-acetyltransferase (SSAT) (EC 2.3.1.57) acetylates 
these polyamines. Therefore, concentrations of polyamines 
and their acetylated forms are elevated in cancer tissues. 
Mutation of adenomatous polyposis coli (APC) function 
results in the upregulation of MYC, which induces ODC 
activation [44, 45]. MYC mutation is generally observed 
in various human cancers, and elevation of polyamines 
has been reported in such cancers. We previously con-
firmed the drastic changes in the metabolic profiles of 
colon cancer tissues caused by MYC mutation compared 
to those caused by several other oncogene mutations [46]. 
For example, the elevation of N1, N12-diacetylspermine has 
been repeatedly reported in blood and urine samples from 
patients with breast, colon, or lung cancers [47–50]. We 
previously found that various polyamines are elevated in 
the saliva of patients with pancreatic cancers [31]. There-
fore, a combination of multiple markers is preferable to 
enhance specificity.

Fig. 4  Discrimination ability to differentiate IC from C. a ROC 
curves. AUC values are summarized in Table  4. b Predicted prob-
ability of IC using ADTree + Bagging. P-values calculated by 

Kruskal–Wallis test are shown. ***P-values < 0.001 and ****P-val-
ues < 0.0001 (Dunn’s post test)

Table 2  MLR model

Ru5P ribulose 5-phosphate, CI confidence interval

Variables Parameters 95% CI P-value Odds ratio 95% CI

Spermine 0.42 0.14 0.70 0.0034 1.52 1.15 2.01
Ru5P 0.21 0.04 0.39 0.019 1.24 1.04 1.47
(Intercept) − 0.91 − 1.77 − 0.05 0.039 – – –
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Fig. 5  AUC values yielded by CV to discriminate IC from C. These 
values are generated by two-fold, five-fold, and ten-fold CV of the 
spermine and MLR models. Horizontal bars represent the 95th, 75th, 
50th (median), 25th, and 5th percentiles. Dots indicate outliers
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Recently, metabolomics has been employed to analyze 
saliva samples collected from patients with breast cancer. 
Scores combining quantified salivary polyamines have been 

positively correlated with breast cancer stage [25]. The 
scoring equation used in that study contained spermine and 
N1-acetylspermidine with positive coefficients, indicating a 
correlation between the elevation of these metabolites and 
tumor burden of breast cancer, which is consistent with our 
observations. However, N1-acetylspermine was used with a 
negative coefficient, inconsistently with our observations. 
One possible reason is the use of N1-acetylspermine as a 
confounding factor in the equation, as this metabolite was 
positively correlated with spermine. Recently, hydrophilic 
interaction chromatography-MS was utilized to profile 
metabolites in saliva collected from patients with breast 
cancers and revealed that various metabolites were elevated 
in phospholipid catabolism, such as lysophoshatidylcholine 
and phosphatidylcholine [28]. These metabolites were not 
observed using our methods.

Our study has several limitations. Polyamine concen-
trations in biofluids are affected by dietary intake [51] and 
various diseases [52]. Other metabolites, such as amino 
acids, also fluctuate according to lifestyle and environmen-
tal factors [34]. Even when combining multiple markers, 
the effects of these factors should be minimized to realize 
accurate determination. The developed discrimination model 
should be compared with other cancer data to evaluate its 
specificity to breast cancer. This study tightly controlled the 
sampling conditions, especially considering fasting, which 
affects salivary metabolomics profiles [33]. A less stringent 
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Fig. 6  Machine learning models. a Structure of an ADTree. b The 
concept of the ADTree with bagging model. c The number of vari-
ables used in the ADTree models with bagging methods. This algo-
rithm consists of a root node and multiple simple decision trees in 

which an index is associated with each leaf node, and its final pre-
dictive value is the sum of the indices of the leaf nodes fulfilling the 
condition of the patients

Fig. 7  AUC values to discriminate IC from C. AUC values were gen-
erated by resampling of the spermine model and three mathematical 
models. Horizontal bars represent the 95th, 75th, 50th (median), 25th, 
and 5th percentiles. Dots indicate outliers. The Kruskal–Wallis test 
with Dunn’s post test yielded adjusted P-values. ****P < 0.0001 and 
**P < 0.01
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sampling protocol should be evaluated for the establishment 
of a screening model. We did not investigate family history 
or BRCA1/2 status in this study. These factors are important 

when considering the risk of breast cancer, so we need to 
take them into account in the future study.

In conclusion, we analyzed metabolites in saliva sam-
ples collected from patients with breast cancer and assessed 
their ability to discriminate among C, DCIS, and IC. Both 
CE-MS and LC–MS were used to identify and quantify 
a variety of hydrophilic metabolites in the samples. The 
metabolites showing higher fold changes between C and 
IC were not elevated in DCIS, indicating that they were 
elevated in IC alone. To enhance the discrimination ability 
of the concentration patterns of multiple metabolites, we 
utilized MLR and ADTree models. The MLR model showed 
higher accuracy than spermine model, despite there being 

Table 3  Difference between 
ROC curves of spermine and 
combined models

CI confidence interval

Metabolite/models comparison Difference of AUC 95% CI P-value

Spermine MLR − 0.024 − 0.07 0.0215 0.2982
Spermine ADTree − 0.114 − 0.205 − 0.023 0.0145
Spermine ADTree + Bagging − 0.153 − 0.234 − 0.072 0.0002
MLR ADTree − 0.09 − 0.17 − 0.009 0.0292
MLR ADTree + Bagging − 0.129 − 0.199 − 0.059 0.0003
ADTree ADTree + Bagging − 0.039 − 0.078 − 0.001 0.0468

Fig. 8  Heatmap showing 
salivary metabolite concentra-
tion in four cancer subtypes. 
Luminal A-like (LA), luminal 
B-like (LB), HER2-positive 
(HER2), and triple-negative 
(TN). Metabolites showing 
P-values < 0.05 (Mann–Whitney 
test) in comparisons between 
C and IC were detected. The 
mean concentration of each 
metabolite was divided by the 
average of those in IC. Higher 
and lower concentrations are 
indicated in red and blue, 
respectively. White indicates 
the averaged concentrations 
in IC. Round black dots (fully 
filled) indicate metabolites with 
P-values < 0.05 (Kruskal–Wal-
lis test)

Table 4  AUC values for spermine and other predictive models

CI confidence interval

Metabolite/model AUC 95% CI P-value

Spermine 0.766 0.671 0.840 < 0.001
MLR 0.790 0.699 0.859 < 0.001
ADTree 0.880 0.798 0.931 < 0.001
ADTree + Bagging 0.919 0.838 0.961 < 0.001
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no significant difference in their AUC values. The ADTree 
and ADTree + Bagging models showed even higher AUC 
values than spermine alone. Interestingly, both the MLR 
and machine learning-based models included spermine 
and Ru5P as predictive factors. Concentration patterns of 
salivary metabolites along with sophisticated computational 
classification technology can contribute to non-invasive 
breast cancer screening. Salivary metabolomics should be 
conducted before mammography. In other words, salivary 
metabolomics is considered to be useful for the selection 
of subject who should receive breast cancer screening with 
mammography and/or ultrasound. In the future, metabo-
lomics could be used to recommend a biopsy to patients 
with suspicious mammography.
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