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Abstract
Purpose  Breast cancer (BC) is a heterogeneous disorder, with variable response to systemic chemotherapy. Likewise, BC 
shows highly complex immune activation patterns, only in part reflecting classical histopathological subtyping. Schlafen-11 
(SLFN11) is a nuclear protein we independently described as causal factor of sensitivity to DNA damaging agents (DDA) 
in cancer cell line models. SLFN11 has been reported as a predictive biomarker for DDA and PARP inhibitors in human 
neoplasms. SLFN11 has been implicated in several immune processes such as thymocyte maturation and antiviral response 
through the activation of interferon signaling pathway, suggesting its potential relevance as a link between immunity and 
cancer. In the present work, we investigated the transcriptional landscape of SLFN11, its potential prognostic value, and the 
clinico-pathological associations with its variability in BC.
Methods  We assessed SLFN11 determinants in a gene expression meta-set of 5061 breast cancer patients annotated with 
clinical data and multigene signatures.
Results  We found that 537 transcripts are highly correlated with SLFN11, identifying “immune response”, “lymphocyte 
activation”, and “T cell activation” as top Gene Ontology processes. We established a strong association of SLFN11 with 
stromal signatures of basal-like phenotype and response to chemotherapy in estrogen receptor negative (ER-) BC. We 
identified a distinct subgroup of patients, characterized by high SLFN11 levels, ER- status, basal-like phenotype, immune 
activation, and younger age. Finally, we observed an independent positive predictive role for SLFN11 in BC.
Conclusions  Our findings are suggestive of a relevant role for SLFN11 in BC and its immune and molecular variability.
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Abbreviations
BC	� Breast cancer
DDA	� DNA damaging agents
DFS	� Disease-free survival
ER	� Estrogen receptor
HT	� Hormone treatment
ICR	� Immunological constant of rejection
MCA	� Multiple correspondence analysis
SLFN11	� Schlafen-11
TNBC	� Triple-negative breast cancer

Introduction

Breast cancer (BC) is the second most common cancer in 
the world and, by far, the most frequent neoplasm among 
women [1].
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BC is a clinically and molecularly heterogeneous disease 
and genomic microarray analyses have corroborated the 
presence of at least four distinct intrinsic molecular sub-
types: luminal A, luminal B, basal-like, and HER2 enriched 
subsets [2, 3]. These subtypes display varying degrees of 
sensitivity to treatment and highlight the molecular hetero-
geneity of BC [4].

We and an independent group [5] recently discovered 
the role of a putative DNA/RNA helicase, Schlafen-11 
(SLFN11), for its causal association with sensitivity to DNA 
damaging agents (DDA), such as platinum salts, topoisomer-
ase I and II inhibitors, and other alkylators in the NCI-60 
panel of cancer cell lines [6].

SLFN11 belongs to the Schlafen protein family, which 
has been implicated in the regulation of important mamma-
lian biological functions, such as control of cell proliferation 
[7], induction of immune responses [8], and regulation of 
viral replication [9].

Schlafen genes were originally identified during screen-
ing for growth regulatory genes, and they are differentially 
expressed during lymphocyte development [10–13]. Later, 
SLFN11 was described as an early interferon response 
gene, in association with HIV infection [9]. Furthermore, 
Murai et  al. described molecular mechanisms detailing 
how SLFN11 is a dominant determinant of sensitivity to 
DNA-targeted therapies [14]. In particular, SLFN11 inhib-
its checkpoint maintenance and homologous recombination 
by removing Replication Protein A from single-stranded 
DNA [15]. Tang et al. demonstrated that the use of histone 
deacetylase inhibitors can be used to sensitize SLFN11-
inactivated cancers to DDA [16]. Recently, the importance 
of SLFN11 as a predictor of sensitivity to DDA has been 
proven in Ewing’s sarcomas, ovarian cancer, and colorectal 
cancer [17–20]. SLFN11 has also been confirmed as a pre-
dictive biomarker of PARP inhibitor sensitivity in small cell 
lung cancer [21].

The aims of our study were to investigate the transcrip-
tional landscape of SLFN11 expression in invasive BC and 
to identify clinical and pathological parameters that could 
help explain SLFN11 modulation in BC. In addition, we 
set up to determine whether SLFN11 expression could be 
associated with prognosis or response to treatment in this 
neoplasm.

Materials and methods

Datasets retrieval, pre‑processing, and data 
normalization

Thirty-five gene expression datasets of expression profiles 
from 7737 tumors were retrieved from public databases 
or authors’ websites [32 sets previously described in [22] 

and another three: PNC, METABRIC and TCGA [23–25]. 
Immune phenotypes for TCGA BC cases and leucocyte infil-
tration were obtained as described in Hendrickx et al. [26].

To ensure comparability of expression values across mul-
tiple datasets and microarray platforms (Agilent, Affymetrix 
or Illumina), we performed 0.95 quantile normalization 
(using the R/Bioconductor package genefu [27]).

SLFN 11 expression analysis and gene signature 
enrichment

Whole transcriptome correlation of SLFN11 was performed 
using Spearman’s rank correlation. We selected the top 5th 
percentile of transcripts that better correlated with SLFN11 
expression. Functional annotation of correlators was fur-
ther performed using DAVID (Database for Annotation, 
Visualization and Integrated Discovery) v6.7 [28] in order 
to identify significantly enriched pathways [false discovery 
rate (FDR) < 0.05], particularly Gene Ontology (GO) terms 
(The Gene Ontology Consortium). DAVID identifies GO 
categories to which genes belong, determining the statisti-
cal significance of non-random representation. To provide 
an independent assessment of enrichment analysis, we clas-
sified patients in molecular subtypes, extracting relative 
genomic signatures from the genefu package [27]. Patients 
labeled as “normal” PAM50 phenotype were removed, upon 
concerns of low cancer cellularity and possible ensuing con-
tamination by normal breast tissue [29]. The most signifi-
cant gene signatures were extracted using a feature selec-
tion machine learning approach, called LASSO regression 
(glmnet package).

Multiple correspondence analysis

We investigated the modulation of SLNF11 in breast can-
cer through the study of the mutual distribution of clinical 
and pathological categorical data. First, we removed T1a 
samples, due to their small relative number and size, Tx 
and Nx tumor patients and all those patients with unknown 
age information, estrogen receptor or HER2 status. For this 
analysis, SLFN11 expression was subdivided in tertiles 
of expression (low, intermediate, and high). Exploratory 
assessment and inter-dependencies relations of data, com-
bined with the extracted gene signatures, were accomplished 
by multiple correspondence analysis with the FactoMineR 
package.

Survival analysis and time dependency correlation

Survival analyses were performed in order to determine the 
association of SLFN11 with prognosis in BC. We defined, 
by univariable statistical analysis, the association between 
disease-free survival (DFS) and SLFN11 expression (“low” 



337Breast Cancer Research and Treatment (2019) 177:335–343	

1 3

if in the lower two tertiles and “high” if in the top tertile). 
The DFS curves were generated using Kaplan–Meier estima-
tors (survcomp package), and p values were obtained with 
the log-rank test. For what concerns the analysis of more 
than one covariates, we employed a stepwise backward-
forward Cox proportional hazards regression model. The 
Akaike Information Criterion allowed the estimation of 
the best set of clinical and pathological variables described 
above (MASS package).

To explore time dependency of SLFN11 modulation, we 
tested the proportional hazards assumption for a Cox regres-
sion model as described previously [30]. We tested a two-
sided hypothesis, rejecting the null ones with a p < 0.05 and 
applied multiple corrections of resulting p values using the 
Benjamini–Hochberg method.

Results

SLFN11 expression correlates with BC 
immune‑related transcripts

To investigate the transcriptional landscape of SLFN11 
in BC, we conducted a gene expression microarray meta-
analysis of 7737 cases from 35 publicly available datasets.

Of 7737 cases, we assessed 5061 patients with SLFN11 
expression values. Then, we performed a whole transcrip-
tome correlation analysis with SLFN11 and identified 537 
genes in the top 5th percentile of correlation. The list of 
these 537 transcripts was analyzed for gene ontology (GO) 
enrichment. Strikingly, immune function processes repre-
sented most of the GO terms resulting from such analysis. 
The overrepresented terms in our sample set are listed in 
Table 1.

In agreement with such finding, we observed a strong 
positive association between well-established markers of 
tumor lymphocytic infiltration with SLFN11 expression such 
as CD3 and CD8 (Spearman’s ρ = 0.527, FDR < 0.0001 with 

the expression of CD3, and ρ = 0.514 with the expression of 
CD8—FDR < 0.0001, see Fig. 1).

Overall, this data purports an association of SLFN11 with 
immune modulation in BC.

SLFN11 expression correlates with BC immune gene 
signatures

Next, to validate our observations from an independent per-
spective, we inferred gene expression signatures from 4740 
patients after removing the “normal-like” intrinsic pheno-
type cases (in light of their low cellularity) and exploited 
LASSO penalized regression to extract the most relevant 
signatures associated with SLFN11 expression. In harmony 
with our previous observations, we observed an independent, 
strict association with immune-related signatures, in particu-
lar with two publicly described signatures ‘Immune2’ [31] 
(ρ = 0.508, FDR < 0.0001) and ‘Stroma1’ [31] (ρ = 0.377, 
FDR < 0.0001, see Fig. 2).

High expression of SLNF11 is linked with aggressive 
BC

To better understand the role of SLFN11 in BC modula-
tion, we performed multiple correspondence analysis (MCA) 
including clinical and pathological parameters, as well as 
SLFN11 levels ranked by tertiles of expression.

2581 patients from 7 datasets, presenting with all clini-
cal and pathological features including ER and progester-
one receptor immunohistochemistry, HER2 status, grade, 
T, N, intrinsic subtype, and STAT1 signature as a proxy for 
immune activation [32] were considered for such analysis.

MCA highlighted two clearly separated patient clus-
ters. The “SLFN11-hot” cluster is defined by high SLFN11 
expression, ER-negative status, high histological grade, 
basal-like phenotype, immune activation, and younger age 
at diagnosis (< 50 years old).

Table 1   Top gene ontology 
(GO) terms associated with 
SLFN11 expression in breast 
cancer

Fold-en fold enrichment, FDR false discovery rate

Term Count Percent Fold-en. FDR

Immune response 117 23.2 5.62 5.94 E−53
Positive regulation of immune system process 55 10.9 7.66 3.36 E−29
Cell activation 56 11.1 6.47 8.42 E−26
Leukocyte activation 52 10.3 7.12 8.74 E−26
Regulation of cell activation 44 8.7 8.34 3.08 E−24
Regulation of lymphocyte activation 41 8.1 9.19 4.14 E−24
Lymphocyte activation 45 8.9 7.50 8.28 E−23
Regulation of leukocyte activation 41 8.1 8.19 4.94 E−22
Regulation of T cell activation 35 6.9 9.92 2.69 E−21
Positive regulation of cell activation 34 6.7 10.16 5.84 E−21
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The “SLFN11-cold” cluster is characterized by low/
intermediate SLFN11 expression, ER-positive status, lack 
of HER2 amplification, older age at diagnosis (> 50 years 
old), and low/intermediate STAT1 expression (see Fig. 3).

In summary, high SLFN11 expression correlates 
with aggressive tumors with signs of immune activation 

(basal-like phenotype, higher histological grade, younger 
age), whereas lower SLFN11 expression can be observed 
in luminal, less aggressive neoplasms characterized by low 
immune activation.

Fig. 1   a Correlation between 
SLFN11 (y-axis, z-score gene 
expression values) and CD3 
(x-axis, z-score gene expression 
values). b Correlation between 
SLFN11 (y-axis, z-score gene 
expression values) and CD8 
(x-axis, z-score gene expression 
values)

Fig. 2   a Bar plot shows the LASSO regression coefficient weights 
related to the gene signatures of interest: the highest weighted signa-
tures are highlighted in a red contoured box. b The upper and lower 

scatterplots show the correlation between SLNF11 and the most rel-
evant gene signatures resulting from previous variable selection anal-
ysis
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SLFN11 overexpression is independently associated 
with better prognosis

To evaluate whether SLFN11 expression could be associated 
with prognosis or response to treatment in BC, we evaluated 
2093 patients from 3 different datasets with complete infor-
mation concerning DFS and type of treatment.

By univariable analysis, SLFN11 was not associated with 
prognosis (HR = 1.09 for SLFN11-high vs. low expression, 
95% CI 0.88–1.36, p = 0.37).

On the other hand, when taking into account clinical 
and pathological parameters as well as type of treatment 
and intrinsic subtypes, SLFN11 high expression was inde-
pendently associated with better prognosis (HR = 0.61, 
95% CI 0.41–0.91, p = 0.0153). Moreover, we could define 
an interaction between SLFN11 expression and hormone 
treatment (HT), with high-SLFN11 patients undergoing HT 
being characterized by worse outcome (HR: 1.81, 95% CI 
1.11–2.96, p value for interaction = 0.0175, Fig. 4, panel a).

To better understand this not obvious observation, we 
investigated SLFN11 expression and HT in relation with 
possible time dependencies violating the Cox proportional 
hazards assumption. Indeed, in our analysis high SLFN11 
levels subtended a worse prognosis in the first 2 years after 
diagnosis only in patients undergoing HT (Fig. 4, panel b).

Fig. 3   MCA showing the relationship patterns between clinico-path-
ological variables and SLFN11 expression in breast cancer. x- and 
y-axes represent the first and second dimension (Dim.1 and Dim.2) 
of the MCA analysis performed on clinical and pathological data, 
as well as SLFN11 expression, divided in tertiles, from 2581 BC 
patients. Patients are represented by small grey dots and categorical 
variables are colored. In particular, patients with high-grade tumors 
also show high SLFN11 expression levels (highlighted by the red 
dashed circle), whereas the cluster of patients with SLFN11 low and 
intermediate expression tumors is also characterized by low and inter-
mediate (Low/Intm) STAT1 expression, HER2-, ER+ cancers (steel-
blue dashed circle)

Fig. 4   a Forest plot of Cox regression model for DFS in 2093 BC 
patients with complete anatomopathological and clinical follow-up 
data. b Plot of scaled Schoenfeld residuals. Red dashed and blue dot-

ted lines represent, respectively, the null effect (null log hazard ratio) 
and a ± 2-standard-error band around the fit. On the x-axis, time is 
expressed in years
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SLFN11 is independent from BC immune activation 
status in prognosis prediction

Finally, we derived leucocyte infiltration and immune phe-
notypes in the most extensively analyzed set available to 
us, TCGA, as previously described [26]. We could indeed 
confirm that SLFN11 expression is associated with leuco-
cyte infiltration (Spearman’s ρ = 0.61, p < 0.0001, see Sup-
plementary Figure S1). However, in a survival model tak-
ing into account the interaction of SLFN11 and the recently 
described BC “low” and “high” immunological constant of 
rejection (ICR) phenotypes (N = 318) [26], we could not find 
a significant interaction in determining prognosis between 
the two variables. Surprisingly, however, our model sug-
gested that high SLFN11/high ICR cases may have a short-
term worse prognosis than other cases (adjusted HR = 2.68, 
95% CI 0.28–25.56, p = 0.1483, with a p value for violating 
the proportional hazards assumption = 0.1114).

Discussion

In the present article, we investigated for the first time how 
SLFN11 is modulated in BC, analyzing more of 7000 BC 
cases available from 35 public datasets. Our findings dem-
onstrated a strong correlation of SLNF11 expression with 
immune system transcriptomic markers, in particular with 
transcripts involved in immune system processes such as 
“prolymphocyte activation”, “immune response”, and “T cell 
activation”. Our findings document the relationship between 
SLFN11 and immunity in BC, initially suggested by previ-
ous works in other settings [9, 33, 34]. In analogy with our 
findings, Stewart et al. recently published that SLFN11 high 
expression in small cell lung cancer is positively correlated 
with immune regulatory pathways, particularly with Type 1 
interferon pathway genes [33]. Therefore, SLFN11 appears 
to have a significant role not only in innate immunity pro-
cesses such as defense response to virus [9] or DNA damage 
repair [6], but also in adaptive immune response to cancer.

SLFN11 in addition to its known expression by cancer 
cells [6] could indeed be expressed by immune cells during 
anti-tumoral response, potentially behaving as a marker of 
T cell infiltration in BC as well as in other tumor types. The 
consistent association of SLNF11 with immunity is exempli-
fied by its strong correlation with tumor infiltrating lympho-
cyte markers (CD3 and CD8 in our analyses).

Of note, we identified a strong independent correlation of 
SLFN11 with two immune gene signatures, namely stroma1 
and immune2. In the last few years, several prognostic and/or 
predictive gene expression signatures have been published 
in BC [35–37]. Desmedt et al. in their comprehensive meta-
analysis showed as several prognostic gene signatures differ 
in prognostic abilities according to the BC subtype and as 

only immune response modules seem to predict prognosis in 
ER-negative/HER2 negative BC patients [32]. On the other 
hand, we previously pointed out the prognostic and predic-
tive value of immune gene signatures in primary TNBC 
underlining the activation of Th1/effector immune response 
[35]. Our findings show both high expression of SFLN11 in 
a subgroup of patients with TNBC-like features and a strong 
correlation with immune signatures, in particular immune2, 
supporting an involvement of SLFN11 during the effector 
immune response in BC. In parallel, stroma signatures have 
also been developed in BC in order to predict clinical out-
come and treatment response [38–40]. Particularly, Finak 
et al. developed a 26 gene stroma-derived prognostic predic-
tor in which a good-outcome cluster overexpresses a distinct 
set of immune-related genes, including T cell and NK cell 
markers indicative of a Th1-type immune response (GZMA, 
CD52, CD247, CD8A) [41]. Winslow et al. showed that a 
specific immune gene signature (C1Q), represented by genes 
such as DZMH, GZMA, GZMK, CD3D, CD3G, CD247, 
CD8A, coding for proteins involved in cytotoxic immune 
response in TNBC, is associated with low risk of recurrence. 
Finally, their results support that the molecular profile of 
a Th-1/immune response (CD4+ T cells) is an important 
prognostic marker in BC [39] as also hypothesized by Gu-
Trantien et al. in her work [42]. In good agreement with such 
independent observations, in our study SFLN11 is highly 
associated with stromal signatures, in particular stroma1, 
and expression of T cell markers, supporting the idea of a 
role of SLFN11 in Th-1/effector immune response in BC.

Through our unbiased analysis of SLFN11 expression in 
relation with clinico-pathological BC variables, we discov-
ered two distinct BC patient subgroups. In the “SLFN11-
hot” cluster, we observed a high expression of the signature 
of STAT1, a key mediator of type I and type II interferon 
response. Among its many functions, STAT1 promotes Th1 
immune response and TCD8+ cell recruitment [43]. This 
type of immune activation is predominant in TNBC, a sub-
group of BC that is considered highly immunogenic. TNBC 
typically presents a worse prognosis than other BC subtypes, 
with—however—a very heterogeneous response to current 
systemic chemotherapies and absence of actionable molecu-
lar targets. To overcome this issue, current clinical trials 
testing a combination of immunotherapy and chemotherapy 
in TNBC are ongoing [44].

In our analysis, we demonstrated that SLFN11 expres-
sion is strictly related to BC-immunity, in particular in 
TNBC. The “SLFN11-hot” cluster encompasses a distinct 
BC subgroup with TNBC-like features, strong immune 
activation, better prognosis, and better response to sys-
temic treatments compared to other BC subtypes. On the 
other hand, the “SLFN11-cold” cluster might represent 
a different subgroup of scarcely immunogenic BC with 
minor response to systemic treatment. Therefore, SLFN11 
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as immune-related biomarker is an intriguing venue for 
further translational research.

In our time dependency analysis, we identified a sub-
group of high-SLFN11 BC patients treated with HT pre-
senting with worse outcome in the first 2 years of fol-
low-up. This behavior shows similarities with TNBC and 
suggests that the phenomenon that we observed might be 
actually due to a subset of hormone receptor-poor patients 
with a biological behavior analogous to that of TNBC. 
This is, however, just a hypothesis since we did not have 
the availability of ER expression level by immunohisto-
chemistry in the evaluated dataset for a precise quantita-
tion of ER by standard methods. Our observation is in 
agreement with recent literature, since several papers con-
firmed the analogies between TNBC and Luminal-B BC 
concerning survival rates [45], response to neoadjuvant 
chemotherapy [46], high mutational burden, and immu-
nogenic profile characterized by higher expression of TIL 
[47]. Finally, Luminal-B BC are poorly responsive to HT 
[48] and could be stratified by immune profile analysis into 
different prognostic groups [49], so that in future studies 
on BC, we believe SLFN11 expression should be assessed 
together with other established parameters for prognostic 
and predictive purposes.

Our lack of identifying a clear association between 
SLFN11 levels and immune activation in BC in determin-
ing prognosis is somehow puzzling. We may speculate that 
SLFN11 levels in cancer cells play an independent role in 
response to DDAs when considered together with immune 
status in BC. As a consequence, we strongly advocate for 
future studies to morphologically deconvolute SLFN11 
expression in cancer cells and in immune infiltrate in 
selected BC cohorts to reach a causal understanding of the 
role of this protein. On the other hand, our inconclusive 
results in assessing the relation of SLFN11 and immune 
activation in BC may be due to both the relatively low 
number of events (N = 42) and the insufficient length of 
the follow-up time (median 2.5 years) of publicly avail-
able BC TCGA data. Moreover, the suggestion of a worse 
short-term prognosis again favors the idea of high SLFN11 
being a characteristic of BC cancer with such behavior, as 
TNBC is. The negative prognostic effect of SLFN11 in the 
high ICR BC cases is puzzling, and we should be careful 
in overinterpreting substantially indecisive results. Our 
analyses have several limitations. Among them the het-
erogeneity concerning the origin of data, chip design, and 
clinical annotation are unavoidable. Moreover, we did not 
perform preclinical experiments for our findings, which 
are of associative nature so far—albeit suggestive—, and 
SLFN11 location in BC is yet to be determined, since the 
contribution from infiltrating lymphocytes may be deter-
minant in this regard.

Conclusion

In summary, a consistent and evident pattern emerges, high-
lighting the strong correlation of SLFN11 with the immune 
system in BC, as well as its meaningful associations with 
clearly distinct clinico-pathological BC phenotypes and 
clinical outcome. Further studies will have to focus on bio-
logical, well-annotated, and homogeneous specimens from 
clinical BC cohorts to further unravel SLFN11 role in BC.
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