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Abstract
Purpose  Breast cancer is a heterogeneous disease, and although advances in molecular subtyping have been achieved in 
recent years, most subtyping strategies target individual genes independent of one another and primarily concentrate on 
proliferative markers. The contributions of biological processes and immune patterns have been neglected in breast cancer 
subtype stratification.
Methods  We performed a gene set variation analysis to simplify the information on biological processes using hallmark 
terms and to decompose immune cell data using the immune cell gene terms on 985 breast invasive ductal/lobular carcinoma 
RNAseq samples in the TCGA database.
Results  The samples were gathered into three clusters following implementation of the t-SNE and DBSCAN algorithms 
and were categorized as ‘hallmark-tsne’ subtypes. Here, we identified a high-risk luminal A dominant breast cancer sub-
type (C3) that displayed increased motility, cancer stem cell-like features, a higher expression of hormone/luminal-related 
genes, a lower expression of proliferation-related genes and immune dysfunction. With regard to immune dysfunction, we 
observed that the motility-increased C3 subtype exhibited high granulocyte colony stimulating factor (G-CSF) expression 
accompanied by neutrophil aggregation. Cancer cells that produce high levels of G-CSF can stimulate neutrophils to form 
neutrophil extracellular traps, which promote cancer cell migration. This finding sheds light on one potential explanation 
for why the C3 subtype correlates with poor prognosis.
Conclusions  The hallmark-tsne subtypes confirmed again that even the luminal A subtype is heterogeneous and can be 
further subdivided. The biological processes and immune heterogeneity of breast cancer must be understood to facilitate 
the improvement of clinical treatments.
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Introduction

Breast cancer is commonly considered a collection of het-
erogeneous diseases with completely different treatment 
schemes and clinical outcomes rather than a consistently 
defined single disease affecting the same organ [1]. Hence, 
diverse classification methods have emerged to predict the 
prognosis or assist with clinical treatment decisions, par-
ticularly methods based on gene expression signatures, 
such as the ‘intrinsic’ genes [2], the PAM50 signature [3] 
in classical molecular subtypes, and the MammaPrint sig-
nature [4], the Wang76 genes [5] and OncotypeDX [6] for 
predicting prognosis. However, the signatures selected in 
the last few decades to act as prognostic and predictive 
factors have concentrated on proliferative markers [7]. 
Other biological processes influencing tumorigenesis and 
prognosis have been neglected by traditional analyses. In 
addition, although the estrogen receptor (ER), progester-
one receptor (PR) and epidermal growth factor receptor 
2 (HER2) status are classical molecular subtypes that are 
prevailingly applied in clinical practice, the categorization 
is not sufficient to distinguish certain minor subtypes and 
therefore fails to assist with all treatment decisions [8].

Unlike traditional tumor molecular signature mining, 
we hypothesized that biological processes and the tumor-
infiltrating immune pattern might be related to prognosis 
and subtype stratification. Specifically, the gene terms 
associated with certain biological processes or immune 
cells rather than one single gene are more powerful for 
evaluating the intrinsic nature of a given cancer. The hall-
marks, which are a refined gene set, are derived from the 
original gene sets in the Molecular Signatures Database 
(MSigDB), and these convey a specific biological state or 
process and display coherent expression [9]. Furthermore, 
the deconvolution of gene expression profiles of infiltrat-
ing immune cells from those of bulk tumors is now pos-
sible [10] through CIBERSORT [11] and DeconRNA-Seq 
[12] methods. To computationally and coordinately eval-
uate the biological processes and immune cell patterns, 
we simplified the biological process information using 
hallmark terms and decomposes the immune cell using 
immune cell gene terms through gene set variation analy-
sis (GSVA) [10], which is a gene set enrichment analysis, 
according to Senbabaoglu et al. [13].

Interestingly, we discovered a high-motility high-risk 
luminal A dominant breast cancer type (referred to as C3 
hereafter) in which the phenotype and clinical outcome 
are completely different from the traditional luminal sub-
type. We observed that the motility-increased C3 subtype 
expressed high levels of granulocyte colony stimulating 
factor (G-CSF) and showed neutrophil aggregation, con-
sistent with the phenomenon that certain cancer cells can 

stimulate neutrophils to form neutrophil extracellular traps 
(NETs) and thereby support cancer cell migration and 
invasion [14]. Thus, characterizing the minor C3 subtype 
has pressing clinical implications with regard to specific 
treatments, such as deoxyribonuclease I (DNAase I) to 
digest NETs or the use of a targeted antibody to neutralize 
IL-8 and decrease neutrophil recruitment [15].

Materials and methods

Datasets

The dataset, including mRNA expression ‘level3’ data 
(RNAseqV2, RSEM) and the clinical characteristics of 
breast invasive ductal/lobular carcinoma (IDC/ILC), was 
downloaded from the TCGA database. IDC/ILC samples 
(n = 985) were classified by the ‘intrinsic gene subtype’ 
(luminal A, luminal B, HER2-enriched, basal-like and nor-
mal-like) [2, 16]. The mRNA expression matrix was trans-
formed by log2(x + 1).

The 1868 IDC/ILC samples from Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC) data-
sets with intact clinical information (categorized as ‘Clau-
din-low’ [17] and ‘intrinsic gene subtype’) were retrieved 
from cBioPortal [18].

Gene sets

The hallmark gene sets [9], including 4386 genes in 50 
terms, were downloaded from the Molecular Signatures 
Database v6.0 (MSigDB). The second gene sets included the 
gene signatures used for the decomposition of immune cell 
types, angiogenesis marker genes and signatures of antigen 
presentation, as described by Senbabaoglu et al. [13]. The 
third gene set, which consisted of exhausted T cells, was 
defined by two criteria (Table S1) [19].

Hallmark‑GSVA enrichment scores (HGSs) 
and hazards analysis

GSVA is a nonparametric, unsupervised method that can 
condense information from gene expression profiles into a 
pathway or a signature summary [10]. Using the R package 
‘GSVA’, each sample received 50 scores corresponding to 50 
hallmark gene terms, and the enrichment scores are hereafter 
referred to as HGSs.

To evaluate the prognostic ability of the hallmark terms, 
we performed a univariate Cox proportion hazards regres-
sion analysis using the R package ‘survival’. To remove 
redundancies, a correlation analysis (Pearson’s correlation 
analysis) was performed with the HGSs of the remaining 
prognosis-associated terms.
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Unsupervised clustering, prognostic differentially 
expressed genes (P‑DEGs) identification 
and survival analysis among clusters

With the expression matrix of 2136 genes from the progno-
sis-associated terms, the Euclidean distance was calculated 
between any two samples and condensed into two-dimen-
sional points using a nonlinear dimensionality reduction 
algorithm (t-distributed stochastic neighbor embedding 
(t-SNE)) [20] and subsequently visualized automatically 
with the density-based spatial clustering of applications with 
noise (DBSCAN) algorithm. The above processes were per-
formed using the R packages ‘Rtsne’ and ‘dbscan’.

Linear models and empirical Bayes methods were applied 
to distinguish the differentially expressed genes (DEG) 
among clusters using the R package ‘limma’. The top 44 
significantly different genes were selected from the 2136 
genes and were defined as dominant prognostic differentially 
expressed genes (P-DEGs) for the following analysis. The 
44 P-DEGs were divided into clusters based on a hierar-
chical cluster analysis according to their expression counts. 
The pipeline used to identify the 44 predominant P-DEGs 
is shown in Fig. 1.

Survival curves were calculated using the Kaplan–Meier 
method, with the log-rank test (two-tailed) for hypothesis 
testing, and the Cox model was performed using the R pack-
ages ‘survival’ and ‘ggplot2’.

Decomposition of the tumor‑infiltrating cells 
among the clusters

Similar to the HGSs, the GSVA algorithm was used to quan-
tify the composition of the 24 immune cells and their sub-
types, the levels of angiogenesis, the conditions of antigen 
presentation and the potential of exhausted T cells.

Breast cancer cell lines

The MCF-7 cell line, which was provided by Professor Ning-
zhi Xu, and the MDA-MB-231 cell line, which was main-
tained in our labs, were cultivated in RPMI-1640 medium 
(HyClone Laboratories; SH30809.01B) supplemented with 
10% fetal bovine serum (FBS; Gibco; 10099-141) and 100 
units/mL penicillin and streptomycin.

Quantitative reverse transcription PCR (qRT‑PCR)

Total RNA was isolated using TRIzol reagent (Invitrogen; 
15596018) and reversed transcribed with Superscript II (Inv-
itrogen; 18064014) according to the manufacturer’s instruc-
tions. The SYBR Green method was used to detect the 
expression of colony stimulating factor 3 (CSF3, also called 
G-CSF) along with the endogenous control GAPDH. The 

primers for CSF3 and GAPDH were as follows: CSF3, for-
ward, 5′-GAA​GCT​GGT​GAG​TGA​GTG​TGC-3′ and reverse, 
5′-GGT​AGA​GGA​AAA​GGC​CGC​TA-3′; and GAPDH, 
forward, 5′-ACA​ACT​TTG​GTA​TCG​TGG​AAGG-3′ and 
reverse, 5′-GCC​ATC​ACG​CCA​CAG​TTT​C-3′. The assay 
was performed in triplicate for each sample.

ELISA

The undiluted cancer cell culture supernatants and empty 
culture medium (control) were assayed for G-CSF using the 
Human G-CSF Immunoassay Kit (R&D Systems; DCS50).

Transwell migration assay

Peripheral venous blood was collected into K2EDTA 
vacuum tubes (BD Biosciences; 367844) from volunteers. 
Polymorphonuclear cells (PMNs), mainly neutrophils, 
were separated immediately after venipuncture using Poly-
morphprep (Axis-Shield) according to the manufacturer’s 
instructions. The lower cell band, neutrophil predominated, 
was collected, washed with PBS without Ca2+/Mg2+ (Gibco; 
10010023) and resuspended in erythrocyte lysis buffer 

Fig. 1   Pipeline for identifying the 44 predominant P-DEGs. RNA-
seqV2 (TCGA): mRNA expression datasets from The Cancer 
Genome Atlas (TCGA). HGS: The hallmark-GSVA enrichment score 
was calculated using hallmark gene sets with the gene set variation 
analysis algorithm. Cox-PH: Cox’s proportional hazards regres-
sion model. t-SNE: t-distributed stochastic neighbor embedding. 
DBSCAN: density-based spatial clustering of applications with noise. 
limma (Bayesian): the R package ‘limma’ was used with the empiri-
cal Bayesian model to identify the differentially expressed genes
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(Qiagen; 79217) to remove residual red blood cells. After 
centrifugation, the cell pellet was washed and resuspended 
in serum-free RPMI-1640 medium.

The purity of the isolated neutrophils was determined by 
flow cytometry using anti-CD15 PE (clone HI98; eBiosci-
ence; 12-0159-42), anti-CD16 APC (clone 3G8; Biolegend; 
302012) and anti-CD49d (clone 9F10; Biolegend; 304316) 
according to the manufacturer’s recommendation. Mean-
while, the isolated neutrophils were confirmed by counting 
cells with a multilobular nucleus after staining with Hoechst 
33342 (1:1000 diluted, Invitrogen; H3570).

The prepared neutrophils were plated in the lower cham-
ber that contained poly-L-lysine-coated coverslips. After 
15 min, blocking anti-G-CSF antibodies (Abcam; ab9691) 
or human recombinant G-CSF (6  ng/mL; Proteintech; 
HZ-1207) or the vehicle was added. The cancer cells were 
seeded in the top chamber with a pore size of 8 µm (Corning; 
3422). Three hours later, 10% FBS (Gibco; 10099-141) was 
added to the lower chamber. After 22 h, the cells were fixed, 
stained with crystal violet and counted at 400x magnification 
in 5 fields under a microscope. The assays were repeated at 
least three times.

Detecting neutrophil extracellular trap (NET) 
formation

Unstimulated neutrophils, neutrophils stimulated with 20 nM 
PMA (MCE, HY-18739), and neutrophils cocultured with 
cancer cells were seeded on coverslips, fixed, permeabilized 
and blocked. Subsequently, the cells were stained with anti-
myeloperoxidase antibodies [2C7] (1:400 diluted, Abcam; 
ab25980), anti-histone H3 (citrulline R2 + R8 + R17) anti-
bodies (1:400 diluted, Abcam; ab5103), Hoechst 33342 
(1:1000 diluted, Invitrogen; H3570) and their correspond-
ing secondary antibodies, goat anti-mouse IgG (Alexa 488) 
(1:2000 diluted, Abcam; ab150113) and goat anti-rabbit 
IgG (Alexa 568) (1:2000 diluted, Abcam; ab175471). The 
stained coverslips were visualized with a confocal laser 
scanning microscopy platform (Leica TCS SP8).

Quantification of NET formation by MPO:DNA 
complexes

High-binding 96-well microplates (costar, 42592) were 
coated overnight at 4  °C with mouse anti-human MPO 
(1:500 diluted, AbD Serotec; 0400-0002). After blocking 
with 1% BSA (Sigma; A3803) for two hours at room tem-
perature, 1:1 diluted condition cell supernatants were added 
and incubated for 2 h at room temperature and washed, and 
anti-DNA-peroxidase conjugated antibody (1:22 diluted, 
Roche, 11774425001) was added for 1 h at room tempera-
ture. Subsequently, TMB substrate (Abcam; ab171523) was 

added and evaluated at 450 nm after the addition of stop 
solution (Sigma, ab210900).

Statistical analysis

The analysis was performed with R 3.4.3 and GraphPad 
Prism 6. The results are presented as the means ± SEMs. 
One-way analysis of variance (ANOVA) was used to evalu-
ate the expression differences of the ‘neutrophils’, ‘T gamma 
delta cells (Tgd)’ and ‘G-CSF (CSF3)’ among the three clus-
ters, and the Bonferroni correction was used with a pairwise 
comparison. T tests were used to evaluate the difference 
in the expression counts of CSF3 between the MCF7 and 
MDA-MB-231 cell lines. One-way ANOVA was also used to 
evaluate the different secretion counts of G-CSF among the 
four conditioned mediums. The transwell migration assay 
was analyzed by two-way ANOVA with multiple compari-
sons. All tests were two-sided with a significance level of 
0.05.

Results

Prognosis‑associated hallmark gene sets

Each breast IDC/ILC sample was given a HGS according 
to their mRNA expression data (see “Materials and meth-
ods” section for details). Twenty-one prognosis-associated 
hallmark gene sets were distinguished according to their 
HGS using a univariate Cox proportional hazards regres-
sion. Overall, the hazardous hallmarks were focused on two 
processes: the material metabolism that is involved with 
heme, fatty acid and bile acid; and development, including 
hedgehog signaling, myogenesis and adipogenesis. At odds 
with the conventional consensus, protective hallmarks were 
concentrated on not only DNA repair and immune rejec-
tion but also tumor-specific behavior, proliferative capacity 
and PI3K-AKT-mTOR signaling (Fig. 2a). However, it is 
reasonable that these aspects pertain to protective factors 
considering the corresponding targeted medicine, such as 
the CDK and mTOR inhibitors that are currently applied in 
breast cancer patient treatments [21, 22].

To elucidate the typical prognosis-associated bio-
logical behaviors and to simplify the core prognosis 
genes, a correlation analysis was performed with the 
HGSs of twenty-one hallmarks. Eventually, four terms 
were removed: HALLMARK_MYC_TARGETS_V1, 
HALLMARK_E2F_TARGETS and HALLMARK_
ADIPOGENESIS showed highly positive correlations 
with HALLMARK_MYC_TARGETS_V2, HALL-
MARK_G2M_CHECKPOINT, and HALLMARK_
FATTY_ACID_METABOLISM, respectively; and 
HALLMARK_UV_RESPONSE_DN was inversely 
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Fig. 2   Hallmark-GSVA score (HGS) and prognosis. a Twenty-one 
prognosis-associated hallmark gene sets and their hazard ratios. The 
hazard ratios were logarithmically transformed; that is, the trans-
formed ratios of less than zero correspond to protective factors, and 
ratios of more than zero correspond to risk factors (abscissa). The red 

dashed line divides the protective and risk factors. The hallmark gene 
sets are shown based on ascending order of p values. The diameter or 
color of the circle depicts the p value. b Correlation among each hall-
mark gene set. The removed hallmark terms are marked with a red ‘x’
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related to HALLMARK_DNA_REPAIR. Finally, 17 
HALLMARKs, as well as the 2136 genes, were retained 
(Fig. 2b).

Mickey‑like clusters

The 985 IDC/ILC samples from TCGA, with the expres-
sion matrix of 2136 genes, were grouped into three clusters 
(Fig. 3a). Furthermore, the 44 predominant P-DEGs are 
representative of the fact that they still have the power to 

Fig. 3   Mickey-like clusters and their HGS profiles. The distribu-
tions of the 985 IDC/ILC samples are based on 2136 genes and their 
survival curves in (a) and (b), respectively. Blue, yellow and gray 
represent the C1, C2 and C3 subtypes, respectively. The subgraphs 
of C-H represent the HALLMARK_FATTY_ACID_METAB-
OLISM GSVA score profile (c), the HALLMARK_HEDGE-
HOG_SIGNALING GSVA score profile (d), the HALLMARK_
ESTROGEN_RESPONSE_LATE GSVA score profile (e), the 

HALLMARK_G2M_CHECKPOINT GSVA score profile (f), the 
HALLMARK_MYC_TARGETS_V2 GSVA profile (g) and the 
HALLMARK_DNA_REPAIRE GSVA score profile (h) of the 
Mickey-like clusters. Higher expression counts feature higher HGSs 
in brownish red; lower expression counts are shown in blue. The top 
three graphs exhibit high HGS terms in C3 but low in C2, whereas 
the following three graphs exhibit high HGS terms in C2 but not in 
C3
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divide the sample into three clusters, the main part remain-
ing the same as the clusters divided by 2136 genes, except 
for 8 redistributed samples and 4 unclassified samples (Fig. 
S1). The three clusters were named ‘Mickey-like’ clusters 
because of their special distribution shape or referred to as 
the ‘hallmark-tsne’ subtype for classification standard. The 
major part was classified as C1, and the other two small 
parts, the ‘Mickey’s ears’, were classified as C2 and C3 sub-
types. The clustering method and the definition of the 44 
P-DEGs are described in the “Materials and Methods”.

The survival analysis indicated entirely different prog-
noses among the three clusters (Fig. 3b and Table S2) (log-
rank test, p < 0.0001). The C1 subtype patients tended to 
exhibit a longer survival than the C2 and C3 patients. The 
worst outcome was observed in the C3 patients. Addition-
ally, we adjusted for the effect of clinical stage and intrinsic 
subtypes to assess the independent prognostic factors with 
a multivariate Cox proportional hazards model. The results 
indicated that the hallmark-tsne type is an independent prog-
nostic factor (C3 hazard ratio: 4.84; 95% confidence interval: 
2.96–7.93; p = 3.74 × 10−10); details can be found in Table 1.

From the HGS profile of the Mickey-like clusters, we 
hypothesized that the different distributions of HGSs among 
the three clusters were correlated with their diverse prognos-
tic outcomes. The HGS profile of the Mickey-like clusters is 
shown in Fig. 3c–h. These results indicated that the worst C3 
cancers exhibited active fatty acid metabolism, stemness fea-
tures (high expression of hedgehog signaling) and luminal 
cancer characteristics (high expression of estrogen-related 
genes). Conversely, the C2 subtype results focused on the 
cell proliferation phenotype. Surprisingly, the worst C3 can-
cers did not reveal a high proliferative ability.

High‑risk subgroup in luminal A breast cancer

To some extent, the patients, based on their intrinsic gene 
subtypes, scattered themselves into the hallmark-tsne sub-
types. Specifically, each Mickey-like cluster was blended 
with all types of intrinsic gene subtypes but retained one 
dominant type. For example, the luminal A subtype was 
particularly represented and comprised a large part of the 
C1 and C3 subtypes; however, a large proportion of C2 con-
sisted of the basal-like subtype (Fig. 4a; Table 2). Moreover, 
the samples were classified as C1 and C3, which were ER 
and PR positive, in contrast to the C2 samples (Fig. S2a and 
b). Similarly, HER2 positive samples were mainly in C1 and 
C3 subtypes (Fig. S2c). Interestingly, the luminal A patients 
separated into two clusters (C1 and C3) that displayed com-
pletely different prognoses (Fig. S3). Therefore, there is an 
extremely high-risk subgroup of luminal A cancer. Similar 
results showing that luminal A cancer is a collection of het-
erogeneous diseases have been reported based on a copy 
number alteration analysis [23].

In addition, to further investigate the features of the hall-
mark-tsne subtypes, we observed the mRNA expression of 
44 predominate P-DEGs among the Mickey-like clusters 
(Fig. 4b). The 44 P-DEGs were divided into three groups 
based on a hierarchical cluster analysis. The genes of group 
1 (G1) were focused on the HALLMARK_G2M_CHECK-
POINT term and are related to proliferation (Fig.  4d). 
The genes of group 2 (G2) were centered on the HALL-
MARK_ESTROGEN_RESPONSE_LATE term, which is 
hormone-related and highly expressed in the luminal sub-
type (Fig. 4e). The third group (G3) concentrated mainly on 
HALLMARK_MYOGENESIS, which involves cell motility 
(Fig. 4f). Consistent with conventional views, the basal-like 
dominant C2 breast cancers possessed strong proliferative 
ability, moderate motility potential and a low expression of 
luminal-associated markers. In contrast, the high-risk C3 
cluster contradicted the traditionally held view that patients 
with luminal subtypes exhibit a better prognosis, display 
extremely low proliferation status, have moderate hormone-
related gene expression and exhibit highly increased motility 
(Fig. 5a).

Immune infiltrating pattern of the Mickey‑like 
clusters

To further elucidate why there is a motility-increased high-
risk luminal A subtype, we evaluated the tumor microen-
vironment, specifically the composition of the tumor-infil-
trating immune cells (Fig. 5b). The C3 tumors manifested 
an infiltrating immune cell pattern distinct from that of the 
other two clusters: (1) more T gamma delta cells (Tgd) and 
neutrophils aggregated in the microenvironment than in the 
other two subtypes (Fig. 5c, d) [24] and exhibited a positive 

Table 1   Adjusted results of the Cox proportional hazards regression 
model

HR Hazard ratio, CI confidence interval, C2 cluster 2 based on the 
hallmark-tsne subtypes, C3 cluster 3 based on the hallmark-tsne sub-
types, BasL basal like, ErbB2 ErbB2/HER2-enriched, LumA luminal 
A, LumB luminal B, NormL normal-like, notSure types are uncertain

HR CI 2.50% CI 97.50% p

Hallmark-tsne subtype
 C1 1
 C2 1.122978794 0.513001607 2.458240588 0.77169682
 C3 4.839769338 2.955063741 7.926518443 3.74 × 10− 10

Intrinsic subtype
 BasL 1
 ErbB2 1.134277317 0.392047279 3.281708869 0.816188878
 LumA 0.367733918 0.16587466 0.815243479 0.013783873
 LumB 0.551906583 0.219497433 1.387719541 0.20642468
 NormL 0.982353851 0.123123789 7.837795537 0.986594242
 notSure 0.437117477 0.193527858 0.987308448 0.046515083
 Stage 2.268524628 1.672357399 3.077215427 1.40 × 10− 07
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Fig. 4   Characteristics of the Mickey-like clusters. a The distribution 
of the intrinsic gene subtype in the hallmark-tsne subtype. The fre-
quency and percentage of intrinsic subtypes in hallmark-tsne types 
are shown in the table a; the dominant subtypes in each hallmark-
tsne type are marked in red. b Clustered heatmap of 44 P-DEGs in 
the Mickey-like clusters. The heatmap shows the expression count of 

the 44 predominant P-DEGs among the three Mickey-like clusters. 
The genes in G1, G2 and G3 were labeled with red, green and pur-
ple rectangles, respectively. c–f Divided three groups of P-DEGs and 
their corresponding HALLMARK terms. All 44 genes and their cor-
responding HALLMARK terms are shown in (c). The G1, G2 and G3 
genes are exhibited in (d), (e) and (f), respectively

Table 2   Distribution of 
classical molecular subtypes 
and hallmark-tsne subtypes in 
breast cancer (TCGA)—2136 
genes (left) and 44 genes (right)

a Hallmark-tsne: clusters based on the hallmark-tsne subtypes
b BasL: Basal-like
c ErbB2: ErbB2/HER2-enriched
d LumA: Luminal A
e LumB: Luminal B
f NormL: Normal-like
g notSure: types are uncertainly

Hallmark-
tsnea

BasLb ErbB2c LumAd LumBe NormLf notSureg

1 24 21 27 27 466 464 125 125 6 6 82 82
2 105 104 6 6 12 12 3 3 6 6 18 18
3 12 12 5 5 54 56 15 15 1 1 18 18
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correlation with one another in the C3 subtype (Pearson’s 
correlation analysis, R = 0.434, p = 3.6 × 10−6, Fig. 5e); (2) 
activated angiogenesis; (3) accumulated dendritic cells 
(DCs) but predominately immature DCs (iDCs) and a few 
activated DCs (aDCs); (4) defects of the antigen-presenting 
machinery (APM), which encodes MHC-I subunits and pro-
teins essential for processing antigens and matching them 
onto MHC-I [13]; and (5) although many more natural killer 
(NK) cells than in the other two clusters, few NK-CD56dim 
cells, which were equipped with the perforin and granular 
enzyme to kill tumor cells, were recruited instead of more 
NK-CD56bright cells; and (6) impaired balance between Th1 
and Th2 cells (Fig. S4), with more infiltrating Th1 cells 
compared with C1 (Fig. S4a) and fewer infiltrating Th2 cells 
compared with C1 and C2 (Fig. S4b), but still with a Th2 
polarization status. All the broken or abnormal interactions 
between tumor cells and infiltrating immune cells generated 
a suitable microenvironment for the survival of C3 tumors.

For the basal-like subtypes, a small fraction classified as 
C1 was infiltrated by many CD8-positive T cells (CD8T), 
whereas the C2 tumors were CD8 deficient. Similarly, basal-
like cancers were heterogeneous in terms of prognosis, and 
CD8T infiltration was an independent favorable prognostic 
indicator as previously reported [25, 26].

NET formation increased cancer cell motility

After integrating the expression of 44 P-DEGs and the 
immune cell infiltration pattern, we noted that the C3 
tumors were enriched in neutrophils (Fig. 5c) and highly 
expressed the G3 gene (Fig. 5a). Additionally, we observed 
that G-CSF, a cell factor that can prime neutrophils to form 
NETs [27, 28], was highly expressed in C3 (Fig. 5f) tumors 
and showed a positive correlation with the recruitment sta-
tus of neutrophils (Pearson’s correlation analysis, R = 0.437, 
p = 4.5 × 10−11, Fig. 5g). Therefore, we hypothesized that 
aggregated neutrophils, which can form NETs primed by 
G-CSF, contributed to the increased motility of C3 [14], 
thus promoting the dissemination of tumor cells and aggra-
vating the illness. To assess the relationship between NET 
formation and tumor cell motility, we performed a cocul-
ture transwell migration assay (the details are provided in 
the “Materials and Methods” section, Fig. 6a) with two 
cell lines: MDA-MB-231 cells, which show a high produc-
tion of G-CSF, and MCF-7, which rarely secretes G-CSF 
(Fig. 6b, c). The purity of the neutrophils used in the assay 
was approximately 90%, as evaluated by flow cytometry and 
multilobular nucleus counting (Fig. S5). The neutrophils 
induced NET formation after a 3-h stimulation with recom-
binant human G-CSF (Fig. S6a and b). In this assay, neutro-
phils cocultured with MDA-MB-231 cells formed extensive 

NETs, whereas neutrophils cocultured with MCF-7 cells 
formed few NETs (Figs. 6e, S6c, and S7b). Moreover, NET 
formation increased MDA-MB-231 cell migration; however, 
nonactivated neutrophils had the opposite effect on MCF-7 
cell migration (Fig. 6d, f). In contrast, NETs stimulated by 
the exogenous human G-CSF increased the mobility of the 
luminal cells MCF-7 (Fig. S6d), whereas the migration abil-
ity of MDA-MB-231 cells cocultured with neutrophils was 
reduced when the G-CSF produced by MDA-MB-231 was 
neutralized (Fig. S7a and d). In parallel, NET formation was 
also reduced (Fig. S7b).

Discussion

By combining the hallmark-GSVA enrichment scores 
and t-SNE algorithm, we discovered a high-risk motility-
increased luminal A dominant breast cancer type with neu-
trophil aggregation (C3) in TCGA data. Concordant with 
traditional views, breast cancer is not a single disease [1], 
and the existing intrinsic and Claudin-low (CL) subtypes are 
not sufficient to cover all subtypes. In attempting to eluci-
date the reasons for differing prognoses, we delineated hall-
mark-tsne subtypes, particularly C3, including (1) molecular 
characterization with prognosis-associated hallmark terms 
and 44 P-DEGs and the (2) tumor-infiltrating immune cell 
pattern.

Cancer stem cells (CSCs) are causally regarded as the 
seeds of tumor relapse and metastasis that activate the same 
signaling pathways that are expressed in normal stem cells, 
such as hedgehog, Wnt and notch [29]. CSCs have been 
identified in brain, breast and pancreatic cancers [30–32]. 
In breast cancer, the activated hedgehog pathway increases 
the numbers of mammosphere-initiating cells and regulates 
the self-renewal of tumor-initiating cells [31]. From the HGS 
profiles, the C3 tumors showed a CSC phenotype with highly 
expressed hedgehog signaling. Previously, it has been shown 
that one distinguished phenotype of C3 tumors is dependent 
on fatty acid metabolism and is paramount to maintain the 
CSC phenotype in breast mesenchymal CSCs [33]. In addi-
tion, the expression pattern of 44 P-DEGs reveals that the 
C3 tumors are endowed with increased motility abilities. In 
terms of the above molecular features, the C3 subtype dis-
played increased motility and a cancer stem-like phenotype 
in the same manner as breast circulating tumor cells [34].

Alternatively, the peculiar pattern of tumor-infiltrating 
immune cells in C3 tumors is critical to their worse progno-
sis. First, Tgd cells are concordant with neutrophil accumu-
lation. The mechanism of this seeming coincidence is that 
tumor cells elicit IL17 expression from Tgd cells, result-
ing in a systemic inflammation cascade (expansion and 
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polarization of neutrophils). Herein, the IL17-producing 
Tgd cells and neutrophils together promote breast cancer 
metastasis [24]. Alternatively, the G-CSF production in C3 
tumors recruits and primes neutrophils to form metastases 
supporting NETs. The metastasis-promoting cascade is 
activated, and the tumor-attacking system is broken. The 
defects in the APM interrupt the communication between 
tumor antigens and cytotoxic cells, resulting in a lack of 
tumor-specific attacking cells.

In addition, there is another interesting finding from the 
pattern of tumor-infiltrating immune cells. In general, cancer 
patients exhibit an imbalanced ratio of Th1 and Th2 cells, 
shifting from the anti-tumor Th1 cells that are responsible 
for tumor immune surveillance to the pro-tumor Th2 cells 
that are associated with tumor immune evasion [35]. The 
same phenomenon was observed in the TCGA data. How-
ever, the C2 and C3 subtypes, which are associated with a 
worse prognosis, were, in contrast to the traditional perspec-
tive, infiltrated with more Th1 cells than was the C1 subtype. 
Although most of the evidence supports that patients with 
more infiltrating Th1 cells exhibit a good prognosis, there is 

also research that indicates that patients with more infiltrat-
ing Th1 cells suffer a poorer prognosis compared with those 
with fewer Th1 cells, as evaluated by flow cytometry. The 
data from that study indicated that the IFN-γ secreted by 
Th1 cells could enhance the PD-L1 signal in macrophages 
and tumor cells [36]. Even though the Th1 and Th2 status 
was estimated from the bulk RNA sequencing indirectly, the 
information suggests that the roles of T helper cells in the 
tumor microenvironment are more complicated and merit 
further investigation.

To our knowledge, C3 is a minor novel subtype. Although 
C3 is similar to a Claudin-low subtype in some aspects, such 
as incidence (approximately 10%) [37] and cancer stem cell-
like features, these subtypes differ from one another in the 
following aspects: (1) hormone receptor status—C3 is domi-
nant in luminal A subtypes, whereas triple-negative (TN) 
tumors account for more than half of CL tumors [17]; and 
(2) prognosis - CL behaves more poorly than the luminal 
subtype but better than the basal-like subtype from META-
BRIC datasets (Fig. S8); C3 has worse prognosis even com-
pared with the basal-like dominant C2.

The t-distributed stochastic neighbor embedding (t-SNE) 
method [20] is another highlight of this study. This method is 
a nonlinear dimensionality reduction technique that special-
izes in simplifying high-dimensional data into a low-dimen-
sional space, typically the 2D plane. The t-SNE algorithm 
has been applied in mass cytometry [38] and in single-cell 
RNA sequencing [19], but not in bulk RNA sequencing data 
until now. This study constitutes the first attempt to explore 
potential subtypes in breast cancer with the nonlinear cluster 
method of t-SNE.

In summary, we identified a high-risk breast cancer sub-
type that displayed increased motility abilities, decreased 
proliferation capacity, and other CSC-like features, a high 
expression of hormone/luminal-related genes and immune 
dysfunction (neutrophil aggregation and APM defects). 
Thus, the biological processes and immune heterogeneity of 
breast cancer must be understood to facilitate the improve-
ment of clinical treatments. For example, characterizing the 
minor C3 subtype has pressing clinical implications with 
regard to specific treatments, such as deoxyribonuclease 
I (DNAase I) to digest NETs or the use chimeric antigen 
receptor T-cell immunotherapy (CAR-T) to remedy the 
antigen-presenting dysfunction.

Fig. 5   Association of infiltrating immune cell patterns with features 
of the Mickey-like clusters. a The expression status of the three com-
prehensive gene groups with 44 P-DEGs in the Mickey-like clus-
ters. The vertical axis shows the three gene sets derived from the 44 
P-DEGs, and the horizontal axis shows the samples ordered by hall-
mark-tsne subtype. The heatmap was simplified in Fig. 4b. Each cell 
of the heatmap represents a GSVA enrichment score based on the G1, 
G2 and G3 gene sets, and the score decreases from red to blue. (The 
legend is same as that for Fig. 4b.) b The distribution of tumor-infil-
trating immune cells in the Mickey-like clusters. The y-axis displays 
the immune cell types ordered with Ward linkage in a hierarchical 
cluster. The x-axis depicts the samples in Mickey-like clusters and the 
intrinsic gene subtype order. Moreover, the GSVA scores were cen-
tered and scaled in the row direction in the heatmap. aDC: activated 
dendritic cell; NK-CD56dim: natural killer cell-CD56dim; ExhauT-
type1: exhausted T cell-type 1; ExhauT-type2: exhausted T cell-type 
2; Tgd: T gamma delta cell; NEU: neutrophil cell; Tem: T effector 
memory cell; DC: dendritic cell; pDC: plasmacytoid DC; iDC: imma-
ture dendritic cell; Eos: eosinophil granulocyte; Tcm: T central mem-
ory cell. c and d Distribution of the infiltrated neutrophils (c) and Tgd 
(d) estimated by GSVA among the hallmark-tsne subtype (ANOVA 
test with pairwise comparison adjusted with the Bonferroni correc-
tion). e Relationship of infiltrated neutrophils and Tgd cells (Pear-
son’s correlation). f Expression of G-CSF genes in the hallmark-tsne 
subtype (ANOVA test with pairwise comparison adjusted with the 
Bonferroni correction). g Relationship of infiltrated neutrophils and 
G-CSF expression counts (Pearson’s correlation)

◂
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