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PRECLINICAL STUDY
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Abstract
Purpose  Exposure to the polyphenolic plant lignan secoisolariciresinol diglucoside (SDG) and its metabolite enterolactone 
(ENL) has been associated with reduced breast cancer progression, particularly for estrogen receptor alpha (ERα)-negative 
disease, and decreased preclinical mammary tumor growth. However, while preclinical studies have established that SDG and 
ENL affect measures of progression in models of triple-negative breast cancer (TNBC, a subset of ERα-negative disease), 
the molecular mechanisms underlying these effects remain unclear.
Methods  C57BL/6 mice were fed a control diet (control, 10% kcal from fat) or control diet + SDG (SDG, 100 mg/kg diet) for 
8 weeks, then orthotopically injected with syngeneic E0771 mammary tumor cells (a model of TNBC); tumor growth was 
monitored for 3 weeks. The role of reduced NF-κB signaling in SDG’s anti-tumor effects was explored in vitro via treatment 
with the bioactive SDG metabolite ENL. In addition to the murine E0771 cells, the in vitro studies utilized MDA-MB-231 
and MCF-7 cells, two human cell lines which model the triple-negative and luminal A breast cancer subtypes, respectively.
Results  SDG supplementation in the mice significantly reduced tumor volume and expression of phospho-p65 and NF-κB 
target genes (P < 0.05). Markers of macrophage infiltration were decreased in the distal-to-tumor mammary fat pad of mice 
supplemented with SDG relative to control mice (P < 0.05). In vitro, ENL treatment inhibited viability, survival, and NF-κB 
activity and target gene expression in E0771, MDA-MB-231, and MCF-7 cells (P < 0.05). Overexpression of Rela attenuated 
ENL’s inhibition of E0771 cell viability and survival.
Conclusions  SDG reduces tumor growth in the E0771 model of TNBC, likely via a mechanism involving inhibition of NF-κB 
activity. SDG could serve as a practical and effective adjuvant treatment to reduce recurrence, but greater understanding of 
its effects is needed to inform the development of more targeted recommendations for its use.
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END	� Enterodiol
ENL	� Enterolactone
ERα	� Estrogen receptor alpha
GM-CSF	� Granulocyte–macrophage colony-stimulating 

factor
IFN-γ	� Interferon gamma
IL-1β	� Interleukin 1 beta
IL-6	� Interleukin 6
IL-10	� Interleukin 10
LPS	� Lipopolysaccharide
MCP-1	� Macrophage chemoattractant protein 1
NC	� Negative control vector
NF-κB	� Nuclear factor-kappa B
SD	� Standard deviation
SDG	� Secoisolariciresinol diglucoside
SEM	� Standard error of the mean
STAT3	� Signal transducer and activator of transcription 

3
TNBC	� Triple-negative breast cancer
TNF-α	� Tumor necrosis factor alpha

Background

Secoisolariciresinol diglucoside (SDG) is a polyphenolic 
plant lignan found in flaxseeds and other oil-rich seeds and 
nuts as well as legumes, whole grains, certain fruits and 
vegetables, coffee, tea, and wine [1, 2]. Following oral con-
sumption, SDG is hydrolyzed to secoisolariciresinol and 
then metabolized by intestinal bacteria to two biologically 
active enterolignans that have been classified as phytoestro-
gens: enterolactone (ENL) and enterodiol (END) [3]. Stud-
ies have generally found significant inverse associations 
between lignan exposure and breast cancer mortality [4–8]. 
However, only one study included premenopausal women 
[6] and another found that effects were limited to estrogen 
receptor alpha (ERα)-negative tumors [4]. Consequently, it 
is uncertain whether all breast cancer patients would benefit 
from greater SDG intake post-diagnosis.

To further explore SDG’s impact on breast cancer, sev-
eral preclinical studies have examined the effects of lignan 
exposure on animal models of both pre- and postmenopausal 
ERα-positive breast cancer, with the vast majority demon-
strating significant reductions in mammary tumor growth or 
preneoplastic changes [9–18]. These anti-tumor effects have 
been linked to decreased proliferation and angiogenesis as 
well as increased apoptosis [9–11, 13, 15–17]. However, 
only a small number of studies have investigated the pos-
sible molecular pathways underlying the anticancer effects 
of SDG [10, 19–21]. In addition, there has been relatively 
little exploration of SDG’s effects on models of triple-nega-
tive breast cancer (TNBC), despite epidemiologic data sug-
gesting enterolignans may have a stronger protective effect 

against mortality from ERα-negative tumors [4]. Research-
ers have demonstrated that SDG metabolites reduce pro-
liferation, adhesion, migration, and invasion in the triple-
negative MDA-MB-231 breast cancer cell line and increase 
these cells’ response to radiation and chemotherapy [22–25], 
but the molecular pathways responsible for these effects have 
not been established.

The current study examined the impact of SDG sup-
plementation on in vivo growth of orthotopically injected 
E0771 mouse mammary tumor cells, a syngeneic model of 
basal-like TNBC [21, 26]. After demonstrating that SDG 
inhibits E0771 tumor growth in association with decreased 
tumor activity of the inflammation-regulating transcription 
factor nuclear factor-kappa B (NF-κB), we explored connec-
tions between these factors using in vitro models of multi-
ple breast cancer subtypes. Greater understanding of SDG’s 
effects on different breast cancer models and the mecha-
nisms mediating these effects will inform the development 
of more targeted recommendations regarding the use of SDG 
supplementation for reducing the burden of breast cancer.

Methods

In vivo dose‑finding pilot study

Animal studies and procedures were approved and moni-
tored by the University of Texas Institutional Animal Care 
and Use Committee. Female, 10-week-old C57BL/6 mice 
were purchased from Charles River Laboratories, Inc., and 
fed a control diet (10% kcal from fat, catalog #D12450J, 
Research Diets, Inc.) ad libitum for 8 weeks. Mice were 
then randomized to the control diet (n = 10) or 1 of 2 con-
trol + SDG diets (low-dose SDG: 25 mg/kg diet, n = 10; 
high-dose SDG: 74 mg/kg diet, n = 10) for 8 weeks. The goal 
of this study was to establish the concentration of SDG that 
would result in serum ENL and END levels comparable to 
those achieved in a 12-month pilot clinical trial of SDG sup-
plementation in women [27]. SDG for both in vivo studies 
was obtained from Barleans Organic Oils, LLC (Ferndale, 
WA, USA). Following euthanization, blood was collected 
by cardiac puncture and serum stored at − 80 °C. The 4th 
mammary gland was excised, flash-frozen in liquid nitrogen 
and stored at − 80 °C.

In vivo tumor study

Animal studies and procedures were approved and moni-
tored by the University of North Carolina Institutional 
Animal Care and Use Committee. Female, 12-week-old 
C57BL/6 mice were purchased from Charles River Labora-
tories, Inc., and fed the control diet ad libitum for 2 weeks. 
Mice were then randomized to the control diet (n = 20) or 
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control + SDG diet (100 mg SDG/kg diet, n = 20). This dose 
was chosen because the serum ENL and END levels in the 
high-dose (74 mg/kg diet) pilot group were ~ 25% lower than 
in the clinical trial subjects [27]. After 7 weeks, blood was 
collected from all mice by submandibular bleed, and serum 
stored at − 80 °C. One week later, all mice were orthotopi-
cally injected with 3.5 × 104 syngeneic E0771 mammary 
tumor cells. In vivo tumor growth was measured twice/
week with digital calipers, and all mice euthanized 3 weeks 
after injection. Mice remained on their respective control or 
control + SDG diets throughout the study. Tumors and the 
4th and 9th mammary glands were excised and divided to 
be formalin fixed and paraffin-embedded or flash-frozen in 
liquid nitrogen and stored at − 80 °C. The ellipsoid equation 
was used to determine volume ex vivo: 1/6π(D1 × D2 × D3). 
Body fat was assessed after euthanization using a Lunar 
PIXImus Dual Emission X-Ray Absorptiometer (GE Medi-
cal Systems, Ontario, CA).

Serum enterolactone and cytokine measurement

To measure serum ENL and END concentrations, samples 
underwent solid-phase extraction and overnight enzymatic 
hydrolysis. The unconjugated lignans were then isolated by 
solid-phase extraction, converted to tert-butyldimethylsilyl 
ethers, and analyzed by gas chromatography mass spec-
trometry [28]. Serum cytokines were analyzed by Bio-Plex 
Multiplex Immunoassay on a Bio-PlexⓇ Magpix Multiplex 
Reader (Bio-Rad, Inc., Hercules, CA, USA).

Quantitative RT‑PCR analyses

Total RNA isolated from tissues and cell culture samples 
was reverse transcribed and samples assayed in triplicate 
for individual genes as previously described [29]. Tumor 
expression of NF-κB target genes was assessed using a 
Mouse NF-κB Signaling Target RT2 Profiler PCR Array 
(Qiagen, Germantown, MD, USA). All quantitative RT-
PCR assays were analyzed using a ViiA™7 RT-PCR System 
(Applied Biosystems, Waltham, MA, USA).

Crown‑like structure analysis

Paraffin-embedded distal-to-tumor mammary gland tissue 
(n = 6/group) was cut into 4-µm-thick sections and stained 
with hematoxylin and eosin. The total number of crown-
like structures (CLS) per section was quantified, and the 
mammary tissue area determined using Aperio ImageScope 
(Leica Biosystems, Buffalo Grove, IL, USA). Prevalence of 
CLS was quantified as CLS per cm2 of mammary tissue.

Immunohistochemical analyses

Paraffin-embedded tumor tissue (n = 6/group) was cut into 
4-µm-thick sections and stained, processed and analyzed as 
previously described [30] with the following primary anti-
bodies: F4/80 (Abcam #ab6640), phospho (p)-p65 (Ser276) 
(Santa Cruz #sc-101749), and p-STAT3 (Tyr705) (Cell Sign-
aling #9131).

Cell lines and reagents

One mouse mammary tumor cell line, E0771, and two 
human breast cancer cell lines, MDA-MB-231 and MCF-
7, were used for the in vitro studies. All cell lines were 
maintained in RPMI 1640 media (GIBCO Life Technolo-
gies, Grand Island, NY, USA) supplemented with 10% fetal 
bovine serum, 10 mM HEPES buffer, and 2 mM l-glutamine 
(complete media). ENL was purchased from Sigma-Aldrich 
(St. Louis, MO, USA) and dissolved in ethanol. Two ENL 
concentrations, 1  µM and 10  µM, were chosen based 
on the literature [22, 31, 32] and utilized for all in vitro 
experiments.

In vitro cell viability and survival assays

For the cell viability assay, cells were seeded at a density of 
5 × 103 in 96-well plates. After 24 h, the cells were treated 
with vehicle, 1 µM or 10 µM ENL in complete media for 
48 h. MTT reagent was used to assess cell viability levels 
as previously described [33, 34]. For the cell survival assay, 
cells were seeded at a density of 1 × 103 in 6-well plates. 
After 24 h, the cells were continuously exposed to vehicle, 
1 µM or 10 µM ENL in complete media for 7 days, with the 
treatments replenished on day 4. The colonies were fixed and 
stained with 0.5% crystal violet in 50% methanol, counted, 
and imaged with a digital camera on day 7.

In vitro NF‑κB activity

The impact of ENL on NF-κB activity was assessed via a 
NF-κB Cignal Reporter Assay (Qiagen) and quantitative 
RT-PCR for NF-κB target gene expression. For the NF-κB 
Reporter Assay, cells were seeded at a density of 2.5 × 103 in 
96-well plates. After 24 h, the cells were transfected with the 
NF-κB Reporter mixture (an inducible NF-κB-responsive 
firefly luciferase reporter + a constitutively expressing 
Renilla construct) using FuGENEⓇ 6 (Promega, Madison, 
WI, USA). After another 24-h incubation, cells were treated 
with vehicle, 1 µM or 10 µM ENL in complete media for 
48 h, followed by the same treatments plus LPS (10 ng/ml) 
in complete media for 24 h. The cells’ luciferase activity was 
measured using Promega’s Dual LuciferaseⓇ Reporter Assay 
System on a Cytation 3 Cell Imaging Multi-Mode Reader 
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(BioTek Instruments Inc.). For NF-κB target gene measure-
ment, cells were seeded at a density of 1.5 × 105 in 6-well 
plates. After 24 h, cells were treated with vehicle, 1 µM or 
10 µM ENL in complete media for 48 h, followed by the 
same treatments plus LPS (10 ng/ml) in complete media for 
24 h. Four NF-κB target genes were chosen to assess in vitro 
from the 41 target genes with significantly lower expression 
in SDG mice versus controls; criteria for inclusion were a 
known link to breast cancer progression and P < 0.01 for the 
in vivo NF-κB target gene array.

Rela overexpression

The Mouse pCMV3-GFPSpark-mRela Plasmid (Rela; a 
Rela overexpression plasmid) and the pCMV3-N-GFPSpark 
Control Vector (NC), purchased from Sino Biological, Inc. 
(Beijing, China), were transiently transfected into E0771 
cells using FuGENEⓇ 6 (Promega). Nuclear p65 expression 
was measured 48 h after transfection by western blot analy-
sis using NF-κB p65 (D14E12) XP® Rabbit antibody (Cell 
Signaling #8242). E0771 cells were seeded for the MTT and 
colony formation assays 48 h after transfection with the Rela 
and NC plasmids. The assays then proceeded as described 
above.

Statistical analyses

Animal study data are presented as mean ± SD and in vitro 
data as mean ± SEM. All in vitro data shown represent the 
average of at least 3 independent experiments. For all sta-
tistical tests, GraphPad Prism software was used (GraphPad 
Software Inc., La Jolla, CA, USA). Differences between 
animals or cells exposed to 2 experimental conditions were 
analyzed using Student’s t test. Differences between cells 
exposed to more than 2 experimental conditions were ana-
lyzed using one-way ANOVA (1 independent variable) or 
two-way ANOVA (> 1 independent variable), both followed 
by Tukey’s post hoc test. P < 0.05 was considered signifi-
cantly different.

Results

High‑dose SDG supplementation increases serum 
ENL and END levels

We first performed a pilot animal study to determine the 
SDG concentration in murine diet that achieves ENL and 
END levels comparable to those in women that received 
50 mg/day of SDG for 12 months in a pilot clinical trial [27]. 
C57BL/6 mice fed the high-dose diet (74 mg/kg SDG) had 
significantly greater serum ENL and END levels in com-
parison with mice fed the control diet (P < 0.05 for both) 

(Fig. 1a, b), though these levels were approximately 25% 
lower than those achieved in the pilot clinical trial [27]. In 
addition, mammary tissue gene expression of the pro-inflam-
matory chemokine Ccl2 was reduced in mice fed the high-
dose SDG diet versus control mice (P < 0.001) (Fig. 1c). No 
significant differences were observed in expression of Il6 or 
Tnf (data not shown).

SDG supplementation reduces mammary 
inflammation

No differences were observed in the in vivo tumor study in 
body weight throughout the 11-week study period or body 

Fig. 1   Serum ENL and END levels are increased in mice receiving 
high-dose SDG. Serum ENL (a) and END (b) levels were measured 
in mice receiving a control diet, low-dose SDG-supplemented diet 
(low dose; 25  mg/kg diet), or high-dose SDG-supplemented diet 
(high dose; 74 mg/kg diet). c Ccl2 gene expression in the 4th mam-
mary gland of control, low-dose, and high-dose mice was measured 
by quantitative RT-PCR. *P < 0.05; **P < 0.01 in comparison with 
control
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fat percentage at study termination between control mice 
versus SDG-supplemented mice (Fig. 2a, b). Given that our 
pilot study suggested that SDG may have anti-inflammatory 
effects in the mammary tissue, we next examined whether 
SDG affected inflammatory markers in the nontumor-bear-
ing mammary gland. Expression of Adgre1 (the gene for 
F4/80) and the prevalence of crown-like structures (CLS) 
were both significantly reduced in the mammary gland of 
SDG-supplemented mice relative to control mice (P < 0.05 
for both) (Fig. 2c, d). We also examined SDG’s effects 
on systemic inflammation by measuring serum levels of 
7 inflammatory cytokines (IL-1β, IL-6, IL-10, GM-CSF, 

IFN-γ, MCP-1, and TNF-α), but found no differences 
between groups (Online Resource 1).

SDG inhibits mammary tumor growth and NF‑κB 
activity

Final tumor volume was significantly smaller in the mice 
receiving SDG compared with control mice (P < 0.05) 
(Fig. 3a). Tumor mRNA levels of Adgre1 were also lower in 
SDG-supplemented versus control mice (P < 0.05) (Fig. 3b). 
However, F4/80 protein expression was not significantly 
lower in the tumors from SDG-supplemented mice relative 

Fig. 2   SDG supplementation reduces mammary inflammation. a 
Body weights were measured each week in all mice; mean (± SD) 
weekly body weights for the mice maintained on the control or 
SDG-supplemented (SDG) diets are shown. b Final percent body 
fat levels in mice fed the control and SDG diets were measured fol-
lowing euthanization. c Adgre1 expression in the 9th (tumor-distal) 
mammary gland was measured by quantitative RT-PCR in control 

and SDG-supplemented mice. d Prevalence of crown-like structures 
(CLS) was assessed in the 9th mammary gland of control and SDG-
supplemented mice using hematoxylin and eosin (H&E)-stained tis-
sue sections. Representative images shown at × 20 and × 40 magnifi-
cation. CLS were quantified for each tissue sample as number of CLS 
per cm2. *P < 0.05
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to controls (Fig. 3c). We then assessed the activation of two 
pathways that mediate the effects of several inflammatory sign-
aling molecules. Tumor expression of p-p65 (Ser276), the acti-
vated form of a subunit of the pro-inflammatory transcription 
factor NFκB, was significantly lower in SDG-supplemented 
mice compared with controls (P < 0.05). In contrast, tumor 
expression of p-STAT3 (Tyr705) did not differ between SDG-
supplemented and control mice (Fig. 3c). We then utilized a 
Mouse NF-κB Signaling Target PCR Array to examine the 
impact of SDG on tumor NFκB target gene expression. Out 
of 84 genes analyzed, the expression of 41 genes was signifi-
cantly downregulated by at least 50% in SDG-supplemented 
mice compared with controls (P < 0.05), while no genes were 
significantly upregulated (Fig. 3d).

ENL decreases breast cancer cell viability 
and survival in vitro

To further explore the mechanisms underlying the anticancer 
effects of SDG, we utilized 3 mammary tumor cell lines, 
including the same triple-negative E0771 mouse mam-
mary tumor cells used in the tumor study. In addition, a 
human TNBC cell line, MDA-MB-231, was used to estab-
lish whether results seen in the E0771 cells extend to other 
TNBC cells. Finally, human MCF-7 cells, which model the 
ERα-positive luminal A subtype of human breast cancer, 
were used to examine whether any identified mechanisms 
also mediate ENL’s effects on this disease subtype. Both 
1 µM and 10 µM doses of ENL, in comparison with vehicle, 

Fig. 3   E0771 mammary tumor growth and NF-κB activity are inhib-
ited by SDG supplementation. a Final tumor volume in mice fed the 
control or SDG-supplemented (SDG) diets was measured at necropsy. 
b Tumor Adgre1 expression was measured by quantitative RT-PCR 
in control and SDG-supplemented mice. c Immunohistochemical 
staining for tumor F4/80, p-p65 (Ser276), and p-STAT3 (Tyr705) 
expression in control and SDG-supplemented mice. Representative 

images shown at x20 magnification. d NF-κB target gene expression 
in tumors from control and SDG-supplemented mice was assessed 
using a Mouse NF-κB Signaling Target PCR Array; relative expres-
sion of genes that were significantly downregulated (P < 0.05) by at 
least 50% in SDG-supplemented mice compared with control mice is 
displayed in the heat map. *P < 0.05
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significantly decreased cell viability in the E0771 (P < 0.01 
for both), MDA-MB-231 (1 µM, P < 0.05; 10 µM, P < 0.01), 
and MCF-7 (P < 0.001 for both) cell lines (Fig. 4a–c). Cell 
survival was also significantly decreased, relative to vehicle, 
by both 1 µM and 10 µM ENL in E0771 (1 µM, P < 0.05; 
10 µM, P < 0.01), MDA-MB-231 (P < 0.001 for both) and 
MCF-7 (1 µM, P < 0.01; 10 µM, P < 0.001) cells (Fig. 4d-f).

ENL inhibits breast cancer cell NF‑κB activity

We next examined the impact of ENL on NF-κB activity 
in the 3 mammary tumor cell lines. Both doses of ENL, 
in comparison with vehicle, significantly decreased relative 
luciferase activity in E0771 (P < 0.001 for both), MDA-
MB-231 (P < 0.05 for both), and MCF-7 (P < 0.01 for both) 
cells transfected with an NF-κB reporter (Fig. 5a–c). We 
then assessed the effects of ENL treatment on 4 NF-κB tar-
get genes: Csf2, Fasl, Mmp9, and Tnf. In E0771 and MDA-
MB-231 cells, the expression of Csf2, Mmp9, and Tnf was 
significantly decreased by both ENL doses (P < 0.001 for all) 
(Fig. 5d, e). In MCF-7 cells, the expression of Mmp9 was 
reduced by 10 µM ENL (P < 0.05), while Tnf expression was 
decreased by both ENL doses (P < 0.001 for both) (Fig. 5f). 
Fasl expression was not significantly affected by ENL treat-
ment in E0771 or MDA-MB-231 cells (data not shown), and 
Csf2 and Fasl expression was not detectable in MCF-7 cells. 
Finally, we found that NF-κB activity in MCF-7 cells was 
approximately 100-fold and 50-fold lower compared with 
E0771 cells (P < 0.001) and MDA-MB-231 cells (P < 0.05), 
respectively, when measured by dual luciferase assay under 
vehicle control conditions (Fig. 5g).

ENL‑induced decreases in E0771 cell viability 
and survival are mediated by inhibition of NF‑κB 
activity

To determine whether the observed decrease in cell viabil-
ity and survival following ENL treatment is mediated by 
an inhibition of NF-κB activity, we transiently transfected 
E0771 cells with a Rela overexpression plasmid (Rela) to 
induce constitutive overexpression of p65. In comparison 
with E0771 cells transfected with a negative control vector 
(NC), nuclear p65 expression was significantly increased 
(P < 0.05) in cells transfected with the Rela plasmid 
(Fig. 6a). Cell viability and survival were then measured 
in NC and Rela E0771 cells treated with ENL. In NC cells, 
both doses of ENL promoted a significant decrease in viabil-
ity (1 µM, P < 0.05; 10 µM, P < 0.001), while ENL did not 
significantly affect the viability of Rela cells (Fig. 6b). Rela 
overexpression also prevented ENL’s effects on E0771 cell 
survival, as both 1 µM (P < 0.01) and 10 µM (P < 0.0001) 
doses significantly reduced the relative number of colonies 
formed by NC cells, but not Rela cells (Fig. 6c).

Discussion

While the anti-tumor effects of the flaxseed lignan SDG 
have been thoroughly established in several models of 
ERα-positive breast cancer [9–12, 14–17, 35], less atten-
tion has been given to its impact on ERα-negative models, 
including models of basal-like and other triple-negative 
breast cancer subtypes, and the precise mechanisms medi-
ating their effects. Our findings suggest that SDG may 
inhibit basal-like breast tumor progression via modulation 
of NF-κB activity. We specifically report that: (a) SDG 
supplementation in a mouse model of premenopausal 
basal-like breast cancer reduces tumor growth and NF-κB 
activity; (b) in vitro treatment with ENL, the primary bio-
active metabolite of SDG, inhibits cell viability, survival, 
and NF-κB activity in models of basal-like, claudin-low, 
and luminal A breast cancer; and (c) ENL inhibits viabil-
ity and survival via modulation of NF-κB activity in the 
E0771 basal-like breast cancer model, the same model in 
which SDG inhibited in vivo tumor growth. To our knowl-
edge, this is the first study to identify reduced NF-κB 
activity as a mediator of ENL’s anti-tumor effects.

NF-κB is a transcription factor that is activated by 
numerous stimuli, such as growth factors and pro-inflam-
matory cytokines and chemokines. Its activation increases 
the expression of genes associated with tumor progression, 
including genes that promote resistance to apoptotic sig-
nals, cell proliferation and survival, angiogenesis, metas-
tasis, and inflammation [36]. Elevated NF-κB activity has 
been found in many cancers [37] and is particularly high in 
ERα-negative breast cancer [38–40]. Using various breast 
cancer models, researchers have previously demonstrated 
a downregulation in NF-κB activity following treatment 
with other phytoestrogens, including genistein, daidzein, 
and quercetin [41–43]. In the current study, we demon-
strated a significant decrease in phosphorylated (Ser276) 
p65, an NF-κB family member, as well as NF-κB target 
gene expression in the tumors of SDG-supplemented 
mice. No NF-κB target genes were significantly increased 
in the SDG-fed mice. This is consistent with a reduc-
tion in p-p65 (Ser276), as this phosphorylation increases 
p65 transcriptional activity [44]. Others have shown that 
reduced mammary stroma IL-1β production and increased 
mammary tumor IL-1Ra levels play roles in ENL’s anti-
angiogenic effects [10], suggesting that ENL has addi-
tional anti-inflammatory effects that contribute to its anti-
tumor activity. Furthermore, Jaskulski et al. [45] recently 
reported that the inverse association between serum ENL 
and breast cancer-specific mortality is partially mediated 
by C-reactive protein, providing additional support for the 
hypothesis that ENL has anti-inflammatory activity. We 
found that constitutive Rela overexpression significantly 
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attenuated ENL’s inhibitory effects on viability and sur-
vival in the E0771 cell line, a model of basal-like breast 
cancer that is considered functionally triple-negative [21, 
26, 46, 47], indicating that decreased activation of the p65 
subunit of NF-κB is a key mediator of ENL’s effects in 
these cells. Given that SDG supplementation in the in vivo 
tumor study significantly decreased E0771 tumor growth 
and expression of several pro-proliferative and anti-apop-
totic NF-κB target genes, including Bcl2a1a, Birc2, Birc3, 
Egfr2, and Xiap, we were surprised to find that the 10 µM 
ENL treatment in vitro inhibited E0771 cell viability by 
only 27%. This small effect size may be due to the limita-
tions of our cell culture model, which only captured the 
direct effects of ENL exposure on the cancer cells and did 
not consider the possible role of other cell types in the 
tumor microenvironment. However, the same 10 µM ENL 
treatment reduced E0771 colony formation by 65%, sug-
gesting that ENL does have a direct, biologically relevant 
impact on E0771 cell survival.

We also demonstrated that ENL reduces cell viabil-
ity, survival, and NF-κB activity in MDA-MB-231 and 
MCF-7 cells, models of triple-negative claudin-low and 

ERα-positive luminal A breast cancer, respectively. Intrigu-
ingly, ENL treatment produced a twofold greater inhibi-
tion of viability in these 2 cell lines in comparison with 
the E0771 cells. However, there were no clear differences 
between the cell lines in inhibition of cell survival or NF-κB 
activity, so the reason for the difference in viability remains 
unclear. We also observed that NF-κB activity in the MCF-7 
cell line was significantly lower in comparison with the 
E0771 and MDA-MB-231 cells under vehicle conditions, 
and 1/2 of the NF-κB target genes assessed were undetect-
able in this cell line. Consequently, the reduction in NF-κB 
activity observed in the MCF-7 cell line may not be biologi-
cally relevant, and ENL may act to reduce viability and sur-
vival in this cell line via an alternate mechanism. Our find-
ings thus suggest that while ENL inhibits cell viability and 
survival across multiple breast cancer subtypes, biologically 
relevant ENL-induced inhibition of NF-κB activity may be 
limited to nonluminal breast cancers, perhaps specifically to 
the basal-like and claudin-low subtypes.

A small number of prior studies have investigated SDG’s 
effects in TNBC models. Treatment with ENL and END 
in  vitro has been shown to reduce MDA-MB-231 cell 

Fig. 6   ENL decreases E0771 cell viability and survival via inhibition 
of NF-κB activity. a Nuclear p65 expression in E0771 cells trans-
fected with a negative control vector (NC) or a Rela overexpression 
plasmid (Rela) was measured by western blot analysis. b Cell viabil-
ity was measured by MTT assay in NC- and Rela-transfected E0771 
cells following a 48-h treatment with 1 µM or 10 µM ENL. c Colony 

formation was quantified in NC- and Rela-transfected E0771 cells 
following a 7-day treatment with 1 µM or 10 µM ENL. Representa-
tive images were captured by a digital camera. *P < 0.05; **P < 0.01, 
***P < 0.001 in comparison with vehicle except where a different 
comparison is indicated by horizontal line
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proliferation, adhesion, migration, and invasion [22, 23]. 
Researchers have also demonstrated that ENL is a radiosen-
sitizer [24] and enhances the cytotoxicity of chemothera-
peutic agents [25] in MDA-MB-231 cells. In addition, sup-
plementation with flaxseed oil or SDG in vivo was shown 
to inhibit metastasis from ERα-negative MDA-MB-435 
xenografts [48, 49]. However, MDA-MB-435 cells are now 
known to be a melanoma cell line based on gene expression 
profiling and other analyses, so findings from studies utiliz-
ing MDA-MB-435 cells should be interpreted with caution.

Our current study examined the impact of ENL on cell 
lines representing multiple breast cancer subtypes, allow-
ing us to delineate differences between the subtypes. How-
ever, there were several limitations to our studies. First, the 
in vivo studies did not use blinded outcome assessment, 
which can protect against potential bias in measurements 
and data reporting. In addition, the in vitro experiments that 
utilized the Rela overexpression plasmid to mechanistically 
link modulation of NF-κB activity to ENL’s anticancer 
effects were only performed in the E0771 cell line. Conse-
quently, while MDA-MB-231 cells also responded to ENL 
with a decrease in NF-κB activity, we cannot conclude that 
this decrease is the cause of ENL’s effects on cell viabil-
ity and survival in this cell line. We also cannot general-
ize our findings regarding ENL’s effects on the MCF-7 cell 
line to all ERα-positive breast cancer. Given that this study 
aimed to focus on ERα-negative disease, further exploration 
of ENL’s effects on ERα-positive cell lines was beyond its 
scope. Finally, our cell culture experiments did not include 
examination of the effects of END, the second SDG metabo-
lite. We limited our in vitro investigation to ENL because it 
is considered the primary SDG enterolignan.

Our in vitro model was also limited by its focus on the 
direct effects of ENL on cancer cells, without an assessment 
of how ENL may be affecting the other cell types found 
in the tumor microenvironment, including macrophages. In 
the in vivo tumor study, we found a significant decrease in 
markers of macrophage infiltration in the normal mammary 
gland of SDG-supplemented mice. Given that inflammation 
within the tissue microenvironment has been clearly linked 
to the risk and progression of many types of cancer [50], 
this decrease in macrophage infiltration may play a role in 
SDG’s anti-tumor effects. However, we did not explore this 
factor in our in vitro model, and it should thus be addressed 
in future studies. We also found that mice fed the SDG diet 
had lower tumor expression of Adgre1, the gene for the mac-
rophage marker F4/80, but F4/80 protein expression was 
not significantly reduced in the SDG-supplemented mice. 
Consequently, we cannot conclude that tumor macrophage 
infiltration is affected by SDG in this model.

In summary, we have demonstrated that SDG reduces 
tumor growth in the E0771 model of basal-like breast can-
cer, likely via a mechanism involving inhibition of NF-κB 

activity. SDG has a highly favorable safety profile [27], and 
there is substantial evidence from population studies linking 
greater lignan exposure to reduced breast cancer mortality, 
including for ERα-negative disease [4–8, 51, 52]. Conse-
quently, SDG could serve as a practical and effective adju-
vant treatment for the prevention of recurrence.
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