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Abstract
Purpose  Cancer cells often elicit a higher glycolytic rate than normal cells, supporting the development of glycolysis 
inhibitors as therapeutic agents. 2-Deoxyglucose (2-DG) is used in this context due to its ability to compete with glucose. 
However, many studies do not take into account that 2-DG inhibits not only glycolysis but also N-glycosylation. Since there 
are limited publications on 2-DG mechanism of action in breast cancer, we studied its effects in breast cancer cell lines to 
determine the part played by glycolysis inhibition and N-linked glycosylation interference.
Methods and Results  2-Deoxyglucose behaved as an anticancer agent with a similar efficiency on cell number decrease 
between the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 breast cancer cells. It also interfered 
with the N-linked glycosylation process in both cell lines as illustrated by the migration profile of the lysosomal-associated 
membrane protein 2 and calumenin. These results are reinforced by the appearance of an abnormal Man7GlcNAc2 struc-
ture both on lipid-linked oligosaccharides and N-linked glycoproteins of 2-DG incubated MDA-MB-231 cells. Besides, 
2-DG-induced a transient endoplasmic reticulum stress that was more sustained in MDA-MB-231 cells. Both changes were 
abrogated by mannose. 2-DG, even in the presence of mannose, decreased glycolysis in both cell lines. Mannose partially 
reversed the effects of 2-DG on cell numbers with N-linked glycosylation interference accounting for 37 and 47% of 2-DG 
anti-cancerous effects in MDA-MB-231 and MCF-7 cells, respectively.
Conclusion  N-linked glycosylation interference and glycolysis disruption both contribute to the anticancer properties of 
2-DG in breast cancer cells.
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Introduction

Most cancer cells elicit a high rate of glycolysis even under 
normal oxygen concentrations, called the Warburg effect 
[1]. This metabolic property is clinically exploited by 
positron emission tomography imaging with 2-[18F]fluoro-
2-deoxy-d-glucose [2]. This altered metabolism responds 
to requirements of rapid proliferating tumor cells such as 
rapid ATP generation, stimulated biosynthesis of macro-
molecules and maintenance of cellular redox homeostasis 
[3].

Up-regulation of glycolysis was reported to promote 
invasive tumor growth and to contribute to drug resistance 
in cancer therapy [4, 5]. Hence, consequent efforts have 
been initiated to develop anticancer treatments targeting 
tumor glycolysis [6]. Among them, 2-deoxy-d-glucose 
(2-DG) emerged as an interesting candidate. This sugar 
analog displayed anticancer activity in numerous in vitro 
and in vivo studies and improved the chemosensitivity and 
radiosensitivity of cancer cells [7].

2-Deoxyglucose is a glucose analog, in which the 
hydroxyl group at the second carbon atom was substituted 
by hydrogen. Competition with glucose occurs at different 
levels in the glycolytic pathway. 2-DG firstly decreases the 
cellular glucose uptake suggesting a competition between 
both sugars [8]. 2-DG and glucose are then phosphorylated 
by hexokinase, but 2-DG-6-phosphate cannot be further 
metabolized through the glycolysis, resulting in its cellular 
accumulation. As a consequence, phosphoglucoisomerase 
and hexokinase are respectively competitively and non-
competitively inhibited by 2-DG-6-phosphate [9, 10].

Due to the structural similarity of glucose with man-
nose, 2-DG also competes with mannose for the process of 
N-linked glycosylation of proteins in the endoplasmic retic-
ulum (ER). It is converted in the nucleoside-disphosphate 
derivative GDP-2-DG, before being incorporated in lipid-
linked oligosaccharides precursors [11, 12]. The resulting 
intermediates cannot be further extended by the addition of 
mannosyl residues, leading to a disruption of glycosylation 
of proteins [11]. Consequently, misfolded N-glycoproteins 
accumulate in the ER leading to ER stress and the activation 
of the unfolded protein response (UPR) [13]. This interfer-
ence with the N-linked glycosylation process can be reversed 
by addition of exogenous mannose [13].

Despite numerous studies, the relative contribution of 
glycolysis inhibition and N-linked glycosylation interfer-
ence in the anticancer effects of 2-DG has not been sys-
tematically evaluated. Moreover, there are limited pub-
lications on 2-DG mechanism of action in breast cancer 
[7]. Then, we studied its effects in breast cancer cell lines 
to determine the part played by glycolysis inhibition and 
N-linked glycosylation interference.

Materials and methods

Cell culture and treatments

MDA-MB-231 and MCF-7 human breast cancer cell lines 
were obtained from American Type Culture Collection 
(Manassas, VA, USA). They were grown at 37 °C under 
5% CO2 in Roswell Park Memorial Institute (RPMI) 1640 
medium (Gibco®, Thermo Fisher Scientific, Villebon-sur-
Yvette, France) for MDA-MB-231 and Dulbecco’s Modified 
Eagle Medium (DMEM, Gibco®) for MCF-7, supplemented 
with 2 mM l-glutamine (Sigma-Aldrich, Saint-Quentin Fal-
lavier, France) and 10% fetal bovine serum (Sigma-Aldrich). 
24 h after seeding, cells were treated for various times with 
2-DG (Sigma-Aldrich) and/or mannose (Sigma-Aldrich) at 
the indicated concentrations.

Crystal violet staining assay

MDA-MB-231 (2 × 104 cells) and MCF-7 (1.5 × 104 cells) 
cells were seeded in 96-well plates. Cells were fixed and 
stained for 20 min with 0.2% crystal violet (Sigma-Aldrich) 
in 2% ethanol, as previously described [14]. Cell number was 
determined by absorbance at 595 nm with a VICTOR™ X3 
multilabel plate reader (PerkinElmer, Courtaboeuf, France). 
The concentration of 2-DG leading to a decrease of 50% of 
the cell number (IC50) was determined.

Western immunoblotting

MDA-MB-231 (8.0 × 105 cells) and MCF-7 (6.5 × 105 cells) 
cells were seeded in 60 mm-diameter culture dishes. Western 
blot experiments were performed as described previously 
[14]. The rabbit monoclonal antibodies anti-BiP (B1770, 
United States Biological, Euromedex, Souffelweyersheim, 
France) and anti-PERK (clone C33E10, 3192, Cell Signaling 
Technology, Ozyme, Saint-Quentin en Yvelines, France), 
the mouse monoclonal anti-LAMP2 (sc-18822, Santa Cruz 
Biotechology, Heidelberg, Germany), the rabbit polyclonal 
anti-calumenin (HPA006018, Sigma-Aldrich), and the goat 
polyclonal antibody anti-Actin (sc-1615, Santa Cruz Bio-
technology) were diluted at 1:1000. The immunostaining 
was observed with a ChemiDoc™ XRS imaging system 
(Bio-Rad Laboratories). For PERK electrophoretic mobility 
shift detection, blots were developed on X-ray films (Amer-
sham, GE Healthcare Life sciences).

Metabolic labeling

MDA-MB-231 cells treated for 30  h or not with 
2-DG (5  mM) were then metabolically labeled for 
2  h with 150  µCi of (2-3H)mannose. The lipid-linked 
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oligosaccharides (LLO) and the N-linked glycoproteins 
(N-GP) were extracted and processed as described else-
where [15].

Semi‑quantitative reverse transcription‑polymerase 
chain reaction (RT‑PCR)

MDA-MB-231 (1.8 × 105 cells) and MCF-7 cells (1.6 × 105 
cells) were seeded in 12-well plates. Total RNA was 
extracted using TRIzol® Reagent (Invitrogen, Thermo Fisher 
Scientific) according to the manufacturer’s instructions. 
Total RNA concentration was determined with a spectro-
photometer (NanoDrop 2000c, Thermo Fisher Scientific). 
The cDNAs were synthetized and further amplified by PCR 
as previously described [14]. The primers sequences were : 
XBP-1 (NM_005080) forward 5′-TTA​CGA​GAG​AAA​ACT​
CAT​GGC-3′, reverse 5′-GGG​TCC​AAG​TTG​TCC​AGA​
ATGC-3′, PCR products length 282/256 base pairs (bp); 
RPLP0 (NM_053275; ribosomal protein, large, P0) forward 
5′-ACA​ACC​CAG​CTC​TGG​AGA​AA-3′, reverse 5′-TCG​TTT​
GTA​CCC​GTT​GAT​GA-3′, PCR product length 530 bp. 
25 µL of the PCR product were mixed with loading buffer 
(5 µL) and 15 µL of the mixture were submitted to electro-
phoresis (in a 3% agarose gel in case of XBP-1 analysis and 
a 1% agarose gel for RPLP0) at 100 V. The gel was stained 
with ethidium bromide, viewed and photographed on a UV-
transilluminator (GelDoc 2000, Bio-Rad Laboratories).

Immunocytochemistry

MDA-MB-231 (1.8 × 105) and MCF-7 (1.6 × 105) cells 
were seeded on glass coverslips in 12-well plates. Cells 
were fixed and subjected to protein immunodetection and 
hoechst counterstaining, as previously described [14]. The 
mouse monoclonal antibody anti-CHOP (SC-7351, Santa 
Cruz Biotechnology) was diluted at 1:100. Fluorescence 
labeling was observed under an Eclipse 80i microscope 
(Nikon, Champigny-sur-Marne, France). Images were col-
lected using LuciaG 4.81 software (Nikon).

Measurement of lactate production

Cell culture media were collected for each condition and 
lactate concentration was measured using an YSI 2950 Bio-
chemistry Analyzer (YSI Life Sciences, Yellow Springs, 
OH, USA). Production of lactate was calculated by subtract-
ing the blank value (medium without cultured cells) from 
the lactate concentration measured for each condition. The 
values were normalized to cell number evaluated by crystal 
violet staining assay.

Statistical analysis

The results were depicted as mean ± standard error of the 
mean (s.e.m) of at least three independent experiments. 
Statistical analyses were performed using one-way analysis 
of variance (ANOVA) followed by the Bonferroni post-test 
for multiple comparisons (GraphPad InStat software, San 
Diego, CA, USA). Differences in which P-value was less 
than 0.05 were statistically significant.

Results

2‑DG treatment exhibits anticancer effects 
on MDA‑MB‑231 and MCF‑7 cells

To assess the anti-proliferative properties of 2-DG on breast 
cancer cells, the hormone-independent MDA-MB-231 and 
hormone-dependent MCF-7 breast cancer cell lines were 
treated for 48 h with increasing concentrations of 2-DG. 
Crystal violet staining revealed that 2-DG-induced a signifi-
cant dose-dependent decrease of cell number for both cell 
lines (Fig. 1). The concentration leading to a 50% decrease 
in cell number (IC50) was 4.2 ± 0.5 and 3.1 ± 0.5 mM in 
MDA-MB-231 and MCF-7 cells, respectively. Thus, both 
the hormone-dependent and hormone-independent breast 
cancer cell lines were sensitive to 2-DG.

2‑DG triggers transient ER stress in breast cancer 
cells

To determine whether 2-DG treatment induces ER stress 
in MDA-MB-231 and MCF-7 breast cancer cells, we fol-
lowed several key players of the UPR : (i) the phosphoryla-
tion of the pancreatic endoplasmic reticulum kinase-like 
endoplasmic reticulum kinase (PERK), (ii) the cleavage of 
the inositol requiring enzyme 1 (IRE1)-dependent X-box-
binding protein-1 (XBP-1) mRNA, and (iii) the expression 
of the immunoglobulin heavy chain binding protein (BiP), a 
luminal ER chaperone [16]. We used concentrations above 
the obtained IC50 values of 2-DG, 5 and 4 mM for MDA-
MB-231 and MCF-7 cells, respectively.

In MDA-MB-231 cells, we observed an early and tran-
sient increase of PERK phosphorylation, as demonstrated by 
its transient mobility shift (Fig. 2a). This shift in molecular 
weight was evident after 6 h of treatment with 2-DG and 
then progressively disappeared up to 72 h. RT-PCR analysis 
also revealed a transient cleavage of XBP-1 mRNA in 2-DG-
treated cells (Fig. 2b). Indeed, both spliced and unspliced 
forms of XBP-1 mRNA were only observed after 6 h of 
exposure to 2-DG. The spliced form was not yet detectable 
after 1 h and was no more present after 24 h. Regarding 
the chaperone BiP, its expression increased in response 
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to 2-DG with a maximum of induction after 24 h and was 
maintained up to 72 h (Fig. 2a). In MCF-7 cells, 6 h after 
addition of 2-DG, PERK displayed a high electrophoretic 
shift which then gradually decreased (Fig. 2a). No evident 
splicing of XBP-1 mRNA was detected after exposure to 
2-DG (Fig. 2b). The expression of BiP was enhanced with 
a maximum after 24 h of exposure to 2-DG and decreased 
after 48 h (Fig. 2a). Control untreated cells did not exhibit 
any of these modifications.

We also studied the transcription factor CEBP homologous 
protein (CHOP), a mediator of apoptosis whose expression 
is induced when the UPR is not sufficient to rescue ER func-
tions. MDA-MB-231 and MCF-7 cells were treated for 24 and 
48 h with 2-DG. In MDA-MB-231 cells, immunocytochem-
istry analysis revealed the induction of CHOP after 24 h of 
treatment, with both cytoplasmic and nuclear localizations 

(Fig. 2c). CHOP was still detected after 48 h but the immu-
nostaining intensity was lower. Interestingly, in MCF-7 cells, 
CHOP protein expression was not induced after 2-DG treat-
ment (Fig. 2c).

Altogether these results demonstrate that 2-DG triggers a 
transient ER stress, more pronounced in MDA-MB-231 cells 
than in MCF-7 cells.

2‑DG treatment disrupts the N‑linked glycosylation 
pathway in breast cancer cells

Based on these results, we then further wanted to determine 
whether the induction of ER stress observed in 2-DG-treated 
cells could arise from the disruption of the N-linked protein 
glycosylation process. To tackle this point, the steady-state 
glycosylation status of LAMP2, an extensively N-glycosylated 
lysosomal resident protein, and calumenin, a single N-linked 
glycosylated ER protein, were followed in MCF-7 and MDA-
MB-231 cells exposed to 2-DG treatment for 24 or 48 h. As 
presented on western blots (Fig. 3), while a subtle change in 
the LAMP2 mobility arguing for slight heterogeneity in gly-
cosylation could be observed after 24 h of 2-DG treatment, a 
stronger increase in LAMP2 gel mobility was observed after 
48 h of 2-DG treatment for both cell lines. Moreover, our 
results also show that 2-DG treatment only affects the steady-
state level of LAMP2 in MDA-MB-231 treated cells. Remark-
ably, when mannose was added to the cell culture, the observed 
altered gel mobility of LAMP2 was completely suppressed in 
2-DG-treated cells. This was clearly the case for both MDA-
MB-231 and MCF7 cells. The stability of LAMP2 is rescued 
in 2-DG-treated MDA-MB-231 cells likely due to the restora-
tion of the N-linked glycosylation pathway. Calumenin also 
presented a gel mobility shift in 2-DG-treated MDA-MB-231, 
completely reversed by addition of mannose, whereas no shift 
was observed in MCF-7 cells (Fig. 3).

In order to assess the ER N-glycosylation defect, metabolic 
labeling with (2-3H) mannose was performed in MDA-MB-231 
cells treated or not with 2-DG. Lipid-linked oligosaccharides 
(LLO) and N-linked glycoproteins (N-GP) were extracted and 
analyzed by HPLC. The results show that 2-DG treatment 
affects the ER N-glycosylation process with the appearance of 
an abnormal Man7GlcNAc2 structure both on LLO and N-GP 
of 2-DG incubated MDA-MB-231 cells (Fig. 4). Altogether 
these results demonstrate that (i) 2-DG treatment disrupts the 
N-linked glycosylation pathway and (ii) the mannose supple-
mentation prevents the action of 2-DG on this pathway.

The 2‑DG‑induced disruption of the N‑linked 
glycosylation pathway leads to ER stress in breast 
cancer cells

In order to assess whether ER stress induced by 2-DG treat-
ment was a consequence of the alteration of the N-linked 
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Fig. 1   2-DG induces a decrease in cell number. MDA-MB-231 (a) 
and MCF-7 (b) cells were treated for 48 h with increasing concentra-
tions of 2-DG. Control cells were not treated. Cell number was evalu-
ated by a crystal violet staining assay and the IC50 were determined. 
Results are depicted as mean ± SEM of at least three independent 
counts performed in triplicate. Significant differences with control 
cells are indicated (**P < 0.01; ***P < 0.001)



585Breast Cancer Research and Treatment (2018) 171:581–591	

1 3

glycosylation of proteins, cells were exposed to 2-DG in 
the presence or absence of mannose to follow the expres-
sion of ER stress markers. In both cell lines, the presence of 
mannose prevented the phosphorylation of PERK and the 
induction of BiP expression, usually observed in response 

to 2-DG treatment (Fig. 5a). Similarly, in MDA-MB-231 
cells, the cleavage of XBP-1 mRNA observed after 6 h of 
treatment with 2-DG was absent in the presence of mannose 
(Fig. 5b). The increase in the expression of CHOP induced 
by a 24 h 2-DG treatment of MDA-MB-231 cells was also 

Ctrl

2-DG

(a) MDA-MB-231 MCF-7

6      6    24  48   72   72
Ctrl

(b) MDA-MB-231 MCF-7

RPLP0

XBP-1

2-DG Ctrl

PERK

BiP

Actin

6    6    24   48  72    72
Ctrl 2-DG Ctrl

Ctrl   1     6    24    48   72
2-DG

hours

Ctrl   1     6    24    48   72
2-DG

282 bp
256 bp

hours

530 bp

78

43

110

MCF-7
CHOP Hoechst Merge

MDA-MB-231
CHOP Hoechst Merge

48 h

24 h

48 h

24 h

(c)

Fig. 2   2-DG triggers a transient ER stress. MDA-MB-231 and 
MCF-7 cells were treated for indicated times with 2-DG (5 and 
4  mM, respectively) or were not treated (Control, Ctrl). Cells were 
harvested for protein (a, c) or RNA (b) analysis. a PERK phospho-
rylation and BiP expression were detected by western blotting. Actin 
was used as a loading control. Protein MW (kDa) are indicated on 
the right. b XBP-1 mRNA expression was studied by RT-PCR. 

The 282  bp-long and 256  bp-long PCR products correspond to the 
unspliced and spliced forms of XBP-1 mRNA, respectively. The 
housekeeping gene RPLP0 was used as an internal control. c CHOP 
expression was analyzed by immunofluorescence. Cells were fixed 
and subjected to CHOP immunodetection. Cells were counterstained 
with Hoechst dye and the merged pictures were presented for each 
condition. Bar represents 10 µm
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highly reduced in the presence of mannose (Fig. 5c). Due to 
the absence of XBP-1 mRNA cleavage and CHOP expres-
sion in 2-DG-treated MCF-7 cells, the impact of competition 
with mannose was not studied in this cell line. Thus, addition 
of exogenous mannose tends to suppress the effects of 2-DG 
on N-linked glycosylation pathway and ER stress.

2‑DG still induces the inhibition of glycolysis 
in the presence of mannose

MDA-MB-231 and MCF-7 cells were treated for 48 h with 
2-DG and the production of lactate was measured as an indi-
cator of the glycolytic activity. After addition of 2-DG, we 
observed a 2.3-fold and 3.3-fold decrease in lactate produc-
tion in MDA-MB-231 (Fig. 6a) and MCF-7 cells (Fig. 6b), 
respectively. Production of lactate was thus significantly 
reduced in 2-DG-treated cells. Nevertheless, addition of 
mannose did not impact the induced 2-DG decrease of lac-
tate production in MDA-MB-231 and MCF-7 cells (Fig. 6). 
These results demonstrate that addition of mannose only 
suppresses the observed ER stress related to 2-DG-induced 
inhibition of N-linked glycosylation but does not affect the 
2-DG-induced inhibition of glycolysis.

Both inhibition of glycolysis and N‑linked 
glycosylation contribute to 2‑DG anticancer activity

To characterize the relative contribution of glycosylation 
and glycolysis inhibition in the anticancer effects of 2-DG, 
MDA-MB-231 and MCF-7 cells were treated for 48 h with 
2-DG in the presence or absence of mannose and cell num-
ber was evaluated by a crystal violet staining assay. First, 
addition of mannose alone did not modify the cell number 
compared to control conditions (Fig. 7). A 70% decrease 
in the MDA-MB-231 cell number was observed follow-
ing 2-DG treatment (Fig. 7a). In the presence of mannose, 
this decrease was limited to 44%. Thus in MDA-MB-231 
cells, mannose supplementation only reduced the anticancer 
effect of 2-DG by 37% (1–44%/70%). In MCF-7 cells, a 42% 
reduction in the number of 2-DG-treated cells was detected 
(Fig. 7b). In the presence of mannose, cell number was only 
diminished by 22%. Thus in MCF-7 cells, mannose reduced 
the anticancer effect of 2-DG by 47% (1–22%/42%). Interfer-
ence with N-linked glycosylation of proteins thus appeared 
to contribute partially to the anticancer effects of 2-DG in 
these breast cancer cells.

Discussion

It has been demonstrated that 2-DG, a known glycolysis 
inhibitor, reduces energy production in several types of can-
cer cells [7]. However, 2-DG treatment affects several other 
intracellular activities and its mode of action is complex. In 
the present work, we studied two breast cancer cell lines in 
order to determine the part played by glycolysis inhibition 
and N-linked glycosylation interference, respectively, in the 
anticancer effects of 2-DG.

First, we characterized the effects of 2-DG on breast 
cancer cells by analyzing cell number. Our results showed 
that both MDA-MB-231 and MCF-7 cells were affected 
by 2-DG. The measured IC50 (3.1 and 4.2 mM for MCF-7 
and MDA-MB-231 cells, respectively) after 48 h of 2-DG 
treatment were in the millimolar range and in accordance 
with previously reported values (from 4.2 mM to 10 mM) 
[17–20]. Differences in sensitivity to 2-DG between breast 
cancer cell lines have already been reported by Aft et al., 
with SKBR-3 being the most sensitive one [21]. These dif-
ferences in sensitivity could be the result of differences in 
the kinetics of 2-DG uptake. The differences among the 
studies could be explained by the method used to moni-
tor cell number and by the treatment duration. The culture 
medium used for cell growth and its glucose concentration 
could also enter into account [22].

In the present work, using a real-time (2-3H)mannose 
metabolic labeling, we show that 2-DG alters the ER N-gly-
cosylation process in MDA-MB-231 cells, reinforcing the 
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data obtained by Kurtoglu et al. [13]. 2-DG affects the LLO 
structures with the appearance of shorter LLO structures 
that can still be transferred onto newly synthesized glycopro-
teins, although less efficiently than the Glc3Man9GlcNAc2-
PP-Dol. As such, the consequence is the lack of N-glycan 
structures on certain N-glycosylation sites and the presence 
of abnormal N-glycan structures transferred onto newly 
synthesized glycoproteins. 2-DG treatment appears much 
lighter compared to a treatment with tunicamycin, a strong 
inhibitor of the N-glycosylation process, which prevents 
the formation of GlcNAc-PP-dolichol/LLO [23]. Several 
findings illustrate the importance of glycosylation in tumor 
growth and malignant transformation but also in the modula-
tion of the responsiveness of cancer cells to treatments [23]. 
Indeed, in gastrointestinal tumors, 2-DG-induced the reduc-
tion of the glycosylation of the proto-oncogene KIT accom-
panied by inhibition of its phosphorylation and membrane 
expression [24]. Besides, maintenance of the breast cancer 
SKBR-3 cells in tunicamycin-containing medium increased 

their sensitivity to herceptin and doxorubicin [25]. These 
data clearly highlight a potential interest for glycosylation 
inhibitors in breast cancer treatment.

Competition with mannose completely prevents the 2-DG 
effects on both N-glycosylation process and ER stress acti-
vation. These data strongly suggest that ER stress due to 
the accumulation of unfolded proteins is the consequence 
of an ER N-linked protein glycosylation pathway alteration 
observed in MDA-MB-231 and MCF-7 cells. These results 
strengthen a set of data obtained in different type of cell 
lines, including MDA-MB-231 and SKBR-3 breast cancer 
cells [13, 20, 26–29]. We further demonstrated that ER stress 
was transient in both cell lines and XBP-1 mRNA splicing 
absent in MCF-7 cells. This could be explained by a lower 
impact of 2-DG on the N-linked glycosylation process in 
MCF-7 cells, as shown on LAMP2 and calumenin molecular 
shifting. Moreover, such a difference of sensitivity between 
the two cell lines is in agreement with other studies. Indeed, 
thiazolidinediones derivatives (Δ2-TGZ and TZD18) and 
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Fig. 4   MDA-MB-231 cells treated or not (Ctrl) with 2-DG (5  mM) 
were incubated with [2-3H]mannose for 2 h. After sequential extrac-
tion, LLO and N-GP were analyzed by HPLC as described in Materi-
als and Methods. G1-3M9Gn2 indicates oligomannosides containing 

one, two, or three Glc, nine Man, and two GlcNAc residues. M7Gn2, 
M8Gn2, and M9Gn2 indicate oligomannosides containing seven, 
eight, or nine Man and two GlcNAc residues, respectively
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the indole-3-carbinol cyclic tetrameric derivative CTet 
were reported to induce a more extended splicing of XBP-1 
mRNA in MDA-MB-231 cells compared to MCF-7 cells 
[14, 30, 31]. At this time, it is difficult to determine if these 
differences are a consequence of their different molecular 
marker expression profile (estrogen receptor).

The induction of ER stress could be protective for the 
cells [7]. In the case of the 2-DG treatment performed in 
our study, the results of our competition experiments using 
mannose disagree with a protective role of ER stress since 
mannose, a compound that prevents this process, reverses 
2-DG cytotoxicity. Such a reversion of ER stress and UPR in 
the presence of mannose has never been described for these 
two cell lines but was previously observed in other cell types 

[13, 28, 29]. If ER stress is not protective and the cell cannot 
overcome this process, the up-regulation of CHOP could 
lead to the activation of an UPR-specific apoptotic pathway 
[32]. Indeed, we confirm that 2-DG induces CHOP expres-
sion in MDA-MB-231, but surprisingly we were not able to 
detect CHOP protein in MCF-7 cells. This absence could 
be explained by the partial ER stress response observed in 
MCF-7 cells. This data strongly suggest that CHOP pro-
tein may not be the mediator of the 2-DG-induced cyto-
toxic effect associated with the N-glycosylation alteration in 
MCF-7 cells. This absence of link between apoptosis and ER 
stress has been previously illustrated in MCF-7 and LNCaP 
cells treated with thiazolidinediones [18, 33]. In contrast, 
in lymphoma and rhabdomyosarcoma cells, 2-DG induces 
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Fig. 5   Mannose prevents 2-DG-induced ER stress. MDA-MB-231 
and MCF-7 cells were treated or not (Control, Ctrl) for indicated 
times with 2-DG (5 and 4  mM, respectively) in the presence (+) 
or absence (−) of mannose (Man, 1  mM). Cells were harvested for 
protein (a, c) or RNA (b) analysis. a Western blot analysis was per-
formed using anti-PERK and anti-BiP antibodies. Actin was used as 
a loading control. Protein MW (kDa) is indicated on the right. b RT-
PCR analysis was carried out using specific primers to detect XBP-1 

mRNA expression. The 282 bp-long and 256 bp-long PCR products 
correspond respectively to the unspliced and spliced forms of XBP-
1 mRNA. The housekeeping gene RPLP0 was used as a control. c 
MDA-MB-231 cells were fixed and CHOP protein was immunode-
tected. Cells were additionally counterstained with Hoechst dye and 
the merged photos were presented for each condition. Bar represents 
10 µm
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an UPR-mediated mitochondrial apoptosis involving CHOP 
and ATF-4 [29, 34, 35]. This discrepancy could be depend-
ent on the cellular context.

Then, we analyzed the effects of 2-DG on glycolysis. We 
observed in both MCF-7 and MDA-MB-231 cells exposed 
to 2-DG for 48 h that lactate production was greatly reduced. 
This result is in agreement with other studies performed in 
MCF-7 in which the inhibiting effect of 2-DG on glycoly-
sis were appreciated by ATP measurement [17, 19, 36]. In 
the presence of mannose, ER stress and UPR did not occur 
but the decrease in lactate production was still observed in 
2-DG-treated cells indicating that mannose did not interfere 
with glycolysis inhibition, supporting previous data [37]. 
Since in absence of ER stress and UPR, cell number was still 
affected by 2-DG, it indicates that inhibition of glycolysis 
is involved in the anticancer effect of 2-DG in our two cell 
lines and that N-glycosylation inhibition does not act alone. 
This is consistent with results obtained in T cell lymphoma 

cell lines [34] whereas inhibition of N-linked glycosylation 
has been reported as the predominant mechanism leading to 
2-DG’s cytotoxicity in other studies [13, 24, 28, 29, 35]. We 
used 2-DG at concentrations slightly higher than the IC50 we 
measured. It could be interesting to complete this work by 
an analysis of the effect of lower doses. Indeed, a hierarchy 
of 2-DG’s activity could exist where at low concentrations 
it interferes with N-linked glycosylation but at moderate 
concentrations glycolysis is also inhibited [38]. This could 
be due to the 50 times lower concentration of mannose as 
compared to glucose found not only in culture medium but 
also in human blood [26].

To conclude, our data reveal that both protein N-glyco-
sylation and glycolysis inhibitions contribute to the anti-
cancer effect of 2-DG in MDA-MB-231 and MCF-7 breast 
cancer cells. Thus, 2-DG has really to be considered both 
as a glycolytic and as a glycosylation inhibitor. The right 
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number was evaluated by a crystal violet staining assay. Production 
of lactate per cell was then calculated for each condition. Results 
are depicted as mean ± SEM of three independent experiments. 
**P < 0.01 compared with control cells. ***P < 0.001 compared with 
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association and clinical applications of this agent has still to 
be defined but at this time, increasing our knowledge about 
its mode of action is crucial.
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