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Abstract
Purpose Obesity and weight gain are associated with comorbidities including a higher risk of tumor recurrence and cancer-
related deaths among breast cancer (BC) survivors; however, the underlying mechanisms linking obesity and cancer are poorly 
understood. Given the lack of clinically validated BC biomarkers, obesity and weight-loss studies utilize serum biomarkers 
as the intermediary outcomes of tumor recurrence. Studies have indicated microRNAs (miRNA)s are reliable biomarkers 
for cancer. We hypothesized that miRNA expression correlates with obesity and weight loss amongst BC survivors. This 
would yield insight into the biological pathways by which this association occurs, enabling more precise development of 
therapeutics.
Patients and methods We correlated baseline body mass index (BMI) with serum miRNA expression in 121 BC survivors 
enrolled in the Hormones and Physical Exercise (HOPE) trial. We then analyzed expression of the 35 most abundant miRNAs 
from HOPE in a six-month randomized controlled weight-loss trial (Lifestyle, Exercise, and Nutrition; LEAN) in 100 BC 
survivors. Ingenuity pathway analysis (IPA) software was used to identify biological pathway targets of the BMI-associated 
and intervention-responsive miRNAs using predictive biomarkers.
Results Pearson correlations in HOPE identified eight miRNAs associated with BMI, including miR-191-5p (r = − 0.22, 
p = 0.016) and miR-122-5p (r = 0.25, p = 0.0048). In the LEAN validation study, levels of miR-191-5p significantly increased 
during the six-month intervention (p = 0.082). Ingenuity Pathway Analysis identified “Estrogen-mediated S-phase entry” 
(HOPE p = 0.003; LEAN p < 0.001) and “Molecular mechanisms of cancer” (HOPE p = 0.02; LEAN p < 0.001) as the top 
canonical pathways that significantly correlated with BMI-associated and intervention-responsive miRNAs and contain 
obesity and cancer-relevant genes including the E2F family of transcription factors and CCND1, which have been implicated 
in sporadic BC.
Conclusion While the association between obesity and BC recurrence and mortality has been demonstrated in the literature, 
mechanisms underlying the link between weight gain and cancer are unclear. Using two independent clinical trials, we identi-
fied novel miRNAs associative to BMI and weight loss that contribute to the development of cancer. Predictive modeling of 
miRNA targets identified multiple canonical pathways associated with cancer, highlighting potential mechanisms explaining 
the link between BMI and increased cancer risk.
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Introduction

In the United States, over 200,000 women will be diag-
nosed with invasive BC annually and is the second leading 
cause of cancer-related death in women [1–3]. Only 10% 
of BC cases are due to a genetic predisposition, indicating 
that a number of environmental and anthropometric fac-
tors influence BC risk [4–8]. Lifestyle factors associated 
with higher BC risk include poor diet, alcohol intake, and 
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smoking [9–11]. Studies consistently indicate post-men-
opausal women who are obese have an increased risk for 
breast cancer-specific mortality as compared to women with 
a normal BMI both prior to and post-diagnosis [12–14]. This 
increased risk is particularly concerning since obesity rates 
are increasing faster in post-menopausal women with cancer 
than amongst women without a history of cancer (3.01% vs. 
2.31% increase annually within the past 10 years) [15]. Adult 
weight gain is also associated with a 64% increased risk of 
BC death among survivors [16]. Elucidating the molecular 
factors associated with the rise in obesity will play an impor-
tant role in developing biomarkers associated with obesity-
related BC recurrence.

The proposed mechanisms through which obesity and 
weight change affect cancer risk and survival involve an 
abundance of metabolically active adipose tissue that results 
in elevated levels of blood glucose, insulin, free estradiol, 
and inflammatory cytokines [16–19]. The heightened levels 
of these cytokines support a hyper-proliferative state of the 
surrounding epithelium, and therefore, a number of regu-
latory checkpoints are maintained to inhibit this process. 
miRNAs, small non-coding RNAs, are one such entity that 
regulates various cellular processes [20–23] and are highly 
dysregulated in chronic diseases, such as cancer [24–29]. For 
instance, miR-21, miR-155, and miR-10b are all deregulated 
in BC tissue [30]. Additionally, forced expression of these 
miRNAs in vitro promotes cell invasion, proliferation, and 
pro-survival phenotypes, by targeting a number of tumor 
suppressor genes including PDCD4, PTEN, SOCS1, and 
HOXD10. miRNAs are also expressed in the serum of BC 
patients, and function as reliable biomarkers for the disease 
[31]. Few studies have assessed how miRNAs regulate the 
cellular pathways controlling weight gain and metabolic 
homeostasis. For instance, serum levels of miR-122 and 
miR-519d are strongly correlated with obesity [32–34], and 
pathway analysis indicates these miRNAs target regulators 
of survival and proliferation pathways important in BC tum-
origenesis. Understanding, which miRNAs correlate to BMI 
and weight-loss intervention will provide a unique insight 
into the mechanisms underlying the geneticlinks between 
these factors and BC recurrence.

In the present study, we tested the correlation between 
BMI and cancer-related miRNAs with obesity and a weight-
loss intervention within two completed randomized control 
trials among BC survivors. First, we used baseline serum 
samples from BC survivors enrolled in the HOPE study [35] 
to identify miRNAs associated with BMI in this popula-
tion; second, we utilized serum samples from the LEAN 
[36] trial to assess the effect of weight-loss intervention and 
the change in miRNA expression over six months compar-
ing intervention and usual care study arms. We also tested 
miRNA expression in relation to body composition and 
serum biomarkers. We hypothesized that certain miRNAs 

and the pathways they regulate would correlate with BMI 
and change in response to weight-loss intervention, offer-
ing some insight into the mechanisms linking obesity to BC 
recurrence, and perhaps even identifying novel targets to 
improve survival outcomes for these patients.

Methods

Participants and study background

The methodologies of the HOPE and LEAN trials have been 
previously described [35, 36]. In brief, 121 inactive, post-
menopausal BC survivors with joint pain were recruited to 
the HOPE trial between 2010 and 2012 from hospitals in 
Connecticut through the Rapid Case Ascertainment Shared 
Resource of the Yale Cancer Center [35]. Participants had 
a history of hormone receptor-positive stage I to III BC and 
received aromatase inhibitor (AI) adjuvant therapy for at 
least six months. Assessments of HOPE data in this manu-
script evaluated blood draws and anthropometric measure-
ments at the baseline (pre-intervention) time-point.

The LEAN trial [36, 37] was a three-arm weight-loss ran-
domized study involving 100 BC survivors comparing (1) 
in-person counseling, (2) telephone counseling, versus (3) 
usual care. Participants included in the study were diagnosed 
with stage 0–III BC survivors, had a BMI > 25.0 kg/m2, and 
completed chemo- and/or radiation-therapy (Fig. 1). Since 
no significant weight loss occurred between the in-person 
and telephone counseling arm, these arms were combined 
into an intervention group for our analysis, while arm three 
remained the usual care group. LEAN weight-loss interven-
tion strategies were adapted from US Dietary Guidelines as 
well as the American Institute for Cancer Research (AICR) 
nutritional and physical activity guidelines [38–42]. The 
usual care group was described in Irwin et al. [37]. Assess-
ments of LEAN data in this manuscript evaluated blood 
draws and anthropometric measurements at both baseline 
and 6 months post-intervention.

For both HOPE and LEAN trials, institutional review 
board protocol was approved by the Yale School of Medi-
cine Human Investigation Committee, and the Connecticut 
Department of Public Health Human Investigation Com-
mittee. Certain data used in this study were obtained from 
the Connecticut Tumor Registry located in the Connecticut 
Department of Public Health. The author(s) assumes full 
responsibility for analyses and interpretation of these data. 
The clinical characteristics of HOPE and LEAN trials are 
outlined in Table 1.
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Fig. 1  Flow chart of participants enrolled in the HOPE and LEAN trials, and to which enrollees were assessed for BMI, serum measurements of 
miRNA levels and secondary biomarkers, as well as body composition measures including total fat and total mass
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Primary and secondary measures

For participants enrolled in HOPE and LEAN, height, 
weight, and BMI (kg/m2) were determined as previously 
described [35, 36]. In LEAN, weight change was addition-
ally calculated using the baseline and six-month weight 
measures. In HOPE, dual-energy x-ray absorptiometry scans 
were performed to assess body fat, lean body mass, and bone 
mineral density. For biomarker analysis, fasting blood draws 
were obtained, and serum was barcoded, aliquoted, and 
stored at − 80 °C until assayed. Circulating insulin, leptin, 
glucose, adiponectin concentrations, as well as IL-6, TNF-α, 
and C-reactive protein (CRP) levels were also measured as 
previously described [35–37, 43]. Sample specimens were 
assayed at study endpoint and measured in duplicate, with 
laboratory technicians blinded to treatment assignment. 
Coefficient of variation for samples was under 10%.

RNA collection and isolation

In brief, 150 µl of serum from patients under fasting con-
ditions enrolled in HOPE with a BMI of 18.5–44 kg/m2 
was arrayed onto 96-well plates and assayed for miRNA 
expression using the Firefly platform [44]. A total of 68 BC-
specific miRNAs were assayed in multiplex on 121 samples 
arrayed onto two assay plates, with each plate containing 
control wells for post-hybridization analysis. Data were 
processed as described below. After assessment of HOPE, 
miRNA expression was then assessed from patients enrolled 
in LEAN. Specifically, 100 baseline samples and 85 6-month 
post-intervention samples were analyzed for 35 robustly 
detectable BC-specific miRNAs. Samples were processed 
similarly for Firefly detection.

RNA processing and miRNA expression analysis

In HOPE, baseline serum samples were analyzed for miRNA 
expression. In LEAN, miRNA expression was assessed at 
both baseline and six months following intervention [35, 36]. 
Firefly methodology was employed as previously described 

[44–46]. Samples were scanned on an EMD Millipore Guava 
6HT flow cytometer, and flow cytometer output was ana-
lyzed with Firefly Analysis Workbench software (Abcam 
plc., Cambridge, MA). Target-specific background subtrac-
tion was performed to remove the signal from each target 
contributed by the negative control wells. For normalization, 
the geNorm [47] algorithm was used to calculate probe sta-
bility and determine expression of all targets above a defined 
threshold across all samples. Probes that did not meet these 
standards were removed. For quantification, raw signal val-
ues from each assay were assessed for expression above the 
calculated noise threshold of the assay, which was a raw 
mean fluorescent intensity (RMFI) of eighty, log2 scale. 
Expression values underwent background subtraction and 
“geNorm+average analysis”, to normalize the expression of 
miRNA candidates within the entire sample dataset across 
the average signal from the 20 most invariant-expressed 
miRNAs. Hierarchal clustering analysis using a root-mean 
square clustering metric with complete linkage analysis was 
used to assess quality of the miRNA expression dataset.

The criterion for candidate miRNA inclusion was as fol-
lows, (1) to be associative with known breast tumorigenic 
processes [25, 48–50]; and/or (2) known to regulate path-
ways associated with metabolism [51–53], adipogenesis, 
and/or obesity [54–56]; and/or (3) previously identified 
to be detectable in circulating biofluids such as plasma or 
serum [57–59]. We identified 68 miRNAs eligible for analy-
sis; these miRNAs were assessed in crude serum isolates 
from the HOPE trial utilizing the probe-hybridization mul-
tiplex profiling assay mentioned above [44]. This procedure 
reduces the risk of error associated with RNA extraction of 
clinical samples from small sample volumes.

When testing miRNA expression from samples in the 
LEAN trial, we used the top 50% most robust and consistently 
expressed miRNA probes from the original 68. This was done 
because a number of miRNAs were not consistently detectable 
across a number of samples in the HOPE dataset (see Figure 
S1 and Figure S2), as well as in patients with a BMI  30 kg/m2. 
Given all samples in LEAN were from overweight patients, 
the inclusion of those miRNAs in future analyses was not 

Table 1  Characteristics of participants in the HOPE and LEAN trials

HOPE hormones and physical exercise, LEAN lifestyle, exercise and nutrition, BMI body mass index, SD standard deviation

Clinical Characteristics HOPE baseline LEAN weight loss arms LEAN usual care arm

N 121 67 33
Age at study entry (years) (mean, SD) 61.3 (7.0) 59.5 (7.5) 58.0 (7.5)
Race/ethnicity (n), % non-Hispanic White 102 (84.5) 61 (90.9) 30 (91)
Time since diagnosis, years (mean, SD) 3 (3.5) 2.9 (2.1) 2.8 (2.2)
Baseline BMI (kg/m2) (mean, SD) 29.4 (6.2) 32.6 (6.0) 34.0 (7.5)
Six-month weight change (kg) (least square mean 

from model) [LEAN Only]
N/A − 5.2 (− 6.8 to − 3.6) 1.7 (− 3.2 to − 0.3)
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performed. See Figure S3 for the list of the 35 miRNAs used 
in the LEAN cohort analysis.

Target miRNA analyses

miRNA targets were compared to the clinical endpoints and 
secondary measures from both HOPE and LEAN, as described 
above. Pearson correlation coefficients between each miRNA 
and clinical endpoint were computed using SAS software [60]. 
p < 0.1 indicated statistical significance for BMI-associated 
miRNAs in HOPE. In LEAN, 6-month changes in miRNA 
expression were compared to the randomized control cohort. 
The changes in miRNA abundance were determined by a least 
square means analysis, with a ± 95% confidence interval as a 
cut-off. For exploratory purposes, p < 0.1 indicated a statisti-
cally significant cutoff for intervention-associated miRNAs in 
LEAN.

Biological pathway analyses

The miRNAs identified in HOPE associated with BMI 
(p < 0.05; N = 8) and in LEAN associated with changes post-
intervention (p < 0.05; N = 6) were uploaded into Ingenuity 
Pathway Analysis (IPA) Suite (Qiagen Inc., Redwood City, 
CA) for biological pathway analyses. IPA utilizes miRNA 
seed sequence binding with cognate mRNA targets to identify 
miRNA:mRNA target interactions across multiple available 
bioinformatic data sources. Since, miR-93_5p and miR-17_5p, 
two BMI-associated miRNAs, have identical seed sequences, 
miR-93_5p was considered a duplicate miRNA for predictive 
modeling. Therefore, the final miRNA number used for BPA 
predictions was an N of 7 for HOPE and an N of 6 for LEAN. 
We utilized a conservative approach within the IPA microRNA 
Target Filter for mRNA target prediction, whereby only experi-
mentally verified interactions, as determined by miRTarBase 
[61], and/or highly conserved target sites containing 8-mer 
seed binding, as determined by Target Scan [62] algorithms, 
were selected. This approach produced a HOPE-specific gene 
target list of 994 mRNAs, and a LEAN-specific gene target 
list of 1292 mRNAs. Each gene list was used by IPA to deter-
mine enriched canonical pathways targeted by BMI-associated 
and intervention-responsive miRNAs. Representation of each 
canonical pathway was determined using a fisher exact test of 
miRNA-targeted genes within our dataset, as compared to the 
total number of genes in each IPA pathway.

Results

HOPE analysis

To identify BMI-associated miRNAs, baseline serum from 
those enrolled in HOPE was assayed for miRNA expression. 

We calculated Pearson correlation coefficients to identify 
miRNAs correlated with baseline BMI in HOPE (Table 2). 
We identified eight miRNAs significantly associated with 
BMI with the strongest positive associations as miR-22_3p 
(r = 0.26, p = 0.004) and miR-122_5p (r = 0.25, p = 0.005), 
both of which are implicated in BC metabolism [63–65]. 
miRNAs with the strongest negative BMI association 
were miR-191_5p (r = − 0.22, p = 0.016) and miR-17_5p 
(r = − 0.22, p = 0.017), which are implicated in influenc-
ing BC progression [66, 67].

To determine the genetic pathways these miRNAs regu-
late, we assessed the top ten target mRNA genes for each 
BMI-associated miRNA via TargetScan (Table S1). A num-
ber of these target genes are members of either pro-inflam-
matory and Notch signaling pathways, or glycolytic and 
lipid metabolic pathways. Utilizing formal canonical path-
way analysis, we identified that mRNAs targeted by these 
BMI-associated miRNAs also had a biological relevance for 
cancer. Of note, two of the eight miRNAs identified, miR-
17_5p and miR-93_5p, have the same seed sequence and 
therefore the same mRNA targets. Probes for both miRNAs 
negatively associated with BMI and had the same magni-
tude of association, as was expected. Thus, seven miRNA 
targets of interest were used for pathway analysis. The most 
significant pathways altered were the “Estrogen mediated 
S-phase entry”(p = 0.003) and the “P53 signaling” pathways 
(p = 0.006). Specific genes in these pathways are listed in 
Table 3, and include a number of genes that regulate the 
process of cell proliferation, survival, and motility.

LEAN analysis

We identified miRNAs responsive to weight-loss interven-
tion by assessing the change in miRNA expression at both 
baseline and six months in the diet and exercise interven-
tion group, as compared to the usual care group within 
LEAN using a least square means analysis, with a ± 95% 
confidence interval. Six miRNAs were significantly different 

Table 2  Correlations between miRNA and BMI in the HOPE  triala

HOPE hormones and physical exercise, BMI body mass index
a p value <0.1 considered significant

miRNA Probe Correlation (rho) p value

hsa_miR_191_5p − 0.22 0.016
hsa_miR_17_5p − 0.22 0.017
hsa_miR_103a_3p − 0.20 0.030
hsa_miR_93_5p − 0.18 0.048
hsa_miR_22_3p 0.26 0.004
hsa_miR_122_5p 0.25 0.005
hsa_miR_126_3p 0.22 0.015
hsa_miR_150_5p 0.19 0.037
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(p < 0.10) between the intervention and usual care arms 
(Table 4). Most notably, miR-106_5p decreased in expres-
sion in the intervention arm [effect change − 1.0 (− 9.0 to 
6.9)] and increased in the usual care arm [effect change 12.5 
(2.3–22.7)], as compared to baseline, p = 0.041. This is in 
line with the finding that miR-106b_5p is a prognostic indi-
cator of BC recurrence and also targets cell-cycle regulators 
in BC cells [68, 69]. Another miRNA, miR-191_5p, had 
the largest absolute difference in change between usual care 
and intervention arms, and the greatest increase in expres-
sion in the intervention arm [effect change 32.1 (6.6–57.6)], 
as compared to baseline, p = 0.082. miR-191_5p was also 
significantly negatively associated with BMI in the HOPE 

analysis indicating this miRNA functions as a predictor of 
weight loss in overweight BC survivors.

To determine the genetic pathways these miRNAs regu-
late, we assessed the top 10 target genes for each interven-
tion-responsive miRNA (Table S2). These target genes con-
trol either Notch signaling or apoptosis pathways, indicating 
these miRNAs regulate a distinct set of pathways from that 
of HOPE-associated miRNAs. Canonical pathway analysis 
was performed to determine the molecular underpinnings of 
weight-loss responsiveness. The most significant pathways 
identified in LEAN included the “Molecular mechanisms 
of cancer” (p = 6.8 × 10−7) and “Estrogen mediated S-phase 
entry” (p = 1.4 × 10−6). Specific genes in these pathways are 

Table 3  Biological pathways targeted by the 7 primary endpoint-associated miRNAs in the HOPE  triala,b

Pathway analyses created using ingenuity pathway analysis software (Qiagen, Inc.)
HOPE hormones and physical exercise
a miR_93_5p has the same ‘seed’ sequence as miR_17_5p and thus is a predictive duplicate
b p value <0.05 considered significant

Pathway name HOPE p value Ratio 
genes/
pathway

# genes 
in data-
set

# in IPA 
pathway

Genes within respective pathway

Estrogen-mediated S-phase entry 0.003 0.38 9 24 RB1, CCNE1, E2F1, CDKN1A, E2F5, E2F3, 
CCND1, ESR1, E2F2

P53 signaling 0.006 0.16 18 111 PMAIP1, TP63, TNFRSF10B, PERP, BAX, 
CCND1, PTEN, BCL2, CCNG1, RB1, 
RHOV, CCNE1, NF1, IRS1, E2F1, SIRT1, 
AKT3, PIK3R2

Glioblastoma multiform signaling 0.011 0.13 21 158 TSC1, RHOC, CDK6, WNT16, RHOJ, 
E2F3, CCND1, PDGFB, PTEN, PLCD1, 
RB1, RHOV, CCNE1, NF1, IRS1, E2F1, 
CDKN1A, E2F5, AKT3, PIK3R2, E2F2

Cell cycle: G 1/S checkpoint regulation 0.013 0.19 12 63 RB1, RBL2, CCNE1, MAX, HDAC8, E2F1, 
CDKN1A, E2F5, CDK6, E2F3, CCND1, 
E2F2

Molecular mechanisms of cancer 0.015 0.10 36 368 JAK1, BMPR2, WNT16, E2F3, MAPK11, 
CCND1, BCL2, TGFBR2, RB1, E2F5, 
AKT3, PRKCE, PIK3R2, E2F2, PMAIP1, 
RHOC, CDK6, RHOJ, BAX, BAK1, GNAI3, 
CCNE1, RHOV, MAX, MAPK14, CBL, 
RABIF, NF1, IRS1, CDKN1A, E2F1, PAK5, 
BMP7, BCL2L11, PSEN1, PRKCB

Glioma signaling 0.017 0.15 16 109 RBL2, CDK6, E2F3, CCND1, PDGFB, PTEN, 
RB1, IRS1, E2F1, CDKN1A, E2F5, AKT3, 
PRKCE, PIK3R2, E2F2, PRKCB

Chronic myeloid leukemia signaling 0.022 0.15 15 103 TGFBR2, RB1, RBL2, HDAC8, IRS1, CRKL, 
E2F1, CDKN1A, E2F5, CDK6, AKT3, 
PIK3R2, E2F3, CCND1, E2F2

Role of JAK family kinases in IL 6-type 
cytokine signaling

0.022 0.28 7 25 JAK1, MAPK14, OSM, OSMR, STAT3, IL6, 
MAPK11

Pancreatic adenocarcinoma signaling 0.025 0.14 16 118 JAK1, STAT3, E2F3, CCND1, BCL2, 
TGFBR2, VEGFA, RB1, CCNE1, IRS1, 
E2F1, CDKN1A, E2F5, AKT3, PIK3R2, 
E2F2

Cell-cycle regulation by BTG family proteins 0.027 0.23 8 35 RB1, CCNE1, E2F1, E2F5, BTG1, E2F3, 
CCND1, E2F2
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listed in Table 5 and include a number of genes that control 
cancer-related processes.

While assessing the molecular pathways regulated by 
BMI-associated and intervention-responsive miRNAs in 
HOPE and LEAN, we noticed “Estrogen mediated S-phase 
entry” (HOPE, p = 0.003; LEAN, p = 1.4 × 10−6) and the 
“Molecular mechanisms of cancer” (HOPE, p = 0.0016; 
LEAN, p = 6.8 × 10−7) were the most significantly modi-
fied pathways (Table S3). When assessing gene targets rel-
evant to these pathways, we found the presence of the E2F 
family of transcription factors, which controls cell cycle 
and in tumor suppressor proteins. Other targets identified 
included genes related to cell-cycle progression at G1, such 
as CDKN1A and CCND1, both of which have been linked 
to sporadic BC [70–72].

Secondary analyses (HOPE)

A secondary analysis was also performed to determine if any 
of the BMI-associated miRNAs in HOPE correlated to inter-
mediary outcomes such as inflammatory serum biomarkers, 
and body composition (Table 6). Among the five biomark-
ers tested, miR-22_3p positively correlated with circulat-
ing CRP (p = 0.005), IL6 (p < 0.001), glucose (p < 0.001), 
insulin (p = 0.003), and leptin (p < 0.001) levels. However, 
BMI-associated miRNAs such as miR-17_5p negatively cor-
related with IL6 (p = 0.001) and leptin (p = 0.001) levels, 
while miR-191_5p negatively correlated with IL6 levels 
(p = 0.05) indicating these miRNAs predict BMI independ-
ent of glycolytic-related pathways. Similar results were 
observed with miR-93_5p, as expected given this miRNA 
has a similar seed sequence to miR-17_5p.

Analysis of body composition measures (e.g., bone 
mineral content, total fat, etc.) yielded a distinct subset of 

miRNAs not linked with BMI (Table 6). For instance, miR-
27a_3p was significantly negatively associated with four of 
the five body measures assessed, and target genes such as 
NOVA1 which controls RNA splicing and is found in the 
serum of patients with paraneoplastic opsoclonus-ataxia and 
BC [73, 74]. While miR-122_5p did not correlate with any 
body composition measures, there was an association with 
insulin (p < 0.001) and IL6 (p < 0.001), consistent with the 
reported literature [75].

Discussion

High BMI and weight gain are associated with poor out-
comes amongst BC survivors, yet the underlying mecha-
nisms explaining this association are unclear. Studies 
indicate free fatty acids, glucose, and eicosanoids promote 
cell-cycle proliferation, inhibit the activity of pro-apoptotic 
pathways, and/or induce changes in cellular lipid architecture 
that enhances cellular migration [76–79]. Activities of these 
processes are regulated by the transcription factors E2F2 and 
 PPARγ.  PPARγ is a transcription factor that hetero-dimerizes 
with RXR to induce the expression of genes essential for cel-
lular metabolism.  PPARγ expression is altered in a variety of 
solid carcinomas [80, 81], and in mouse models of sporadic 
BC,  PPARγ controls cell-cycle progression by regulating 
checkpoint genes such as CDKN1A and CCND1 [82, 83]. 
E2F2 belongs to a family of nine transcription factors that 
control cellular proliferation and apoptosis, and are also sup-
pressed during tumorigenesis [84, 85]. E2F2 is central to the 
cellular timing of G1/S phase transitions by controlling the 
expression of cyclins, FGF2, and SOX2 [86].

E2F2,  PPARγ, and other BC-associated genes are regu-
lated via phosphorylation of E2F-interacting proteins such as 
Rb and CCND2, and are tightly controlled at the epigenetic 
level through histone methyltransferase activity, direct meth-
ylation of the gene promoter, and/or post-transcriptional 
regulation via interactions with non-coding RNA [87–91]. 
For instance, miR-10b and miR-122 are bona-fide regulators 
of  PPARγ and regulate the pathogenesis of non-alcoholic 
fatty liver disease (NAFLD) by controlling hepatic stenosis 
[92, 93], while the miR-17/92 family regulates the expres-
sion of E2F, and subsequently the activity of the E2F/MYC 
signaling axis [91].

miRNAs control many functions of BC etiology as well 
as the metabolic pathways that support BC tumor growth 
and survival [94]. However, few studies have directly 
assessed the role of noncoding RNAs as an indicator of 
obesity and weight-loss intervention. A limiting factor has 
been the ability to detect circulating miRNAs in biofluids 
such as serum. In this study, we used an miRNA detection 
system that obviates the use of PCR to detect the copy 
number of a particular miRNA species from crude serum 

Table 4  Change in miRNA from baseline to end of the six-month 
intervention by arm in the LEAN  triala,b

LEAN Lifestyle, exercise and nutrition, BMI body mass index
a Change in miRNA following intervention or usual care was con-
trolled for baseline expression
b p value <0.1 considered significant

miRNA Probe Usual care Intervention p value

hsa_miR_106b_5p 12.5 (2.3 to 22.7) − 1.0 (− 9.0 to 
6.9)

0.041

hsa_miR_27a_3p − 12 (− 19 to 
− 4.2)

− 2.6 (− 8.4 to 
3.2)

0.062

hsa_miR_191_5p − 4.6 (− 37 to 
28.0)

32.1 (6.6 to 57.6) 0.082

hsa_let_7b_5p 19.8 (3.9 to 35.7) 2.5 (− 9.9 to 14.9) 0.093
hsa_miR_92a_3p 32.3 (− 23 to 87.3) − 27 ( − 70 to 

15.9)
0.094

hsa_miR_24_3p 6.7 (− 13 to 26.2) 27.4 (12.2 to 42.7) 0.099
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extract [44]. Using this system, we identified miR-122_5p 
as a BMI-associated miRNA, which was expected given 
miR-122_5p is essential in regulating lipid metabolism, 
and is associated with circulating insulin and leptin levels 
[57]. In fact, the original in vivo antisense studies targeted 
miR-122 in the adult liver of obese mice using a diet-
induced model, effectively reducing plasma cholesterol 
levels and improving liver steatosis [32].

We also identified miRNAs such as miR-191_5p and 
miR-17_5p to be significantly inversely correlated with 
BMI, both of which are involved in tumorigenic processes. 
For instance, the miR-17_5p/miR-93_5p family was also 
inversely correlated with inflammatory markers such as 
CRP, IL6, and leptin, and is known to inhibit tumor growth 
by suppressing MYC-induced cellular proliferation [66, 95]. 
This miRNA cluster post-transcriptionally inhibits MYC 

Table 5  Biological pathways targeted by the 6 intervention-associated miRNAs in the LEAN  triala

Pathway analyses created using ingenuity pathway analysis software (Qiagen, Inc.)
LEAN lifestyle, exercise and nutrition
a p value <0.05 considered significant

Pathway name LEAN p value LEAN ratio 
genes/path-
way

# genes # in IPA 
pathway

Genes within respective pathway

Molecular mechanisms of cancer 6.8 × 10− 7 0.18 67 368 JAK1, BMPR2, WNT16, E2F3, MAPK11, CCND1, 
BCL2, TGFBR2, RB1, E2F5, AKT3, PRKCE, 
PIK3R2, E2F2, PMAIP1, RHOC, CDK6, RHOJ, 
BAX, BAK1, GNAI3, CCNE1, RHOV, MAX, 
MAPK14, CBL, RABIF, NF1, IRS1, CDKN1A, 
E2F1, PAK5, BMP7, BCL2L11, PSEN1, PRKCB

Estrogen-mediated S-phase entry 1.4 × 10− 6 0.67 16 24 RB1, CCNE1, E2F1, CDKN1A, E2F5, E2F3, 
CCND1, ESR1, E2F2

Pancreatic adenocarcinoma signaling 1.5 × 10− 5 0.26 31 118 JAK1, STAT3, E2F3, CCND1, BCL2, TGFBR2, 
VEGFA, RB1, CCNE1, IRS1, E2F1, CDKN1A, 
E2F5, AKT3, PIK3R2, E2F2

Glioblastoma multiform signaling 2.0 × 10− 5 0.23 36 158 TSC1, RHOC, CDK6, WNT16, RHOJ, E2F3, 
CCND1, PDGFB, PTEN, PLCD1, RB1, RHOV, 
CCNE1, NF1, IRS1, E2F1, CDKN1A, E2F5, 
AKT3, PIK3R2, E2F2

Colorectal cancer metastasis signaling 4.1 × 10− 5 0.19 45 242 MAP2K4, FZD10, JAK1, TGFBR1, MMP3, FZD3, 
SMAD3, MMP13, HRAS, GNG13, KRAS, IL6, 
CCND1, WNT8B, MYC, TGFBR2, VEGFA, 
APPL1, RHOG, RHOB, TLR7, SMAD4, TLR3, 
GNG5, PTGER4, TP53, IFNG, NRAS, CASP3, 
GRB2, RHOC, WNT9A, ADCY3, PRKAR2A, 
VEGFC, MMP10, BAX, STAT3, PIK3R3, 
BCL2L1, TLR4, GAB1, PTGS2, TNF, WNT1

Cell cycle: G 1/S checkpoint regulation 5.5 × 10− 5 0.33 21 63 RB1, RBL2, CCNE1, MAX, HDAC8, E2F1, 
CDKN1A, E2F5, CDK6, E2F3, CCND1, E2F2

Chronic myeloid leukemia signaling 1.3 × 10− 4 0.25 26 103 TGFBR2, RB1, RBL2, HDAC8, IRS1, CRKL, 
E2F1, CDKN1A, E2F5, CDK6, AKT3, PIK3R2, 
E2F3, CCND1, E2F2

Aryl hydrocarbon receptor signaling 1.5 × 10− 4 0.22 30 135 CDKN2A, IL1A, NFIX, CDK4, IL6, CCND1, FAS, 
MYC, RB1, CTSD, CCNA2, NCOA7, FASLG, 
TP53, CCNE2, RBL2, CDK6, BAX, NCOA3, 
CYP1B1, CCND2, NFIA, E2F1, CDKN1A, 
NFIB, DHFR, CDKN1B, RXRA, TNF, ESR1

Glioma signaling 2.2 × 10− 4 0.24 26 109 RBL2, CDK6, E2F3, CCND1, PDGFB, PTEN, 
RB1, IRS1, E2F1, CDKN1A, E2F5, AKT3, 
PRKCE, PIK3R2, E2F2, PRKCB

P53 signaling 2.7 × 10− 4 0.24 26 111 PMAIP1, TP63, TNFRSF10B, PERP, BAX, 
CCND1, PTEN, BCL2, CCNG1, RB1, RHOV, 
CCNE1, NF1, IRS1, E2F1, SIRT1, AKT3, 
PIK3R2
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gene expression, while E2F and MYC induce the transcrip-
tion of miR-17_5p/miR-92_5p, forming a negative feedback 
loop resulting in a sharp “on/off” state for pro-tumorigeneic-
related protein expression. A related miR-17_5p/miR-93_5p 
family member, miR-106b_5p, was unexpectedly found to 
be the most significant miRNA that decreased in response to 
diet and exercise intervention. However, a number of groups 
have shown that miRNAs of the same family can mediate 
various cellular responses through non-seed base-pairing 
interactions with target mRNAs [96]. In support of this, 
miR-106b_5p is upregulated in both tissue and plasma from 
BC patients, and promotes cell-cycle progression by target-
ing CDKN1A [68, 69]. Additional experiments are required 
to elucidate the molecular mechanisms behind the negative 
association of miR-17-5p with BMI, and the negative asso-
ciation of miR-106 with weight-loss intervention.

We identified that low circulating miR-191_5p levels are 
associated with high BMI and high circulating miR-191_5p 
levels are predictive of successful weight-loss post diet- and 
exercise-intervention. The mechanism for this is unclear 
given miR-191_5p associates with relatively few secondary 
measures in HOPE (IL6 = r − 0.182; p = 0.046). However, 
pathway analysis, which included miR-191_5p target genes, 

indicated potential mechanisms may involve 17β-estradiol 
signaling and S-phase entry by targeting genes such as 
CCND1, E2F2, RB1, and IRS1. While it is not known if 
miR-191_5p directly inhibits ESR1, it is known that miR-
191_5p is dysregulated in ERα-positive BC, a 17β-estradiol-
dependent tumor [67, 97]. Furthermore, 17β-estradiol 
promotes the expression of miR-191_5p and protects ERα-
positive tumors from hormone depletion-induced apoptosis. 
This is relevant given all patients in HOPE and half of the 
patients in LEAN were on AI therapy, which blocks the syn-
thesis of 17β-estradiol. Therefore, miR-191_5p may function 
as an early indicator of 17β-estradiol-specific signaling due 
to reduced adipose burden during weight-loss intervention, 
rather than as a measure of late-stage fluctuations in inflam-
matory and/or metabolic activity.

Circulating miRNAs are extremely stable biomarkers that 
can be prognostic indicators of disease onset as well as pre-
dictive biomarkers for drug response. A recent study meas-
ured 13 a priori selected miRNAs for change in response to 
a 16-week diet and exercise weight-loss intervention trial 
(N = 89 men and women), and identified miR-221_3p and 
miR-223_3p as increasing in both low- and high-weight-loss 
responders in response to intervention, as well as miR-140 

Table 6  miRNA correlations with secondary measures (serum markers and body composition) in  HOPEa,b

CRP C-reactive protein, IL6 interleukin 6, BMC bone mineral content, BMD bone mineral density, LBMC: lumbar bone mineral content
a p value <0.05 considered significant
b While miR_93_5p has the same ‘seed’ sequence as miR_17_5p, this miRNA was not removed from analysis because variation in remaining 
sequence could result in different gene targets and thus contribute to differences in observed correlations with secondary serum biomarkers

Biomarkers Body composition

miRNA Probe CRP IL6 Glucose Insulin Leptin BMC BMD Total fat Total mass Total LMBC

hsa_miR_22_3p 0.253 0.424 0.394 0.272 0.366
p value (0.005) (<0.001) (<0.001) (0.003) (<0.001)
hsa_miR_126_3p 0.252 0.306 0.299 0.228
p value (0.005) (0.010) (0.001) (0.012)
hsa_miR_93_5pb − 0.198 − 0.214
p value (0.030) (0.018)
hsa_miR_191_5p − 0.182
p value (0.046)
hsa_miR_122_5p 0.369 0.54628 0.182
p value (<0.001) (<0.0001) (0.046)
hsa_miR_17_5pb − 0.307 − 0.305
p value (<0.001) (<0.001)
hsa_miR_27a_3p − 0.289 − 0.270 − 0.301 − 0.316
p value (0.001) (0.003) (0.001) (<0.001)
hsa_miR_195_5p 0.235 0.384 0.189 0.198 0.206
p value (0.010) (<0.001) (0.040) (0.032) (0.024)
hsa_miR_10a_5p − 0.247 − 0.2581 − 0.271
p value (0.007) (0.005) (0.003)
hsa_miR_30d_5p − 0.274 − 0.3324 − 0.333
p value (0.003) (<0.001) (<0.001)
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as increasing in the low responder group [98]. None of the 
miRNAs identified in these studies overlapped with miRNAs 
captured from the LEAN and HOPE datasets. The likely 
explanation for this is that all patients enrolled in our trials 
were either overweight BC survivors or on AI therapy.

The overall strengths of our study include the utiliza-
tion of two trials: one validating that our method can detect 
miRNAs previously associated with BMI in a population 
of BC survivors, and two measuring the change in miRNA 
expression within a separate BC population over a six-month 
weight-loss intervention. Our study is limited in that only a 
single intervention study was performed. Therefore, follow-
up weight-loss intervention trials will be required to iden-
tify circulating miRNAs and target pathways associated with 
weight loss so as to provide opportunities to develop clini-
cal biomarkers for a physiological response to weight-loss 
intervention. We also identified miRNAs related to hormone 
regulation; further studies are warranted to assess how miR-
NAs can be indicators of effective endocrine therapies in 
BC survivors.
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