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Abstract
Purpose  Despite the recent expansion in the use of immunotherapy for many cancer types, it is still not a standard treatment 
for breast cancer. Identifying differences in the immune systems of breast cancer patients compared to healthy women might 
provide insight into potential targets for immunotherapy and thus may assist its clinical implementation.
Methods  Multi-colour flow cytometry was used to investigate myeloid and lymphoid populations in the peripheral blood 
of breast cancer patients (n = 40) and in the blood of healthy age-matched women (n = 25). We additionally performed 
functional testing to identify immune suppressive mechanisms used by circulating CD14+ myeloid cells from breast cancer 
patients.
Results  Our results show that breast cancer patients have significantly elevated frequencies of cells with the monocytic 
myeloid-derived suppressor cell (mMDSC) phenotype CD14+ HLA-DR−/low compared with healthy women (p < 0.01). 
We also observed higher levels of earlier differentiated T cells and correspondingly lower levels of T cells in later stages 
of differentiation (p < 0.05). These disease-associated differences could already be detected in early-stage breast cancer 
patients in stages 1 and 2 (n = 33 of 40) (p < 0.05). Levels of circulating T cells correlated with certain clinical features and 
with patient age (p < 0.05). Functional tests showed that CD14+ myeloid cells from breast cancer patients more potently 
suppressed autologous T cell proliferation than CD14+ cells from healthy women (p < 0.01). Subsequent investigation 
determined that suppression was mediated in part by reactive oxygen species, because inhibiting this pathway partially 
restored T cell proliferation (p < 0.01).
Conclusion  Our results highlight the potential importance of cells with mMDSC phenotypes in breast cancer, identifiable 
already at early stages of disease. This may provide a basis for identifying possible new therapeutic targets to enhance anti-
cancer immunity.
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Introduction

Breast cancer is one of the leading causes of death in 
women worldwide [1], but despite steady advances in 
treatment and the promise of more effective immuno-
therapies, clinical outcomes remain suboptimal. In con-
trast to lung, melanoma and other types of cancer [2–5], 
immunomodulatory or cellular immunotherapy is not yet 
a routine form of treatment for breast cancer. Nonetheless, 
it is evident that the immune system does indeed play an 
important role in disease progression. This assertion is 
largely based on the results of studies which have shown a 
very close link between parameters of the immune system 
and the prognosis of breast cancer patients [6, 7]. Con-
sequently, there is now growing interest in exploring the 
potential use of immunotherapy in treating breast cancer—
early results from clinical trials evaluating immunothera-
peutic agents such as vaccines and immune checkpoint 
inhibitors have shown promise in this approach [8–10]. 
Because breast cancer comprises a heterogeneous col-
lection of diseases, identifying the patient groups which 
will benefit from particular forms of immunotherapy will 
be of key importance. Furthermore, identifying the bar-
riers which reduce the efficacy of immunotherapy will 
be required to more accurately design effective treatment 
strategies. To this end, the use of blood-based biomarkers 
rather than tumour tissue biomarkers provides a less inva-
sive approach with the additional advantage of allowing 
multiple sampling over time.

Interactions between the immune system and cancer can 
be complex and hard to define, resulting either in tumour 
suppression, tumour promotion, or both. The immune 
system is capable of recognising and combating cancer 
through effector cells such as cytotoxic T cells. This pro-
cess may be sufficient to result in tumour elimination, but 
on the other hand it can select tumour cells which resist 
immune attack [11]. In the latter scenario, the immune 
system is not only ineffective at providing tumour protec-
tion, but may even contribute to disease progression. This 
is in part due to the ability of tumours to re-programme 
immune cells so that they suppress anti-tumour immune 
functions, for example in the case of regulatory T cells 
(Tregs) and myeloid-derived suppressor cells (MDSCs). 
MDSCs are a heterogeneous group of myeloid cells which 
have been shown to impair anti-tumour immune responses 
and which commonly expand in response to pro-inflam-
matory signals [12]. They are characterised as myeloid 
cells of granulocytic and monocytic origin, although no 
unequivocal phenotype that can be used to definitively 
characterise MDSCs has yet been identified. Much effort 
is currently being expended in determining approaches to 
inhibit the suppressive activity of these cells, for example, 

using certain tyrosine kinase inhibitors [13]. One of the 
major mechanisms by which MDSCs suppress beneficial 
immune responses is by impairing T cell function through 
the release of reactive oxygen species, production of sup-
pressive soluble molecules or through arginine starvation; 
these mechanisms could also be susceptible to therapeu-
tic blockade to reduce suppressor function [14–17]. This 
would be desirable because high levels of MDSCs are 
associated with poor patient prognosis in a range of cancer 
types [18, 19]. Despite an increasing number of studies on 
the clinical relevance of MDSCs in human cancers includ-
ing breast cancer [20–23], surprisingly there are only a few 
studies examining the clinical role of peripheral MDSCs of 
monocytic origin in breast cancer to date [23, 24].

In the present study, we assessed circulating popula-
tions of myeloid and lymphoid cells in female breast can-
cer patients, with particular emphasis on cells with mono-
cytic MDSC-like (mMDSC) phenotypes. Due to medical 
advances, breast cancer is now commonly diagnosed at an 
early stage. As such we considered it important to addition-
ally determine if alterations in the immune system occur 
in early disease development (stages 1 and 2 [25]). This 
may highlight which populations of immune cells could be 
targeted for effective immunotherapy in particular patient 
subgroups. To complement this observational approach, cir-
culating myeloid cells were also examined for their ability 
to suppress T cell activation and proliferation. The aim of 
this study was to identify disease-associated alterations in 
breast cancer patients and to uncover suppressive mecha-
nisms used by circulating myeloid cells, which together may 
provide valuable information for targeted immunotherapy 
approaches in future.

Materials and methods

Samples

Blood samples from 40 breast cancer patients (age range 
36–81 years, median age 61) were recruited locally at the 
Tübingen University Women’s Hospital between 2014 and 
2016. The cohort included 35 patients with primary tumours 
and five patients with metastatic disease. Patient tumours 
were classified according to TNM staging (tumour size (T), 
nodal status (N) and metastasis (M)). Blood was drawn upon 
diagnosis, prior to surgery and before receiving any treat-
ment. Apart from the diagnosis of breast cancer, patients did 
not have any other serious health problems. Detailed char-
acteristics of this patient cohort are summarised in Table 1. 
Peripheral blood mononuclear cells (PBMCs) were isolated 
from EDTA-blood using Ficoll–Hypaque gradient centrifu-
gation and stored in a viable state in liquid nitrogen. In addi-
tion, we included a control group of 25 age-matched healthy 
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women (age range 36–84 years, median age 61). PBMCs of 
this control cohort were obtained from routine blood dona-
tions at the Tübingen University Hospital.

All patients gave their written informed consent for the 
storage and scientific analysis of their biomaterial. The use 
of the samples was approved by the University of Tübingen 
Ethics Committee (ethics approval number 626/2016BO2).

Immunophenotypic analysis of circulating blood 
myeloid cells and T cells

Flow cytometry was used to phenotype blood myeloid cells 
(including monocytes, monocytic MDSCs and dendritic 
cells (DCs)) and lymphoid populations (including differen-
tiation stages of CD4+ and CD8+ T cells) as previously 

described [26] using the following antibody panels (online 
resource 1). For the gating of mMDSCs, lineage-negative 
events were selected before exclusion of CD14-negative 
cells. This population was then used to gate HLA-DR-pos-
itive or HLA-DR-negative events using an HLA-DR-neg-
ative internal reference population. To gate DCs, lineage-
negative events were first gated, followed by CD14-negative 
and HLA-DR-positive cells. From this population, myeloid 
DCs (mDCs) were identified based on CD11c positivity, 
while plasmacytoid DCs (pDCs) were identified as CD123-
positive cells. All gating steps, including those for T cells, 
are illustrated in online resource 2. For the establishment 
of antibody panels, fluorescence minus one controls were 
used. Due to the limited availability of patient material, we 
could not perform multiple testing of the same sample, but 
consistency in machine performance was achieved by using 
cytometer setup and tracking (CST) beads before and after 
each sample measurement. Furthermore, repeated measure-
ments of the same batch of a biological control donor were 
used in each run to confirm consistency in measurement 
conditions.

T cell/monocyte co‑culture suppression assays

The suppressive capacity of CD14+ myeloid cells from 
breast cancer patients on autologous proliferating T cells 
was assessed using monocytes isolated from whole PBMC 
by magnetic cell sorting with human CD14 MicroBeads 
(Miltenyi Biotech, Teterow, Germany). The isolated CD14+ 
monocytes were co-cultured with CD14-depleted PBMC at a 
ratio of 1:1.5 (CD14-depleted PBMC:monocytes) for 5 days 
in IMDM with GlutaMAX (Life Technologies, Darmstadt, 
Germany) containing 10% FCS (SERATEC, Göttingen, 
Germany). CD14-depleted PBMC without the addition of 
monocytes were included as a positive control. All experi-
ments were performed in 96-well U-bottom plates (Greiner 
Bio-One, Frickenhausen, Germany) containing a total of 
0.25 × 106 cells per well (i.e. 0.1 × 106 CD14-depleted 
PBMC and 0.15 × 106 monocytes to give a ratio of 1:1.5). 
In order to assess the degree of T cell proliferation, CD14-
depleted PBMCs were stained with CFSE (Invitrogen, San 
Diego, USA) according to our previous protocol [27] but 
with the following modifications: cells were incubated with 
CFSE staining solution for 5 min at room temperature in 
the dark and then washed with 10 mL PB buffer (5% FCS 
in PBS) to stop the labelling reaction. T cells were activated 
with CD3/CD28 T cell activator Dynabeads (Invitrogen, 
San Diego, USA) (1.5 µL/well). The 1:1.5 ratio (CD14-
depleted PBMC:monocytes) was chosen based on a prior 
study [28] and on preliminary experiments which showed 
a concentration-dependent relationship between CD14+ 
myeloid cells and T cell suppression. Following the 5-day 
culture period, flow cytometry was used to characterise 

Table 1   Clinical characteristics of the breast cancer cohort

Factor Patients (n = 40)

Age
 Median (years) 61
 Range 36–81

Grade
 1 2
 2 15
 3 14
 nd 9

Tumour size
 pT1 22
 pT2 12
 nd 1

Nodal status
 N0 30
 N1 3
 N3 1
 nd 1

Metastasis
 M0 35
 M1 5

Histological subtype
 Ductal 24
 Lobular 7
 Tubular 1
 Papillary 1
 Mucinous + papillary 1
 nd 1

Hormone receptor and HER2 expression
 ER+ 25
 PR+ 20
 HER2+ 7
 HER2 status unknown 6
 Triple negative 7
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cell phenotypes and to assess the extent of T cell prolifera-
tion. The following antibodies were used: CD3-A700 (BD 
Pharmingen, Heidelberg, Germany), CD4-APC (Milteny 
Biotech), CD8-Pacific Blue and CD14-APC-H7 (both from 
BD Pharmingen). Suppression assays were performed with 
five patient samples (four with primary early-stage disease, 
one metastatic) randomly selected from the patient cohort. 
All experiments were performed using triplicate cultures to 
ensure consistency in results.

To investigate mechanisms potentially responsible for 
suppression, co-cultures were treated with inhibitors target-
ing candidate pathways previously suggested to be involved 
in mediating immune suppression. These were the reac-
tive oxygen species (ROS) inhibitor superoxide dismutase 
(200 IU/mL) (Sigma-Aldrich, Steinheim, Germany), anti-
TGFβ antibody (10 μg/mL) (R&D Systems, Wiesbaden, 
Germany) and the STAT-3 (signal transducers and acti-
vator of transcription 3) inhibitor AG490 (10  μmol/L) 
(Sigma-Aldrich).

Flow cytometry data analysis

Flow cytometry data analysis was performed using FlowJo 
software version 10.07 (Tree Star, Ashland, USA). Events 
not part of the main acquisition population were first 
excluded using a time-versus-side scatter gate. This was fol-
lowed by removing cell doublets and subsequently the exclu-
sion of dead cells (EMA-positive events) and cell debris 
with the use of a morphological gate. This was followed 
by gating for specific populations of interest according to 
the gating strategies shown in online resources 2 and 3. For 
assessing T cell proliferation in suppression assays, in a first 
step CD14+ cells were gated out to avoid contamination 
of the CFSE signal. CD3+ events were gated which was 
followed by gating both CD4+ and CD8+ populations. An 
index of CFSE mean fluorescence intensity was created for 
CD4+ and CD8+ populations for each condition relative to 
the corresponding positive control in order to determine the 
relative degree of T cell proliferation between experimental 
conditions.

Statistical analysis

Statistical analyses were performed using SPSS version 20 
(IBM, Ehningen, Germany) and GraphPad Prism 6 (Graph-
Pad Software, San Diego, USA). To compare two inde-
pendent groups, non-parametric Mann–Whitney U tests 
were used. To compare changes in the same sample under 
different experimental conditions, Wilcoxon matched-
pair tests were used (these statistical tests included values 
obtained from biological replicates to consider biological 

variation and technical replicates to account for measure-
ment error). Correlations were calculated using Spearman 
correlation analysis. A value of p < 0.05 was considered 
statistically significant. Because this was an exploratory 
study, we aimed to reduce the chance of obtaining false-
negative results. As such statistical analyses were not cor-
rected using the Bonferroni method.

Results

T cell phenotypes in peripheral blood are associated 
with certain clinical features of breast cancer 
patients

Using flow cytometry, we measured myeloid cell popu-
lations and a spectrum of T cell populations from early 
to late stages of differentiation in the peripheral blood of 
40 breast cancer patients. We characterised myeloid cells 
including monocytes, mDCs and pDCs (16 populations) 
and lymphoid cells including effector and memory T cells 
in both the CD4+ and CD8+ compartments (62 popu-
lations). These populations were investigated for asso-
ciation with clinical features of the breast cancer cohort; 
tumour characteristics such as pathological tumour size 
(pT), tumour grade, HER2 status, oestrogen (ER) and pro-
gesterone (PR) receptor expression and patient age were 
considered. We saw a number of correlations between T 
cell distribution and breast cancer patient clinical features 
(selected examples are shown in Fig. 1). For example, 
patients with larger tumours (pT2 vs. pT1) tended to have 
higher levels of earlier differentiated CD4+ T cell popu-
lations (CD45RA+ CD95− CD27+ CD28+) (p < 0.01), 
while CD4+ phenotypes at later differentiation stages 
(CD95+) tended to be present at lower levels in these 
patients (p < 0.01) (Fig. 1a). In addition, we observed 
that a number of later differentiated populations of CD8+ 
T cells (CD57+ and CD45RA+ CD95+ CD27− CD28−) 
were negatively associated with hormone receptor expres-
sion (Fig. 1b). We furthermore found a number of inverse 
correlations between patient age and the level of CD8+ T 
cells including naïve CD8+ T cells (CD8+ CD45RA+ C
D95− CD27+ CD28 +) (p = 0.0001) and central memory 
phenotypes (CD8+ CD95+ CD45RA− CD27+ CD28+ 
and CD8+ CD95+ CD45RA− not gated for CD27 and 
CD28 expression) (p = 0.0167 and p = 0.0329) (Fig. 1c). 
We did not find any relationship between age and tumour 
characteristics (pT, tumour grade, HER2, ER and PR), 
suggesting that the associations between them and leuko-
cyte levels are independent of age.
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Breast cancer patients have elevated levels 
of CD14+ HLA‑DR−/low MDSC phenotypes 
in the peripheral blood compared with healthy 
women

We next examined whether the levels of circulating lym-
phoid and myeloid cell populations differed between breast 
cancer patients and controls. We found that the frequen-
cies of cells with the mMDSC phenotype CD14+ HLA-
DR−/low was significantly higher in patients when assessing 
their levels as a percentage of total leukocytes (CD45+), and 
also relative to CD14+ cells (p = 0.0084 and p = 0.0105, 
respectively) (Fig. 2a). Importantly, when only looking at 
early-stage patients (stages 1 and 2, n = 33) in the cohort, we 
observed the same association (p = 0.0116 and p = 0.0151), 
indicating that the differences can already be detected at 
earlier breast cancer stages (online resource 4). These dif-
ferences appeared to be specific for cells with a suppres-
sor phenotype; we did not detect differences in the levels 
of CD14+ monocytes between breast cancer patients and 
healthy women (Fig. 2a, right panel), nor did we observe 
differences in mDCs or pDCs (Fig. 2b).

We also observed that populations of lymphoid cells were 
present at different levels between patients and controls 
(selected results are shown in Fig. 2). While the frequencies 
of circulating CD4+ and CD8+ T cells showed no difference 
between breast cancer patients and healthy women (Fig. 2c), 
the relative frequencies of several earlier differentiated T 
cell populations (CD4+ CD45RA+ CD95+ CD27+ CD2
8+) were elevated in breast cancer patients (p = 0.0076), 
which was again also true when only considering early-stage 
patients (p = 0.0026). In contrast, later differentiated T cells 
lacking the expression of CD45RA (e.g. central memory 
cells (CD8+ CD95+ CD45RA− CD27+ CD28+)) tended 
to be lower in breast cancer patients than healthy women 
(p = 0.0466) (Fig. 2d).

Circulating CD14+ myeloid cells from breast cancer 
patients suppress the proliferation of autologous T 
cells

Our results revealed that within CD14+ monocytes, cells 
with mMDSC phenotypes (CD14+ HLA-DR−/low) were 
elevated in breast cancer patients. Thus in order to model 

Fig. 1   Association between peripheral T cells and breast cancer 
clinical features. Multi-colour flow cytometry was used to analyse 
immune cell phenotypes in the peripheral blood of breast cancer 
patients (n = 40). We found correlations between circulating immune 
cells and breast cancer clinical parameters. a Association between 
earlier and later differentiated CD4+ T cells and pathological tumour 
size (pT). b Association between later differentiated CD8+ T cells 

and progesterone receptor (PR) expression on breast tumours. c 
CD8+ T cell phenotypes and association with patient age. pT patho-
logical tumour size, PR progesterone receptor, TEMRA terminally dif-
ferentiated effector memory cells re-expressing CD45RA (phenotype: 
CD45RA+  CD95+  CD27−  CD28−), CM central memory T cells 
(phenotype: CD95+ CD45RA− CD27+ CD28+), Naïve naïve T cells 
(phenotype: CD45RA+ CD95− CD27+ CD28+)
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immune suppression that these cells may exert in vivo, we 
compared the suppressive potential of equivalent numbers 
of isolated CD14+ cells between breast cancer patients and 
healthy women. Because CD14+ HLA-DR−/low mMDSCs, 
but not the total levels of CD14+ monocytes, were elevated 
in breast cancer patients, we asked whether these cells with 
an mMDSC phenotype from breast cancer patients had sup-
pressive properties.

To determine the suppressive capacity of circulating 
CD14+ HLA-DR−/low mMDSCs from early-stage breast 
cancer patients, we co-cultured isolated CD14+ cells with 
autologous CD14-depleted PBMCs. PBMCs were labelled 
with CFSE and stimulated with CD3/CD28 beads, with the 
degree of proliferation by CD4+ and CD8+ T cells meas-
ured by flow cytometry after 5 days of culture. We observed 
potent and consistent suppression of CD4+ and CD8+ T 
cell proliferation by CD14+ myeloid cells from breast can-
cer patients (n = 5) (p < 0.0001) (Fig. 3a). In preliminary 

experiments, we observed a concentration-dependent asso-
ciation between isolated CD14+ cells and T cell prolifera-
tion (data not shown). To investigate whether this suppres-
sive capacity by circulating myeloid cells was specific to 
breast cancer patients, we tested the suppressive capacity of 
myeloid cells from healthy age-matched women (n = 4). We 
found that myeloid cells from healthy women could also sup-
press proliferating T cells, but the suppressive capacity was 
weaker when compared to breast cancer patients (p = 0.0037 
for CD8+; trend for CD4+) (Fig. 3a).

Circulating CD14+ myeloid cells from breast cancer 
patients suppress immune responses via reactive 
oxygen species

To investigate the mechanism(s) potentially responsible 
for the suppressive capacity of breast cancer CD14+ mye-
loid cells, we treated cells in the model previously used to 

Fig. 2   Frequencies of immune cell populations in breast cancer 
patients and healthy women. PBMCs from 40 breast cancer patients 
and 25 healthy age-matched control women were stained with panels 
of antibodies for lymphoid and myeloid cells and their levels assessed 
using multi-colour flow cytometry. a Frequencies of cells with the 
mMDSC phenotype CD14+  HLA-DR−/low (left-hand panel) and 
of CD14+ cells (right-hand panel) within CD45+ cells. b Frequen-
cies of circulating myeloid dendritic cells (mDCs, left-hand panel) 
and plasmacytoid DCs (pDCs, right-hand panel) within CD45+ 

cells. c Levels of circulating CD4+ and CD8+ T cells as percentages 
of CD3+ cells. d Frequencies of earlier differentiated CD4+ T cells 
expressing CD45RA within CD3+ cells (left-hand panel); frequen-
cies of later differentiated (CD45RA−) CD8+ CM cells within CD3+ 
cells  (right-hand panel). BC breast cancer, PBMCs peripheral blood 
mononuclear cells, mMDSCs monocytic MDSCs, mDCs myeloid 
dendritic cells, pDCs plasmacytoid dendritic cells, CM central mem-
ory T cells
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investigate immune suppression with inhibitors targeting dif-
ferent myeloid-suppressor pathways, namely TGFβ (inhibi-
tor: neutralising antibody), ROS (inhibitor: superoxide dis-
mutase, SOD) and STAT-3 (inhibitor: AG490). We found 
that inhibition of ROS via SOD partially restored T cell pro-
liferation (p < 0.0001 for CD8+ and p = 0.0002 for CD4+), 
while we also observed weak but statistically significant res-
toration for anti-TGFβ (p = 0.0067 for CD8+; CD4+ not sig-
nificant) and AG490 (p = 0.0009 for CD8+ and p = 0.0002 
for CD4+) (Fig. 3b). Compared with untreated cultures, 
those treated with SOD restored CD8+ T cell proliferation 
by 131% and CD4 73% on average. Treatment with anti-
TGFβ and AG490 only led to a 34% (CD8) and 11% (CD4) 
and 44% (CD8) and 31% (CD4) proliferation increase com-
pared with untreated cultures, respectively (Fig. 3c).

Discussion

Compared with some other cancer types [2–5], immuno-
therapy is not yet a routine form of treatment for breast can-
cer. To gain an indication of which immune cells could be 
targeted for effective immunotherapy, we considered it an 
important first step to identify possible alterations in the 
immune system of breast cancer patients compared with 
healthy age-matched women. Characterising such “signa-
tures” of immune alteration on both a phenotypical and func-
tional level might provide a means of identifying potential 
targets for immunotherapy. Due to public health campaigns 
and medical advances, breast cancer is now typically diag-
nosed at an early stage of disease. To account for this, we 
additionally examined if immune perturbations occur early 
in disease development by comparing the immune signa-
tures between healthy women and early-stage breast cancer 
patients. To date, studies attempting to identify changes in 
the immune system in exclusively early-stage breast cancer 
are rare [29, 30].

Our results reveal that cells with the mMDSC pheno-
type CD14+ HLA-DR−/low are present at significantly 
higher frequencies in breast cancer patients than in healthy 
individuals. Despite the recent expansion in the study of 
MDSCs in later stage cancer patients [23, 24, 26, 31], there 
are no studies which have so far assessed whether these 
cells are clinically relevant in early-stage breast cancer. 
Thus this study is, to the best of our knowledge, the first to 
show that CD14+ HLA-DR−/low mMDSCs are elevated 
early in breast cancer progression (clinical stages 1 and 2). 
This finding suggests that immune suppression via elevated 
mMDSCs occurs early in the development of breast cancer, 
which may help protect tumour cells from immune attack. 
Interestingly, we found that total monocyte frequencies did 
not differ between breast cancer and healthy women, indi-
cating the pool of CD14+ myeloid cells in breast cancer 

to be selectively driven towards MDSC differentiation, 
thereby leaving other populations of myeloid cells unaf-
fected. Indeed, we did not observe levels of other myeloid 
cells, such as mDCs, to be altered in breast cancer. Col-
lectively, our findings indicate the importance of mMDSCs 
(CD14+ HLA-DR−/low), already in earlier stages of breast 
cancer. Pending clinical follow-up will reveal if these cells 
can be used to predict patient survival as previously shown 
in other cancer types [18].

Further to our findings on mMDSCs, we also found 
elevated levels of early differentiated T cells in breast can-
cer patients compared with healthy women. Higher levels 
of these cells indicates potential for the immune system to 
recognise novel or newly arising tumour antigens present 
in the tumour and thus mount an immune response against 
tumour cells. This anti-tumour potential might be counter-
balanced by our finding of elevated mMDSCs, which may 
suppress the activity of beneficial T cells, for example by 
preventing their differentiation. Indeed, we found elevated 
levels of both mMDSCs as well as more immature T cells 
expressing CD45RA (which are not TEMRA cells) in breast 
cancer patients. This association suggests that mMDSCs 
may impair the maturation of T cells in cancer patients. This 
notion is supported in our prior study where patients with 
tumour antigen-reactive T cells experienced greater clinical 
benefit if they also had low MDSC levels [26]. In contrast 
to T cells in the periphery, T cells infiltrating the tumour 
(TILs) have frequently been shown to be associated with 
favourable prognoses in breast cancer [7, 29, 32, 33]. The 
relationship between peripheral and intra-tumoural TILs in 
breast cancer is not yet known, and thus we cannot judge 
whether our observation of altered levels of circulating T 
cells in breast cancer patients relates to the presence of T 
cells in the tumour. It is conceivable that higher levels of 
T cells in the blood may act to support the maintenance of 
intra-tumoural T cells, but such associations remain to be 
confirmed. It should certainly be considered that immune 
cells in the periphery may play different roles to those infil-
trating the tumour, although there may be more transit in and 
out of tumours than previously appreciated [34].

Having observed elevated mMDSCs in patients, we then 
investigated whether CD14+ myeloid cells from breast can-
cer patients or healthy women are immunosuppressive. To 
better mimic immune suppression that these cells may exert 
in vivo, we compared the suppressive potential of equivalent 
numbers of isolated CD14+ myeloid cells between breast 
cancer patients and controls. We also aimed to determine 
potential mechanisms responsible for any immune suppres-
sion observed by inhibiting three of the pathways previously 
shown to be used by MDSCs in other cancer types [35–37], 
namely TGFβ, STAT-3 and ROS. Our results revealed that 
CD14+ myeloid cells from breast cancer patients are potent 
suppressors of autologous T cell proliferation, already in 
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patients with early disease. Interestingly, CD14+ myeloid 
cells from healthy counterparts were also able to suppress 
autologous T cells, but not as profoundly as myeloid cells 
from breast cancer patients. This likely reflects normal levels 
of peripheral tolerance governed by mMDSCs in healthy 
individuals. The observation that myeloid cells in breast can-
cer patients more potently suppress immune responses may 
reflect our finding that cells with the CD14+ HLA-DR−/low 
mMDSC phenotype are present at higher levels in these 
patients. The potential association between CD14+ HLA-
DR−/low mMDSCs and immune suppression is supported 
by other studies showing the suppressive features of this par-
ticular mMDSC phenotype in a number of other cancer types 
[28, 38–40]. However, as far as we are aware, this is the first 
study proposing their suppressive capacity in breast cancer 
patients. To more conclusively demonstrate the suppressive 
function of CD14+ HLA-DR−/low mMDSCs, future studies 
should additionally examine their suppressive function in 
an isolated system only containing these cells and activated 
CD4+/CD8+ T cells. This approach would isolate potential 
effects due to other cells present in circulating blood such as 
Tregs and other suppressive myeloid populations. However, 
while establishing the conditions for this study we observed 
a concentration-dependent association between T cell sup-
pression and isolated CD14+ myeloid cells in the presence 
of all circulating mononuclear cells, suggesting the effects 
of other potentially suppressive cell types to be negligible. 
We chose to use a model including all circulating mononu-
clear cells to avoid working in a more artificial model with 
isolated cell types. We further found that inhibiting ROS 
partially reduced the suppressive effect of CD14+ myeloid 
cells from breast cancer patients, suggesting ROS as one of 
the suppressive mechanisms used in breast cancer mMDSC-
mediated suppression of T cells, as in other cancer types 
[28, 41, 42]. However, inhibiting ROS could not completely 

restore T cell proliferation, suggesting that a combination of 
other suppressive mechanisms may be simultaneously used 
by these cells to suppress the immune system, or that ROS 
inhibition was incomplete. Further functional assays explor-
ing a wider spectrum of candidate suppressive pathways may 
reveal more information regarding the mechanisms used by 
these cells to exert immune suppression in breast cancer.

This study shows that systemic immune alterations occur 
early in the development of breast cancer and that the identi-
fied differences between healthy women and breast cancer 
patients may serve as immunotherapy targets in future. Our 
results encourage the potential use of strategies targeting 
CD14+ HLA-DR−/low mMDSCs in breast cancer such 
as antioxidant treatment strategies. However, developing 
a more detailed picture of interactions between disease-
associated factors and their effect on different immune cell 
populations (particularly MDSCs) will be crucial for the 
development of effective immunotherapeutic approaches.
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