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Abstract

Background Models that predict the risk of estrogen receptor

(ER)-positive breast cancers may improve our ability to target

chemoprevention. We investigated the contributions of sex

hormones to the discrimination of the Breast Cancer

Surveillance Consortium (BCSC) risk model and a polygenic

risk score comprised of 83 single nucleotide polymorphisms.

Methods We conducted a nested case-control study of 110

women with ER-positive breast cancers and 214 matched

controls within a mammography screening cohort. Partic-

ipants were postmenopausal and not on hormonal therapy.

The associations of estradiol, estrone, testosterone, and sex

hormone binding globulin with ER-positive breast cancer

were evaluated using conditional logistic regression. We

assessed the individual and combined discrimination of

estradiol, the BCSC risk score, and polygenic risk score

using the area under the receiver operating characteristic

curve (AUROC).

Results Of the sex hormones assessed, estradiol (OR 3.64,

95% CI 1.64–8.06 for top vs bottom quartile), and to a

lesser degree estrone, was most strongly associated with

ER-positive breast cancer in unadjusted analysis. The

BCSC risk score (OR 1.32, 95% CI 1.00–1.75 per 1%

increase) and polygenic risk score (OR 1.58, 95% CI

1.06–2.36 per standard deviation) were also associated with

ER-positive cancers. A model containing the BCSC risk

score, polygenic risk score, and estradiol levels showed

good discrimination for ER-positive cancers (AUROC

0.72, 95% CI 0.65–0.79), representing a significant

improvement over the BCSC risk score (AUROC 0.58,

95% CI 0.50–0.65).

Conclusion Adding estradiol and a polygenic risk score to

a clinical risk model improves discrimination for post-

menopausal ER-positive breast cancers.

Keywords Breast cancer � Single nucleotide

polymorphisms � Sex hormones � Risk assessment � Cancer

surveillance and screening � Chemoprevention
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BMI Body mass index

CCR California Cancer Registry

CPMC California Pacific Medical Center

GWAS Genome-wide association study

LR Likelihood ratio

OR Odds ratio

PRS Polygenic risk score

SFMR San Francisco Mammography Registry

SHBG Sex hormone binding globulin

SNPs Single nucleotide polymorphisms

USPSTF United States Preventive Services Task Force

Introduction

ER-positive cancers represent at least 80% of breast can-

cers diagnosed in the United States [1]. Preventive medi-

cations such as tamoxifen and raloxifene can reduce the

risk of estrogen receptor (ER)-positive breast cancers in

high-risk women but have potential adverse effects [2].

Uptake is partially limited by the ability to identify high-

risk women with the most favorable benefit-harm tradeoff

[3, 4].

The United States Preventive Services Task Force

(USPSTF) recommends using risk prediction models to

identify candidates for chemoprevention but acknowledges

that current models have modest discrimination [3]. Vali-

dated models such as the Breast Cancer Risk Assessment

Tool and Tyrer-Cuzick model incorporate clinical risk

factors such as age, race/ethnicity, family history, history

of prior breast biopsy, and history of benign breast disease

[3, 5–7]. The Breast Cancer Surveillance Consortium

(BCSC) risk model also includes mammographic breast

density, a strong risk factor, and tends to have the highest

discrimination of available models [8, 9].

Single nucleotide polymorphisms (SNPs) can improve

the performance of clinical risk models. Individual SNPs

have modest impacts on risk, but polygenic risk scores

(PRS) representing the cumulative effects of multiple SNPs

exhibit strong associations with risk that are largely inde-

pendent from clinical risk factors [10–12]. PRS have been

shown to improve the discrimination of the BCSC [11, 12]

and other [13] risk models. The magnitude of improvement

in the area under the receiver operating characteristic curve

(AUROC) of these models is modest [11, 12].

Circulating sex hormone levels may improve prediction

beyond SNPs and clinical models [7, 14, 15]. Estrone and

estradiol have been most robustly associated with breast

cancer, particularly ER-positive cancers. Elevated estradiol

levels are positively associated with breast cancer risk

[14–20], while undetectable levels are strongly protective

against ER-positive cancers [21]. Sex hormone binding

globulin (SHBG) binds estradiol, affecting bioavailable

levels, and has been inversely associated with risk of

invasive breast cancer [14]. The reported effects of

testosterone on breast cancer risk have been heterogeneous

[14, 18, 19, 22–24].

Many prior studies have examined the relationships

between individual hormones and breast cancer risk

[14–16, 18–20, 22, 24]. Fewer studies have assessed the

combined effects of hormones in risk prediction, particu-

larly in conjunction with risk prediction models. In one

study, sex hormones (with the most parsimonious combi-

nation being estrone sulfate, testosterone, and prolactin)

improved the performance of the Gail and Rosner–Colditz

risk models by AUROC of 0.06 and 0.03 (relative

improvements of 11 and 6%), respectively [25]. This

analysis did not account for breast density or SNPs.

A prediction model for ER-positive breast cancer, which

includes sex hormones, SNPs, and clinical risk factors

could potentially improve on the discrimination of more

restrictive models and help identify women most likely to

benefit from chemoprevention by virtue of their risk of ER-

positive breast cancer. To investigate this hypothesis, we

studied the associations of four sex hormones—estrone,

estradiol, testosterone, and SHBG—with ER-positive

breast cancer in postmenopausal women. We assessed

whether the addition of one or a combination of sex hor-

mones improved the discrimination of the BCSC risk score

alone, and the BCSC risk score modified by an 83-SNP

PRS.

Methods

Study population

We conducted a nested case-control study [12] within the

California Pacific Medical Center (CPMC) Research

Institute cohort, comprised of women undergoing screen-

ing mammography at the Breast Health Center at CPMC.

Between 2004 and 2011, women were asked to provide

blood samples for research. Women who provided

informed consent for blood collection completed a ques-

tionnaire with demographic information and risk factor

data, which were collected and pooled by the San Fran-

cisco Mammography Registry (SFMR). The protocol was

approved by the institutional review boards at CPMC and

the University of California, San Francisco.

Blood samples were collected from 19,276 women

without a diagnosis of invasive or pre-invasive breast

cancer at the time of blood draw. A nested case-control

study was performed on 324 participants with blood col-

lected between 9/3/2004 and 11/30/2011. We excluded

women self-identified as premenopausal, perimenopausal,

or postmenopausal as a direct result of surgery or medical
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treatments, such as chemotherapy. Women on hormonal

therapy or selective estrogen receptor modulators at the

time of blood draw were also excluded. Cases were

ascertained by linkage to the California Cancer Registry

(CCR) and defined as pathologically-confirmed diagnoses

of invasive breast cancers with positive/elevated ER

expression on immunohistochemical staining. ER-negative

cases and those with unavailable ER status were excluded.

Women without breast cancer as of last linkage to the CCR

on 10/31/2013 were matched as controls in a 2:1 ratio to

cases based on age, race/ethnicity, and date of index

mammogram. Six cases were matched 1:1 with controls

due to missing data, resulting in 110 cases and 214

controls.

Sex hormone measurement

Blood samples for sex hormone measurements were col-

lected at the time of consent. Whole blood was centrifuged

within 15 min of venipuncture and serum was aliquoted

into 1 mL tubes stored at -80�C. Samples were shipped on

dry ice by overnight courier to Mayo Medical Laboratory

(Rochester, MN) for hormone measurement. Liquid chro-

matography–mass spectrometry (LC–MS, Agilent Tech-

nologies, Santa Clara, CA) was used to measure estrone,

estradiol, and testosterone levels. Prior to LC–MS, estra-

diol and estrone were extracted with methylene chloride

and underwent derivatization with dansyl chloride fol-

lowed by high-pressure liquid chromatography. SHBG was

measured using a Siemens chemiluminescent assay (Sie-

mens Healthcare Diagnostics, Deerfield, IL). The inter- and

intra-assay coefficients of variation for each assay are

shown in Supplementary Table S1. Women with estradiol

levels over 25 pg/ml were excluded from the analysis

given the possibility that extreme values were due to

unreported or incorrectly ascertained exogenous hormone

usage or menopausal status. The free estradiol index was

calculated by dividing the total estradiol level by the SHBG

level and multiplying by 100.

SNP genotyping and calculation of polygenic risk

score

Whole blood was sent to the Genomics Core at the

University of Minnesota for DNA extraction. A total of 113

cases and 113 matched controls randomly selected from the

overall dataset were genotyped using an OncoArray plat-

form (Illumina, San Diego, CA), resulting in 1:1 matching

within the genotyped subgroup. We included 83 SNPs

(Supplementary Table S2) selected based on review of the

genome-wide association study (GWAS) catalog and

published associations with invasive breast cancer in

Caucasian, Asian, or Hispanic populations, as previously

described [12]. The PRS was calculated using a previously

described method using published odds ratios and allele

frequencies [12]. In brief, it is the composite likelihood

ratio (LR) of breast cancer representing the individual

effects of each SNP assuming that the SNPs are inherited

independently (in linkage equilibrium) and that there are no

interactions between them.

BCSC model

The BCSC risk model provides estimates of 5-year abso-

lute risk using age, race/ethnicity, presence of a first-degree

relative with breast cancer, history of breast biopsy, and

breast density [8, 9]. Community radiologists participating

in the SFMR assessed breast density on the index mam-

mogram (acquired 1997–2011) according to the Breast

imaging reporting and data system (BI-RADS) fourth

edition or earlier categories: almost entirely fat (a), scat-

tered fibroglandular densities (b), heterogeneously dense

(c), and extremely dense (d) [26]. Although an updated

version of the BCSC model has been published [9], we

used version 1.0 [8] to allow the calculation of risk esti-

mates for women older than 74 years.

Statistical analysis

Demographic data and risk factors were compared between

cases and controls using the chi-squared test for categorical

measures and the unpaired t test for body mass index. The

median hormone levels across cases and controls were

compared using the non-parametric k-sample equality of

medians test. Statistical tests were two-sided, with

a = 0.05.

To examine the effects of individual hormones on ER-

positive breast cancer risk, we performed univariate con-

ditional logistic regression. Hormone levels were catego-

rized into quartiles based on their respective distributions

in controls. We compared point estimates across quartiles

using tests of linear trend.

To examine the relative contributions of sex hormone

levels, the BCSC risk score, and PRS to ER-positive risk,

we performed conditional logistic regression using uni-

variate and multivariable models within the subset of

women (n = 218, i.e., 109 matched case-control pairs)

with complete genotype, hormone, density, and clinical

data. Hormone levels were log2-transformed so that a one-

unit increase represented a doubling of levels. The PRS

was standardized according to the mean and standard

deviation of the PRS in controls. The 5-year risk estimate

generated by BCSC version 1.0 was used as a continuous

variable in logistic regression models.

Area under the receiver operating characteristic curve

(AUROC) was used to compare discrimination. To avoid
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the bias introduced when the same data are used to both fit

and evaluate the model, we performed tenfold cross-vali-

dation to confirm the internal validity of the model. Briefly,

we split the dataset into ten equally-sized groups contain-

ing randomly-selected case-control pairs, used 9/10 as a

training dataset to fit a regression model, then used the

fitted model to generate predicted probabilities in the

remaining 1/10. We repeated this process ten times so that

each 1/10 of the dataset was used once as a validation set,

and then used the aggregate predicted probabilities to

calculate the final cross-validated AUC and 95% CI using a

stratified bootstrap approach (n = 1000 replications)

accounting for matched case-control clusters. Reported

AUROCs represent cross-validated estimates. We com-

pared AUROCs using a Wald test with bootstrap variance

and covariance estimates.

Primary statistical analysis was performed using

STATA 14.1 (StataCorp, College Station, TX, USA). The

PRS was generated using R (R Foundation, Vienna, Aus-

tria), and the BCSC risk estimate was generated using SAS

Version 9.3 (SAS Institute, Cary, NC, USA).

Results

We identified 110 postmenopausal women with ER-posi-

tive, invasive breast cancers and 214 matched controls.

Approximately 80% of cases and controls were Caucasian/

White by self-report (Table 1). Cases were more likely to

have a positive family history of breast cancer, prior breast

biopsy, and higher body mass index, although the absolute

difference was 1 kg/m2. The distribution of breast density

was generally similar between cases and controls, with

most women having scattered fibroglandular densities (BI-

RADS b) or heterogeneously dense (BI-RADS c) breasts.

Fatty breasts (BI-RADS a) were more common in cases,

while extremely dense breasts (BI-RADS d) were more

common in controls. However, the overall difference in

density did not reach statistical significance (p = 0.12).

Cases had higher median estrone and estradiol levels

while controls had higher SHBG (Table 1). Cases and

controls had similar testosterone levels. The distributions

of all hormone levels were right-skewed, while log-trans-

formed levels approximated a normal distribution (Sup-

plementary Figure S1).

We examined the associations between individual sex

hormones and ER-positive breast cancer using univariate

logistic regression (Table 2). Estradiol had the strongest

association with ER-positive breast cancer, with increasing

levels corresponding to higher risk. The associations

reached statistical significance in the highest (OR 3.64,

95% CI 1.64–8.06) and second-highest (OR 3.12, 95% CI

1.41–6.90) quartiles relative to the bottom quartile, and

followed a linear trend. Free estradiol index showed a

similar trend. Estrone levels above 14 pg/ml were associ-

ated with an approximately twofold increase in risk. SHBG

was inversely associated with risk, though no quartile

associations reached statistical significance. The second-

highest quartile of testosterone was associated with ele-

vated risk (OR 2.55, 95% CI 1.23–5.26) but a null effect

could not be excluded for the other quartiles.

The individual and combined contributions of the BCSC

risk score, PRS, and estradiol levels to risk prediction were

evaluated in a subset of 218 women representing 109 cases

and 109 matched controls who were genotyped in addition

to having hormone levels and breast density measured. We

selected estradiol because it was most robustly associated

with ER-positive breast cancer in univariate logistic

regression.

In univariate analysis, estradiol was associated with ER-

positive cancer, as were the PRS and BCSC risk score

(Table 3, column 1). In a model containing the BCSC risk

score and estradiol levels, the OR per doubling of estradiol

levels slightly increased from 1.57 (95% CI 1.13–2.19) to

1.79 (95% CI 1.24–2.58). The ORs and confidence inter-

vals per 1% increase in the BCSC risk score and per

doubling of estradiol modestly increased when combined

in a joint model (Table 3, column 2), but remained similar

when the PRS was added to the model (Table 3, column 3).

Adjustment for BMI slightly attenuated the associations

between estradiol and ER-positive cancer but did not have

a substantial effect on the BCSC risk score or the PRS

(Supplementary Table S3).

We compared the discrimination of the above models

using ROC curve analysis generated by tenfold cross-val-

idation (Table 4). AUROCs for estradiol and the PRS were

higher than that of the BCSC risk score, though differences

did not reach statistical significance. Adding estradiol to

the BCSC risk score resulted in modestly improved dis-

crimination from AUROC 0.58 (95% CI 0.50–0.65) to 0.67

(95% CI 0.57–0.71), p = 0.02, while the AUROC increase

with adding PRS to the BCSC risk score was of borderline

statistical significance. The combination of the BCSC risk

score, PRS, and estradiol levels had the highest discrimi-

nation out of all models, with AUROC 0.72 (95% CI

0.65–0.79), representing an AUROC increase of 0.14

(24%) relative to the BCSC risk score alone, p\ 0.001.

Furthermore, the model including BCSC risk score, PRS,

and estradiol had improved discrimination relative to the

BCSC-PRS (p = 0.02) and BCSC-estradiol models

(p = 0.01). The ROC curves for the BCSC risk score alone

and with the addition of the PRS and/or estradiol levels are

shown in Fig. 1. We confirmed that inclusion of estrone,

testosterone, or SHBG to models containing the BCSC risk

score and estradiol levels did not further improve model

performance (Supplementary Table S4).
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We further examined the physiologic relationship

between estradiol and ER-positive breast cancer using a

cubic splines model (Figure S2). The risk of ER-positive

breast cancers increased linearly with rising estradiol levels

until a threshold of approximately 5 pg/ml, beyond which

there was no further risk elevation associated with higher

estradiol levels. The precision of our OR estimate was

limited in the upper range of estradiol levels due to scarcity

of data.

Discussion

The addition of estradiol levels and the PRS to the BCSC

model improved its performance, with the combined model

having an AUROC of 0.72 (95% CI 0.65–0.79) for ER-

positive cancers, representing a statistically significant

improvement from the BCSC risk score, both alone and in

combination with estradiol or an 83-SNP polygenic risk

score. The sample size and retrospective nature of the

analysis limits our ability to definitively assess discrimi-

nation and calibration, particularly the precision of our

AUROC point estimates. Nevertheless, our results con-

tribute to the growing body of literature showing that the

addition of circulating measures such as SNPs and hor-

mone levels can improve the performance of clinical risk

models.

While the PRS has been shown to improve the dis-

crimination of the BCSC model in several reports [11, 12],

these analyses focused on invasive breast cancer overall.

Differential effects of clinical risk factors [27], breast

density [28, 29], and SNPs [30, 31] with ER subtype have

been reported. Neither the BCSC model nor PRS are fitted

to receptor subtype, but these models are likely well-fitted

to ER-positive cancers given that at least 80% of breast

cancers diagnosed in the United States are ER-positive

[27], with the proportion rising with older age [1]. In our

study, it is possible that both the PRS and estradiol levels

contributed subtype-specific prediction, suggesting that

measurement of both biomarkers may be of clinical value.

Our study is the first to investigate the combined con-

tributions of clinical risk factors, breast density, SNPs (as

represented by a PRS), and sex hormones to breast cancer

risk prediction. The most comparable study examined the

contributions of seven sex hormones to the Gail and Ros-

ner–Colditz risk models [25]. The authors used stepwise

regression to identify a subset of hormones (estrone,

testosterone, and prolactin) that maximized predictive

Table 1 Study demographics,

all patients
Characteristic Controls (n = 214) Cases (n = 110) p value

Matched variables

Age, years—median (I.Q.R.) 62 (57–67) 61.5 (57–67)

Race—no. (%)

White 172 (80.4) 89 (80.9)

Hispanic 9 (4.2) 5 (4.6)

Asian 30 (14.0) 15 (13.6)

Mixed 2 (0.9) 1 (0.9)

Other (Non-Asian) 1 (0.4) 0 (0)

Unmatched variables

First-degree relative with breast cancer—no. (%) 32 (15.0) 36 (32.7) \0.001

History of breast biopsy—no. (%) 49 (22.9) 36 (32.7) 0.06

Mean Body Mass Index—median (I.Q.R.) 24.3 (21.6–27.3) 25.8 (23.0–28.3) 0.05

Breast density, BI-RADS category—no. (%)

a, almost entirely fat 26 (12.2) 18 (16.4) 0.12

b, scattered fibroglandular densities 99 (46.3) 49 (44.5)

c, heterogeneously dense 69 (32.2) 40 (36.4)

d, extremely dense 20 (9.4) 3 (2.7)

Sex hormone levels—median (I.Q.R.)

Estrone (pg/ml) 14 (10–19) 16 (12–22) 0.002

Estradiol (pg/ml) 2.8 (1.9–4.3) 3.5 (2.3–4.8) 0.005

Free estradiol index 5.5 (3.2–9.9) 7.2 (4.3–12) 0.014

Testosterone (pg/ml) 10 (7.5–16) 12 (8.4–16) 0.32

Sex hormone binding globulin (nmol/L) 51.4 (37.5–70.8) 44.7 (36.1–65.2) 0.20

I.Q.R Interquartile Range, BI-RADS breast imaging reporting and data system
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power of the respective models. Direct comparison of the

AUROCs in our study to those reported by Twroger et al.

[25] is limited by differences in study design, statistical

analysis, and performance of risk models evaluated in each

study. Neither the Gail nor Rosner–Colditz models incor-

porate breast density, and the study [25] did not evaluate

the effects of genetic variants.

Our findings around the association of the individual sex

hormones with breast cancer risk are qualitatively consis-

tent with previous studies. Estradiol has been robustly

associated with risk. In our study, estradiol had the stron-

gest association with ER-positive breast cancer in uni-

variate analyses, and the results of our cubic splines

analysis suggested a threshold effect. Estrone has also been

associated with breast cancer risk in numerous studies

[14, 19, 20], consistent with our results. Our results suggest

that SHBG (which modulates estradiol’s physiologic

effects) provides a small improvement in prediction, but

our analysis was not powered to definitively assess this

observation. Testosterone did not meaningfully contribute

to risk prediction in our dataset, which is unsurprising

given the heterogeneous results in the literature

[14, 18, 19, 22–24].

Our findings should be interpreted in light of several

considerations. First, the discrimination of the BCSC risk

score in our dataset was lower than in the previous studies,

where the AUROCs ranged from 0.65 to 0.66 [8, 9]. The

lower AUROC we observed was likely due to matching

based on age and race/ethnicity (both strong predictors of

invasive breast cancer in the BCSC model). Additionally,

Table 2 Unadjusted

associations between hormone

levels and estrogen receptor-

positive breast cancer

Hormone level, by quartiles Controls n (%) Cases n (%) O.R. (95% CI) ptrend

Estrone (pg/ml) 0.002

\10 57 (26.2) 17 (15.5) 1.0 (ref)

10–14 55 (25.7) 19 (17.3) 1.23 (0.58–2.61) 0.59

14–19 58 (27.1) 41 (37.3) 2.49 (1.23–5.03) 0.011

C19 45 (21.0) 33 (30.0) 2.61 (1.27–5.39) 0.009

Estradiol, total (pg/ml) \0.001

\1.9 53 (24.8) 12 (10.9) 1.0 (ref)

1.9–2.8 53 (24.8) 23 (20.9) 2.20 (0.95–5.11) 0.066

2.8–4.3 50 (23.4) 33 (30.0) 3.12 (1.41–6.90) 0.005

C4.3 58 (27.1) 42 (38.2) 3.64 (1.64–8.06) 0.001

Free estradiol index 0.004

\3.2 62 (29.0) 19 (17.3) 1.0 (ref)

3.2–5.5 56 (26.2) 25 (22.7) 1.52 (0.76–3.05) 0.24

5.5–9.9 52 (24.3) 29 (26.4) 1.85 (0.91–3.76) 0.089

C9.9 44 (20.6) 37 (33.6) 2.64 (1.36–5.13) 0.004

Testosterone (pg/ml) 0.12

\7.5 51 (23.8) 17 (15.5) 1.0 (ref)

7.5–10 60 (28.0) 27 (24.6) 1.41 (0.66–3.00) 0.37

10–16 54 (25.2) 42 (38.2) 2.55 (1.23–5.26) 0.012

C16 49 (22.9) 24 (21.8) 1.57 (0.71–3.43) 0.26

Sex hormone binding globulin (nmol/L) 0.093

\37.5 54 (25.2) 31 (28.2) 1.0 (ref)

37.5–51.4 53 (24.8) 35 (31.8) 1.16 (0.62–2.18) 0.63

51.4–70.8 54 (25.2) 27 (24.6) 0.86 (0.44–1.66) 0.65

C70.8 53 (24.8) 17 (15.5) 0.60 (0.30–1.18) 0.14

Bold values denote statistically significant associations (p\ 0.05)

Table 3 Univariate and multivariate logistic regression on hormones in combination with the BCSC model and polygenic risk score

Risk factor Univariate

O.R. (95% CI)

p value BCSC and estradiol

O.R. (95% CI)

p value BCSC, estradiol and PRS

O.R. (95% CI)

p value

Estradiol, per doubling 1.57 (1.13–2.19) 0.01 1.79 (1.24–2.58) 0.002 1.82 (1.26–2.64) 0.001

Polygenic risk score, per standard deviation 1.58 (1.06–2.36) 0.02 – – 1.63 (1.07–2.50) 0.02

BCSC risk score, per 1% increase 1.32 (1.00–1.75) 0.05 1.51 (1.11–2.06) 0.01 1.52 (1.10–2.10) 0.01

608 Breast Cancer Res Treat (2017) 166:603–612

123



the distribution of breast density did not differ significantly

between cases and controls, possibly due to a combination

of chance and the restriction of our analysis to post-

menopausal women with ER-positive breast cancers, a

group where the association with breast density is attenu-

ated with increasing age [27]. The discrimination of the

BCSC risk score would likely be higher in larger, unmat-

ched studies.

Importantly, the sample size of our study limited the

precision of our point estimates and comparisons. In par-

ticular, the AUROC for the PRS was higher than previ-

ously reported, though the latter studies’ AUROCs ranged

from 0.60 to 0.62, which overlaps with our confidence

intervals [10, 11]. The AUROC for the PRS in combination

with the BCSC risk score was slightly lower than that of

the PRS alone possibly due to sample splitting for cross-

validation, and relative insensitivity of the AUROC for

improvements in discrimination with the addition of risk

factors [32]. Our AUROC comparisons must also be

interpreted in light of an underlying assumption of the

Wald test, that the differences in AUROC estimators fol-

lows a normal distribution. Due to our small sample size,

this assumption may not have been satisfied [33].

Additionally, the case-control design limited our ability

to assess calibration. Careful evaluation of model calibra-

tion in independent, preferably unmatched, datasets is

essential prior to adoption of such a tool into clinical

practice. Lastly, our population was predominantly white,

creating the need for further assessment of discrimination

and calibration in a multiracial, multiethnic population.

Our statistical approach differed from those described

by others. We did not adjust our main analysis for addi-

tional covariates beyond those included in the BCSC

model. Previously published studies have conditioned on

such variables as parity, number of live births, age at

menarche, and time since menopause [14]. These analytical

approaches tend to isolate the causal effect of the hormonal

pathway by controlling for potential mediators, likely

leading to a conservative estimate of the hormone’s effect.

In contrast, our goal was to investigate the net predictive

power of sex hormones, which encompasses the effects of

mediating and confounding pathways. We examined hor-

mones without adjustment for covariates to determine

whether they improved the prediction of our models. For

example, we did not adjust for BMI because the relation-

ship between obesity and breast cancer risk is primarily

mediated through its effect on circulating estrogen levels

[34–36]. Supporting this assumption, adjusting for BMI in

secondary analyses minimally attenuated the association

between estradiol and ER-positive breast cancer.

We chose ER-positive cancers as our endpoint given the

direct causal relationship between estradiol (and other sex

hormones) with these cancers. In the clinical setting, our

results are therefore most applicable to chemoprevention.

Guidelines empirically recommend using risk prediction

models to identify high-risk women eligible for chemo-

prevention [3, 37], although such models are not specific to

particular subtypes of breast cancer. Selective estrogen

receptor modulators (SERMs) and aromatase inhibitors

have established efficacy in preventing the development of

ER-positive cancers in high-risk women. Improving risk

Table 4 Areas under the receiver operating characteristic curve for

models containing the BCSC model, polygenic risk score, and sex

hormones

Model Area under the curve 95% CI p valuea

BCSC 0.58 0.50–0.65 –

PRS 0.68 0.61–0.75 0.07

Estradiol only 0.65 0.58–0.72 0.21

BCSC-PRS 0.64 0.57–0.71 0.07

BCSC-estradiol 0.67 0.60–0.74 0.02

BCSC-PRS-estradiol 0.72 0.65–0.79 \0.001b,c

a Compared with BCSC model alone
b p = 0.01 versus BCSC-estradiol model
c p = 0.02 versus BCSC-PRS model

Fig. 1 Receiver operating characteristic curves for estrogen receptor-

positive breast cancers are shown for the Breast Cancer Surveillance

Consortium (BCSC) model alone and in combination with estradiol

level, polygenic risk score (PRS), or both. The dashed reference line

corresponds to an area under the curve of 0.5
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prediction for ER-positive cancers may improve our ability

to identify women who may specifically benefit from

chemoprevention, although this approach merits further

evaluation in specimens stored from randomized trials.

The threshold effect of estradiol is consistent with prior

studies showing that high-risk women with unde-

tectable estradiol levels were not at elevated risk of

developing breast cancers, and did not benefit from

chemoprevention with raloxifene, a selective estrogen

receptor modulator [21]. Although our splines analysis is

purely exploratory and limited by sample size, future

studies could further investigate whether a threshold rela-

tionship exists and attempt to identify an estradiol level

cutoff that could be used alone, or in conjunction with risk

models, to risk-stratify women for ER-positive cancer.

Our results suggest that the addition of estradiol to

clinical risk factors, breast density, and a PRS may improve

the prediction of ER-positive breast cancer in post-

menopausal women. This combination of predictors may

improve the identification of postmenopausal women who

are most likely to benefit from chemoprevention.
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