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Abstract

Purpose The role of Forkhead Box Protein 3 (Foxp3)

expressing regulatory T cells (Tregs) in breast cancer

remains unclear. We examined the abundance and locali-

sation of total T cells, B cells and Tregs within samples

from triple-negative breast cancers (TNBCs) and asked

whether these parameters were associated with clinico-

pathological features of the cancer or clinical outcomes.

Methods Samples from TNBCs diagnosed between 2003

and 2010 in Singapore were divided into ‘‘high’’ and ‘‘low’’

intra-tumoural or stromal groups, based on whether they

had higher or lower than median densities of specific

tumour-infiltrating lymphocyte populations (CD3? total T

cells, Foxp3?CD3? Tregs, or CD20? B cells) in the intra-

tumoural space or stroma.

Results Of the 164 samples, patients bearing tumours with

high Tregs within their intra-tumoural, but not stromal, areas

experienced significantly longer overall and disease-free

survival compared to individuals with low Treg densities.

These ‘‘high intra-tumoural Treg’’ tumours were also char-

acterised by relatively higher frequencies of CD8? T cells

and CD20? B cells, and expressed significantly higher levels

of some genes associated with inflammation, immune cell

functions and trafficking, altogether consistent with a more

‘‘immune-activated’’ tumour microenvironment, in contrast

to tumours bearing lower densities of Tregs.

Conclusions In summary, the combination of high densi-

ties of intra-tumoural Tregs, CD8? T cells and CD20? B

cells represents a favourable prognostic panel in TNBCs.

These data also indicate new avenues for further investi-

gation on the interaction between immune cell types within

the tumour microenvironment and highlight the potential of

Treg density and localisation within tumours to affect

clinical outcome.
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Introduction

Triple-negative breast cancers (TNBCs), defined by the

absence of oestrogen receptor (ER), progesterone receptor

(PR) and c-erbB2 (HER2), account for between 9 and 17% of

all breast cancers [1–3]. Patients frequently present with

advanced disease, high incidence of metastasis and recur-

rence, and have significantly poorer prognosis [4–8]. Due to

the lack of therapeutic targets, almost half of TNBC patients

do not survive more than 5 years [5], warranting a better

understanding of the underlying cellular processes in order to

rationally design effective therapeutics against TNBC.

Recent studies indicate that immune cell activation is a

particularly prominent feature of TNBCs, and the extent and

type of immune cell infiltration can predict favourable
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responses to chemotherapy [9–13]. The immune cells are

critical in tumour initiation, progression and metastasis

[14–16], and the interaction between different types of

immune cells is also an important determinant of outcome

[17]. In breast cancer, a high frequency of tumour-infiltrating

lymphocytes (TILs) is associated with poorer survival in

patients with ER? breast tumours, while in TNBCs, the same

is linked to significantly longer survival [4, 18, 19], indi-

cating that mere presence of TILs is insufficient to reliably

predict their influence, warranting thorough characterization

of the TILs in the context of TNBC.

Among the TILs, of particular interest is the role played by

regulatory T cells (Tregs). Forkhead Box Protein 3 (Foxp3)-

expressing Tregs are a sub-population of CD4? T cells,

preferentially recruited to tumour sites where they render

effector T cells unable to control further growth of the

cancerous cells. While Tregs typically comprise approxi-

mately 4% of circulating CD4? lymphocytes, they can rep-

resent up to 25% of CD4? TILs [20], and such high

frequencies of Tregs have been linked with poor prognosis in a

range of cancers [21, 22]. However, a recent study showed that

while tumour-infiltrating Tregs are poor prognostic indicators

in ER? breast cancer, their presence has a favourable prog-

nostic influence in the ER- HER2? subtype [23], suggesting a

link between Foxp3? Tregs with ER and HER2 expression

status. Moreover, the concurrent presence of relatively high

frequencies of CD8? TILs with Tregs may be important in

driving a favourable outcome, as indicated in ER- [24] and

ER-HER2?breast cancers [23], as well as some TNBCs [25].

Taken together, the current literature establishes the

importance of Tregs and their interactions with other

immune cell types in determining clinical outcomes in

many cancers, and highlights the dearth of knowledge

surrounding the roles of these cell types in TNBCs. Here

we report findings from our evaluation of T cells, in

particular Tregs, abundance and localisation within

TNBCs. We also aimed to establish how these immune cell

parameters were linked with tumour clinicopathological

features and their impact on clinical outcome.

Materials and methods

Patients and tumours

This study was approved by the SingHealth Centralized

Institutional Review Board, CIRB Ref: 2013/664/F and

2015/2199. Archival specimens from 164 TNBCs diag-

nosed between 2003 and 2010 at the Division of Pathology,

Singapore General Hospital, were retrieved. Clinicopatho-

logical parameters including patient age, tumour size,

histologic growth pattern, grade and subtype, associated

ductal carcinoma in situ, lymphovascular invasion and

axillary lymph node status were reviewed (Table 1).

Tissue microarray (TMA) construction

Haematoxylin and eosin (H&E)-stained tumour slides were

used for the construction of the TMA, before three repre-

sentative tumour areas of 1 mm diameter were transferred

from donor formalin-fixed paraffin-embedded (FFPE) tis-

sue blocks to recipient blocks using a MTA-1 Manual

Tissue Arrayer (Beecher Instruments, Sun Prairie, WI,

USA), as previously described [6].

Immunohistochemistry (IHC) analysis of TMA

cores

TMA sections of 4 lm thickness were incubated with anti-

bodies specific for CD3, CD8, CD20 and Foxp3, as well as

Table 1 Univariate analysis showed that high intra-tumoural Treg tumours were significantly associated with longer DFS and OS, compared to

low intra-tumoural Treg tumours, in triple-negative breast cancer

Hazard ratio 95% Confidence Interval p value

Overall survival (OS)

Intra-tumoural Treg TNBCs 0.59 0.33–1.04 0.068

High vs. low

Intra-tumoural Treg TNBC (Every one absolute count of iTreg) 1.00 0.99–1.00 0.177

Disease-free survival (DFS)

Intra-tumoural Treg TNBCs 0.49 0.29–0.83 0.008*

High vs. low

Intra-tumoural Treg TNBC (Every 1 absolute count of iTreg) 0.99 0.90–1.00 0.037*

* Statistically significant

Disease-free survival (DFS) and overall survival (OS)
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ER, PR and HER2. Antibodies specific for epidermal growth

factor receptor (EGFR), cytokeratins (CK) 14 and 34bE12

were used to identify TNBCs with basal-like phenotype,

according to previously published protocols [6, 26]. Details

of antibodies, labelling patterns and dilution factors can be

found in Table 2. Appropriate positive and negative controls

were included. Scoring of antibody-labelled sections was

carried out for nuclear ER and PR, membrane HER2 and

EGFR, and cytoplasmic CK14 and 34bE12 positivity. All

scoring was performed by manual scoring by two observers

(AAT and JY). The core identified as exhibiting the highest

labelling score for the antibody-of-interest (out of the 3 cores

tested) was selected for data analysis. For ER, PR, CK14,

EGFR and 34bE12, a positive result was defined by the

presence of C1% of tumour cells displaying any intensity of

unequivocal staining [27, 28]. For HER2, tumour positivity

was defined by[10% of tumour cells exhibiting 3? mem-

brane staining [29].

TILs expressing CD3, Foxp3, CD8 and CD20 were

identified within the stromal and intra-tumoural TILs pop-

ulations separately. Intra-tumoural TILs were defined as

lymphocytes within cancer cell nests and in direct contact

with tumour cells [30]. Similarly, stromal TILs are defined as

lymphocytes within the tumour stroma and not in direct

contact with tumour cells. Tumoural and stromal areas for

quantification were identified and marked manually by the

observers. Quantification of TILs was determined by the

percentage of the intra-tumoural or stromal areas occupied

by the respective TIL population [30, 31]. Tumours were

then divided into ‘‘high’’ and ‘‘low’’ with respect to a par-

ticular TIL population, when the % of the intra-tumoural or

stromal areas occupied by cells labelled for the TIL marker

(CD3 for total T cells, Foxp3 and CD3 for Tregs, and CD20

for B cells) was on/above or below the median, respectively

(Multiple cut-off points in addition to median value were

also analysed (supplementary Table 3 and 4.). After exclu-

sion of cores lacking either stromal/tumour regions, and

samples lost through sectioning and IHC processing, IHC

analysis was performed on 159 samples for Foxp3 and CD3

labelling, and 142 cases for CD20 labelling.

Multiplex immunofluorescence (IF)

Multiplex IF was performed using an Opal Multiplex fIHC

kit (PerkinElmer, Waltham, MA, USA) as described

[32–35], on FFPE tissue sections processed according to

the standard IHC protocol above. Slides were incubated

with primary antibodies for Foxp3 and CD3, or CD20

followed by secondary antibodies, before application of the

fluorophore (FITC, Cy3 or Cy5)-conjugated tyramides

signal amplification (TSA) buffer (PerkinElmer, Waltham,

MA, USA). DAPI was used as a nuclear counterstain, and

images were acquired using a Vectra 3 pathology imaging

system microscope (PerkinElmer, Waltham, MA, USA).

RNA extraction, NanoString gene expression

and analysis

Eleven ‘‘high’’ and 11 ‘‘low’’ intra-tumoural Treg TNBCs

identified by the IHC scoring, and four benign breast

lesions were included as a reference standard for gene

expression analysis. Unlabelled FFPE standard sections of

10 lm thickness were prepared from each sample. RNA

was extracted using the RNeasy FFPE kit (Qiagen, Hilden,

Germany) on a QIAcube automated sample preparation

system (Qiagen, Hilden, Germany) and was quantified by

an Agilent 2100 Bioanalyser system (Agilent, Santa Clara,

CA, USA). A total of 100 ng of functional RNA ([300

Table 2 Multivariate analysis showed that high intra-tumoural Treg tumours were significantly associated with longer DFS and OS, compared

to low intra-tumoural Treg tumours, in triple-negative breast cancer

Hazard ratio 95% Confidence Interval p value

Overall survival (OS)

Intra-tumoural Treg TNBCs 0.53 0.28–0.98 0.044*

High vs. low (Cut-off: 32 iTregs)

Intra-tumoural Treg TNBCs

(Increase in every one absolute count of iTreg)

1.00 0.99–1.00 0.156

Disease-free survival (DFS)

Intra-tumoural Treg TNBCs 0.44 0.25–0.78 0.005*

High vs. low (Cut-off: 32 iTregs)

Intra-tumoural Treg TNBCs

(Increase in every one absolute count of iTreg)

0.99 0.90–1.00 0.028*

* Statistically significant, disease-free survival (DFS) and overall survival (OS)
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nucleotides) was assayed on the nCounter PanCancer

Progression Panel (NanoString Technologies, Seattle, WA,

USA). Positive control probes and housekeeping genes

were used to normalise NanoString counts (Online

Resource: Table S1). The count data were then logarith-

mically transformed prior to further analysis. Genes that

were significantly differentially expressed between the

three sample groups (high intra-tumoural Treg, low intra-

tumoural Treg and benign lesion) were identified using

one-way ANOVA in R version 3.1.2. Multiple testing

corrections were applied using the method of Benjamini

and Hochberg. Significantly differentially expressed genes

(DEG) after correction were subjected to post hoc analysis

using pairwise t tests with multiple testing corrections

using the Bonferroni method. p values\0.05 were deemed

to be statistically significant.

Ingenuity pathway analysis (IPA)

DEG between high and low intra-tumoural Treg tumours

was subjected to IPA core analysis using the entire list of

genes on the NanoString cartridge as the background.

Significant enrichment was determined by a

p value\ 0.05.

Validation dataset

A TNBC microarray experiment (GSE76124) was selected

and extracted from NCBI GEO as the validation dataset

[36]. 2251 DEG out of 20,283 unique genes were identified

between the basal-like immune-activated (BLIA) and

basal-like immune-suppressed (BLIS) subsets [36] of the

samples using Limma. The hypergeometric distribution

was used to determine the significance of the overlap

between the DEG in our data and those of GSE76124.

Follow-up and statistical analysis

Follow-up data were obtained from medical records. Disease-

free survival (DFS) and overall survival (OS) were defined as

the time from diagnosis to recurrence or death/date of last

follow-up, respectively. Statistical analysis was performed

using SPSS for Windows, Version 18. The relationship

between clinicopathological parameters and the frequency of

various immune cell types was tested using v2 and Fisher’s

exact tests. Survival outcomes were estimated with the

Kaplan–Meier analysis and compared between groups with the

log-rank statistics. Multivariate Cox regression was carried out

to evaluate the effect of Tregs status with survival adjusted to

Table 3 Univariate analysis

showed that high intra-tumoural

Treg tumours were significantly

associated with longer DFS and

OS, compared to low intra-

tumoural Treg tumours, in

triple-negative breast cancer

Hazard ratio 95% Confidence Interval p value

Overall survival (OS)

Intra-tumoural Treg TNBCs 0.50 0.28–0.90 0.022*

High vs. low (Cut-off: 0% iTregs)

Intra-tumoural Treg TNBCs 0.65 0.37–0.95 0.038*

High vs. Low (Cut-off: 2% iTregs)

Intra-tumoural Treg TNBCs 0.75 0.38–1.51 0.422

High vs. low (Cut-off: 5% iTregs)

Intra-tumoural Treg TNBCs 0.94 0.42–2.10 0.886

High vs. low (Cut-off: 10% iTregs)

Intra-tumoural Treg TNBCs (Every

1% increase of iTregs)

0.98 0.94–1.03 0.424

Disease-free survival (DFS)

Intra-tumoural Treg TNBCs 0.55 0.32–0.95 0.034*

High vs. low (Cut-off: 0% iTregs)

Intra-tumoural Treg TNBCs 0.47 0.28–0.80 0.006*

High vs. low (Cut-off: 2% iTregs)

Intra-tumoural Treg TNBCs 0.55 0.28–1.09 0.085

High vs. low (Cut-off: 5% iTregs)

Intra-tumoural Treg TNBCs 0.69 0.32–1.53 0.364

High vs. low (Cut-off: 10% iTregs)

Intra-tumoural Treg TNBCs (Every

1% increase of iTregs)

0.96 0.92–1.00 0.072

Disease-free survival (DFS) and overall survival (OS)
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the effects of tumour size, nuclear grade and patient age. Sta-

tistical significance was defined by a p value\0.05.

Results

Patients with tumours exhibiting high intra-

tumoural Treg density survived significantly longer

than those with fewer intra-tumoural Tregs

The median numbers of Tregs, total T and B cells are

shown in Table 3. Amongst total T cells (CD3?), 52.8% of

the TNBC samples were designated as high intra-tumoural,

Fig. 1 and 52.2% were high stromal, while 57.9% of

samples were designated high intra-tumoural Treg (CD3

and Foxp3 co-expression), and 56.6% were high stromal

Treg (Fig. 1, Table 3). Univariate analyses of the clinico-

pathological features revealed that high stromal Treg

tumours were more likely to be of higher tumour grade

(p = 0.025) and lymph node status (p = 0.039) (Table 1).

According to Kaplan–Meier survival analysis (Fig. 2a–d),

high intra-tumoural or stromal T cell TNBCs exhibited

significantly longer DFS (intra-tumoural: p = 0.019 and

stromal: p = 0.019) and OS (intra-tumoural: p = 0.005

and stromal: p = 0.018), in agreement with our previous

findings [37]. A high intra-tumoural Treg TNBC was also

associated with significantly longer DFS (p = 0.001,

Fig. 2e); this was further confirmed by multivariate sur-

vival analysis (Hazard Ratio: 0.33, 95% CI 0.165–0.659,

p = 0.002; Table 4). Multivariate analysis also indicated

significant OS improvement in high intra-tumoural Treg

tumours compared to low intra-tumoural cancers (Hazard

Ratio: 0.487, 95% CI 0.251–0.947, p = 0.034).

Expression of immune response-associated genes is

significantly higher in high intra-tumoural Treg

TNBCs

Given the strong association between intra-tumoural Treg

density and patient survival, we compared gene expression

profiles of a panel of 770 cancer-associated genes [15] in

samples from 11 high intra-tumoural Treg and 11 low

intra-tumoural Tregs by utilising the nCounter PanCancer

Progression Panel [38–46]. Samples from four benign

breast tumours were also included in this analysis. One-

way ANOVA followed by post hoc t tests revealed that 31

genes were significantly differentially expressed between

the high and low intra-tumoural Treg TNBCs (Table 5,

Fig. 3).

Table 4 Multivariate analysis showed that bearing a high intra-tumoural Treg tumour was significantly associated with longer DFS and OS,

compared to bearing a low intra-tumoural Treg tumour, in triple-negative breast cancer

Hazard ratio 95% Confidence Interval p value

Overall survival (OS)

Intra-tumoural Treg TNBCs 0.45 0.24–0.84 0.012*

High vs. low (Cut-off: 0% iTregs)

Intra-tumoural Treg TNBCs 0.49 0.25–0.95 0.034*

High vs. low (Cut-off: 2% iTregs)

Intra-tumoural Treg TNBCs 0.88 0.41–1.89 0.750

High vs. low (Cut-off: 5% iTregs)

Intra-tumoural Treg TNBCs 1.01 0.42–2.43 0.985

High vs. low (Cut-off: 10% iTregs)

Intra-tumoural Treg TNBCs (Every 1% increase of iTregs) 0.98 0.94–1.05 0.555

Disease-free survival (DFS)

Intra-tumoural Treg TNBCs 0.49 0.27–0.87 0.015*

High vs. low (Cut-off: 0% iTregs)

Intra-tumoural Treg TNBCs 0.33 0.17–0.66 0.002*

High vs. low (Cut-off: 2% iTregs)

Intra-tumoural Treg TNBCs 0.59 0.29–1.23 0.160

High vs. low (Cut-off: 5% iTregs)

Intra-tumoural Treg TNBCs 0.70 0.30–1.65 0.412

High vs. low (Cut-off: 10% iTregs)

Intra-tumoural Treg TNBCs (Every 1% increase of iTregs) 0.95 0.91–1.01 0.085
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IPA was used to decipher the biological relationships of

the 31 DEG (Online Resource: Table S2). This identified

significant functional enrichment in expression of genes

related to inflammatory response (APOH, CXCR3, FASLG,

PLA2g2D, S1PR1 and SERPINE1), haematological system

development and function (APOH, CXCR3, EGF, FASLG,

ITGB7, PLA2g2D, RORA, S1PR1 and SERPINE1),

immune cell trafficking (APOH, CXCR3, FASLG, ITGB7,

PLA2g2D, S1PR1 and SERPINE1) and cell-mediated

immune response (CXCR3, ITGB7, RORA and S1PR1)

between the high and low intra-tumoural Treg TNBCs.

Taken together, these four pathways share nine genes

which are APOH, CXCR3, EGF, FASLG, ITGB7,

PLA2g2D, RORA, S1PR1 and SERPINE1 (Online

Resource: Table S3).

A recent study by Burstein et al. [36] used gene

expression analysis to define distinct subtypes of tumours

in TNBC that were associated with different prognoses: the

BLIS and BLIA groups exhibited the worst and best sur-

vival characteristics, respectively. Given our observed

association between high intra-tumoural Treg TNBCs and

increased survival, we used the publicly available gene

expression data from their study and found that seven of

the 31 genes that were significantly differentially expressed

between high and low intra-tumoural Treg TNBCs were

also differentially expressed between BLIA and BLIS

subtypes (p = 0.028) (Online Resource: Fig. S1; ‘‘Mate-

rials and methods’’ section: ‘‘Validation dataset’’ section).

All seven genes were highly expressed in both the BLIA

and high intra-tumoural Treg TNBC subtypes, suggesting

Fig. 1 CD3? T cells and CD3?Foxp3? Tregs infiltrate the tumour

nest and stroma in TNBCs. Representative IHC images showing cells

expressing cytoplasmic/membranous CD3 and nuclear Foxp3, both in

the tumour nest (a) and the stroma (b) of TNBCs. These findings were

confirmed by IF on tumour sections, showing the total T cell and Treg

infiltrate (c–d)
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that TNBC with high intra-tumoural Tregs are likely to

possess an ‘‘immune-activated’’ tumour microenvironment,

which is associated with significantly prolonged survival in

both our study and Burstein et al.’s dataset.

High intra-tumoural Treg density correlates

with high densities of CD81 T cells and CD201 B

cells, which are independently and individually

associated with better clinical outcome in TNBCs

Our data indicate that TNBCs with high intra-tumoural

Tregs also expressed significantly higher levels of some

genes associated with inflammation, immune cell functions

and trafficking, altogether leading to the more ‘‘immune-

activated’’ tumour microenvironment which is associated

with longer patient survival. A recent report showed that

high densities of CD25? Tregs in ER- breast tumours were

frequently accompanied by high numbers of CD8? T cells,

leading to an inflammatory gene expression profile con-

sistent with a robust anti-tumour immune response, and

increased survival [24]. We also found evidence of CD8?

T cell association with Tregs in our samples: the density of

intra-tumoural Tregs was positively correlated with CD8?

T cells in both the intra-tumoural (p\ 0.0001, r = 0.5926)

and stromal compartments (p\ 0.0001, r = 0.5051)

(Fig. 4a–b).

Similarly, the density of CD20? TILs was positively

correlated with the density of Foxp3? Tregs in both the

intra-tumoural (p\ 0.0001, r = 0.3819) and stromal

compartments (p\ 0.0001, r = 0.3655) (Fig. 4c–d).

Genes associated with Tregs, CD8? T cells and CD20? B

cells are more abundantly expressed in BLIA and Mes-

enchymal subtypes, compared to BLIS and Luminal-

Androgen Receptor subtypes. In many previous studies,

IL2RA (CD25) transcription was used as a marker for

Tregs; hence, we analysed the dataset by Burstein et al.

[36] and found that IL2RA expression level was also

positively correlated with that of CD8A (p\ 0.0001,

r = 0.5586) and CD19 (p\ 0.0001, r = 0.5603) (Online

Resource: Fig. S2b–c), which is associated with CD8? T

cells and CD20? B cells, respectively.

IF imaging of TNBC sections, which allowed us to

observe more than two immune cell populations, further

revealed that Foxp3? Tregs were located in close prox-

imity to CD8? T cells and CD20? B cells, both in the intra-

tumoural (Fig. 5) and the stromal compartments (Online

Resource: Fig. S3).

The association between the density of CD8? T cells

and CD20? B cells and clinical outcome was also exam-

ined. In the case of CD20? B cells, 57.8% of samples were

designated high intra-tumoural CD20? B cell and 62.7%

were high stromal CD20? B cell. Kaplan–Meier analysis

showed that high CD20? B cell in both intra-tumoural

(DFS: p = 0.015, OS: p = 0.020) and stromal (DFS:

p = 0.012, OS: p = 0.031) compartments were associated

with better clinical outcome (Fig. 6). Our own recently

published study also showed that high densities of intra-

tumoural CD8? T cells are similarly associated with better

clinical outcome in the same cancer patient cohort [37].

Discussion

In this study, we demonstrated that TNBC patients with

high intra-tumoural Tregs were likely to survive signifi-

cantly longer than those with low Treg density. The former

group exhibited a distinct gene expression signature char-

acterised by inflammatory and immune response-related

genes and were also more likely to contain higher densities

of CD8? T cells and CD20? B cells. A similar association

between high tumour-infiltrating Tregs and improved

prognosis has been reported in several recent studies in

ER- breast cancers; Lee et al. reported that having greater

than 15 Foxp3 Tregs per 10 fields of peri-tumoural area

was linked with better survival in TNBCs [47]. On the

bFig. 2 Patients bearing high T cell or high Treg TNBCs survived

significantly longer than those with low T cell or Treg tumours.

Women with high intra-tumoural or stromal CD3? total T cell

tumours had significantly longer DFS (a–b) and OS (c–d) than that

did women bearing low T cell tumours. Women with high intra-

tumoural Tregs similarly had significantly longer DFS (e) and OS

(f) than women bearing low Treg tumours

Table 5 Ingenuity pathway analysis (IPA) reveals two canonical pathways associated with the 11 genes that are differentially expressed

between high and low intra-tumoural Treg tumours

Canonical pathway and genes p value & Overlap percentage

CCR5 signalling in macrophages:

CCL5, CD4, CD247, CD3D, FCER1G, PRKCB

1.79E-04

75%

T cell receptor signalling:

CD4, CD247, CD3D, CD8A, CTLA4, ITK, LCK, PTPRC

4.18E-03

40%

28 Breast Cancer Res Treat (2017) 163:21–35

123



other hand, using a 0% cut-off (Supplementary Tables 3

and 4), we also observed a similar trend of better clinical

outcome comparable to that obtained using a median cut-

off value. However, many studies have found that

increased tumour-infiltrating Tregs are linked with poor

outcome in breast cancers [48–53]. The fact that mere

presence of Tregs is insufficient evidence to predict their

effect on disease outcome has been confirmed in a recent

meta-analysis: Jiang et al. found that the likelihood of

finding high Treg numbers was affected by HER2, ER and

PR status, and that an abundant Treg infiltrate had opposing

prognostic significance in hormone receptor-negative and

hormone receptor-positive tumours [54], hinting at possible

interactions of hormone receptor-mediated and immune-

regulatory pathways.

Burstein et al. defined four subtypes of TNBC based

on distinct molecular profiles, two of which were dom-

inated by specific immune-related gene expression sig-

natures: BLIS TNBCs exhibit relatively lower numbers

of B and T cells, accompanied by down-regulated

expression of genes related to natural killer cell,

immune-regulating and stimulatory cytokine pathway; in

contrast, BLIA TNBCs exhibit an abundant B and T cell

infiltrate and an immune-stimulatory expression profile

and were associated with improved prognosis [36]. Our

analyses of the dataset generated by Burstein et al.

Fig. 3 High and low intra-

tumoural Treg TNBCs exhibit

distinct gene expression

signatures. Heat map of the 31

significantly differentially

expressed genes (p\ 0.05)

showing specific expression

profiles in high and low intra-

tumoural Tregs (iTregs), sorted

by increasing gene expression.

The heat map is coloured by the

log10 normalised counts with the

highest expression in red and

the lowest expression in green.

The genes are ordered by a

hierarchical clustering using

Euclidean distance
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further revealed high levels of expression of Treg-asso-

ciated genes in the BLIA subtype, thereby strengthening

the evidence for an association between abundant Treg

infiltrate and an active anti-tumoural immune response

with the potential to significantly prolong survival of

TNBC patients.

High tumour-infiltrating CD8? T cells have long been

considered as a good prognostic factor in breast cancers

[16, 17, 24, 55]. A recent study by West et al. in ER- breast

tumours showed that high CD8A gene expression was

associated with high IL2RA gene expression, a commonly

used Treg marker. The authors also noted that cytotoxicity of

CD8? T cell as well as pro-inflammatory cytokines were

increased in CD25-high tumours relative to CD25-low

tumours, suggesting that the anti-tumour immunity could be

active in ER- breast tumours in spite of the presence of Tregs

[24]. We therefore asked whether the same mechanisms

might be active in TNBC: adopting CD25 as a Treg marker,

we interrogated the dataset published by Burstein et al. [36]

and found that the extent of CD25 gene expression was

closely correlated with that of CD8A and the B cell marker

CD19 (Online Resource: Fig. S2).

IPA of the 31-gene signature observed in the high

Treg group of TNBCs showed nine genes in particular

that are associated with inflammatory response, immune

cell trafficking and cell-mediated immune response

(Online Resource: Table S2). Some of these genes have

been known to be critical in tumour control; for example,

RORA has been identified as a potential tumour

suppressor in breast cancers [56, 57]. These nine genes

are highly expressed in the high intra-tumoural Treg

compared to low intra-tumoural Treg TNBCs, further

supporting our notion that this group is associated with a

higher level of immune response within the tumour

microenvironment, which is inherently enriched in cyto-

toxic T cells and B cells. We speculate that the particular

microenvironment of TNBC may attenuate the Tregs’

immunosuppressive functions. It is also possible that the

Tregs maintain their suppressive function, but not suffi-

ciently to suppress the anti-tumour activity of CD8?

cytotoxic T cells and CD20? B cells. In this case,

depletion of Tregs from TNBCs could further enhance

anti-tumour immunity beyond the pre-existing anti-tu-

moural microenvironment. Our data suggest that the

favourable prognostic effect of Tregs in TNBCs may

primarily be due to (a) the concomitant infiltration of

CD8? T cells; (b) physical contact with other T cells

thereby exerting immune suppression [58] and (c) multi-

ple factors involved in anti-tumour immunity, e.g. sup-

pression of tumour-associated macrophages.

The interaction between T cells and B cells is known to

be critical in several cancers including colorectal, lung,

pancreatic and hepatocellular carcinomas [35, 59, 60].

Tumour-infiltrating B cells often co-localise with tumour-

infiltrating T cells, especially in lymphoid aggregates,

boosting T cell role in long-term immune response

[61, 62]. Recently, Garnelo et al. demonstrated that the

density of CD3? T cells and CD20? B cells was associated

Fig. 4 The density of intra-

tumoural Tregs correlates with

the density of CD8? T cells and

CD20? B cells in TNBCs. IHC

scoring revealed a significant

positive correlation between the

densities of intra-tumoural

Tregs and intra-tumoural CD8?

T cells (a) and CD20? B cells

(c). Similarly, significant

correlations existed between

densities of Tregs and CD8? T

cells (b) and CD20? B cells

(d) in the stroma. Pearson R

correlation and p values are

shown
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with better clinical outcome and reduced tumour aggres-

siveness in hepatocellular carcinoma [35], while the pres-

ence of tumour-infiltrating B cells has been linked with

good prognosis in breast cancers [63]. Genetic studies

support these findings which show a significant association

between high densities of infiltrating B cells and favourable

prognosis in TNBCs [64]. Interestingly, a single marker,

immunoglobulin jC, has recently been shown to have

similar predictive and prognostic value in breast cancers as

the entire B cell metagene [65]. We also observed a posi-

tive association of B cells with favourable survival out-

comes in our cohort, warranting further studies to examine

the link between Tregs and B cells in TNBCs.

The presence of various immune cell populations within

the tumour microenvironment, for example, a tumour

microenvironment containing antigen-presenting cells (i.e.

Fig. 5 Tregs associate with CD8? T cells and CD20? B cells in the

intra-tumoural compartment of TNBCs. H&E, multiplex IF and IHC

labelling on five consecutive sections from a representative TNBC

tissue sample show that Tregs, CD8? T cells and CD20? B cells are

aggregated in close proximity within the intra-tumoural microenvi-

ronment. a H&E staining. b Multiplex IF labelling for Foxp3 (red),

CD8 (green), CD20 (white) and DAPI (blue). c–f Higher magnifica-

tion of the same region from image (a–b) shows single IHC labelling

of Foxp3 in (c). Multiplex IF labelling of Foxp3 (red), CD8 (green)

and CD20 (white) in (d). Double IHC labelling of CD8 and Foxp3,

with the Tregs (Foxp3?, red) circled in (e), and double IHC labelling

of CD20 and Foxp3 with the Tregs (Foxp3?, red) circled in (f)

Breast Cancer Res Treat (2017) 163:21–35 31

123



B cells or dendritic cells) and effector cells (i.e. T cells) is

associated with better survival than cases where a single

immune cell population is present [60, 61, 66]. In this

study, we observed the presence and close proximity of

Tregs with CD8? T cells and CD20? B cells. Since CD8?

T cells and Tregs share expression of numerous chemokine

receptors (e.g. CCR5, CXCR3 and CXCR6) involved in

extravasation, it may not be surprising that they co-infil-

trate breast tumours [67].

In conclusion, our study demonstrates that a higher

density of intra-tumoural Foxp3? Tregs in TNBC is sig-

nificantly positively associated with better clinical

outcome. These findings highlight the need for a more

integrated and comprehensive approach to phenotypic and

functional profiling of Tregs within tumours in order to

understand whether this cell population is likely to be

playing a beneficial, deleterious or bystander role in any

particular situation. Moreover, given the evidence for the

influence of hormone receptor status upon the prognostic

direction of Treg abundance in breast cancers, further

mechanistic studies of this interaction are warranted.

Greater understanding of the roles of Tregs and the diverse

influences and interactions determining their effector

function will be necessary in order to serve as a prognostic

Fig. 6 High densities of CD20? B cells are associated with better clinical outcome in TNBCs. TNBC patients with higher than median densities

of intra-tumoural or stromal CD20? B cells had significantly longer DFS (a–b) and OS (c–d)
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marker and to guide the development of novel therapeutic

interventions.
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