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Abstract Estrogen receptor (ER)-positive/progesterone

receptor (PR)-positive invasive ductal carcinoma accounts

for *45 % of invasive breast cancer (BC) diagnoses in the

U.S. Despite reductions in BC mortality attributable to

mammography screening and adjuvant hormonal therapy,

an important challenge remains the development of clini-

cally useful blood-based biomarkers for risk assessment

and early detection. The objective of this study was to

identify novel protein markers for ER?/PR? ductal BC. A

nested case–control study was conducted within the

Women’s Health Initiative observational study. Pre-clinical

plasma specimens, collected up to 12.5 months before

diagnosis from 121 cases and 121 matched controls, were

equally divided into training and testing sets and interro-

gated using a customized antibody array targeting [2000

proteins. Statistically significant differences (P\ 0.05) in

matched case versus control signals were observed for 39

candidates in both training and testing sets, and four

markers (CSF2, RYBP, TFRC, ITGB4) remained signifi-

cant after Bonferroni correction (P\ 2.03 9 10-5). A

multivariate modeling procedure based on elastic net

regression with Monte Carlo cross-validation achieved an

estimated AUC of 0.75 (SD 0.06). Most candidates did not

overlap with those described previously for triple-negative

BC, suggesting sub-type specificity. Gene set enrichment

analyses identified two GO gene sets as upregulated in

cases—microtubule cytoskeleton and response to hormone

stimulus (P\ 0.05, q\ 0.25). This study has identified a

pool of novel candidate plasma protein biomarkers for

ER?/PR? ductal BC using pre-diagnostic biospecimens.

Further validation studies are needed to confirm these

candidates and assess their potential clinical utility for BC

risk assessment/early detection.
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Introduction

In recent decades, mammography has become a widely

implemented screening tool for breast cancer (BC) among

women aged 40 and older. Meta-analyses of randomized

clinical trials indicate that routine mammographic screen-

ing reduces BC mortality by 30 % among women

50–69 years of age [1–4], although the magnitude of this

mortality benefit remains controversial [5]. Under current

practice, the effectiveness of population-based screening

mammography is compromised by at least two important

factors: the absence of rationally targeted screening, and

mammography’s limited sensitivity and specificity [6–8].

Deployment of this imperfect screening tool based almost

exclusively on age and sex results in millions of healthy

women being frequently imaged, many women without

cancer needlessly sent for breast biopsies, and other women

with cancer falsely declared cancer free. Novel clinical

methods are needed to enhance the selection of women
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who initially undergo screening, and to improve the

accuracy of imaging among those who do [9–11]. Blood-

based biomarkers with high sensitivity and specificity

could be used in conjunction with radiographic approaches

to increase early detection of BC while reducing false

positives and unnecessary clinical follow-up [12].

Many past studies have sought to identify circulating

biomarkers for BC, and multiple components of blood have

been mined for diagnostic potential—autoantibodies, pro-

teins, miRNAs, cell-free DNA, and circulating tumor cells

[13–20]. Despite advances in molecular classification of

BC sub-types and in our understanding of disease patho-

genesis, no clinically useful blood-based biomarkers for

early diagnosis have yet been identified. Recent studies

based on mass spectrometry analysis of pre-clinical blood

specimens have suggested that plasma proteome alterations

may be detectable prior to BC diagnosis [19].

Breast cancer represents a heterogeneous disease, with

multiple sub-types defined by distinct histological and

molecular characteristics, epidemiologic risk profiles, and

clinical features [21–24]. Infiltrating ductal carcinoma

(70–80 % of invasive lesions) and infiltrating lobular car-

cinoma (5–10 %) comprise the two most common histo-

logical types of invasive BC. In contrast to ductal BC, the

rarer lobular form is associated with older age, larger and

better differentiated dispersed tumors, ER positivity,

absence of E-cadherin, and increased early (B10 years)

survival [25]. Defined by joint ER/PR status and histology,

the most common sub-type in the U.S. is ER?/PR?

invasive ductal carcinoma (IDC). While 5-year survival

rates for ER?/PR? IDC are higher than those observed for

the less-common but more lethal triple-negative (ER-/

PR-/HER2-) BC, ER?/PR? cancer remains a significant

cause of morbidity and mortality among women overall,

particularly when diagnosed at late stages [26]. Given the

molecular heterogeneity of BC, it seems plausible that

plasma proteomic profiles associated with disease onset, if

they exist, may exhibit sub-type specific patterns [12]. We

employed a custom-designed antibody-array platform [27]

to interrogate pre-diagnostic plasma from 121 BC cases (all

ER?/PR? IDC), and 121 matched controls enrolled in the

Women’s Health Initiative (WHI) observational study,

with the aim of identifying protein biomarkers that are

differentially abundant in the plasma of cases relative to

controls.

Materials and methods

Study design

We conducted a nested case–control study of ER?/PR?

IDC within the WHI observational study, a prospective

cohort of 93,676 post-menopausal women enrolled from

1993–1998 in the U.S. [28, 29]. Our study included 121

ER?/PR? ductal BC cases and 121 controls without a

prior history of any type of cancer, individually matched

1:1 to cases on age at enrollment (±3 years), race/ethnicity

(white, non-white), body mass index (BMI, B25, 25–29, or

30?), hormone replacement therapy use (estrogen only,

estrogen plus progestin, or non-user), and year of blood

draw. Cases with an available study blood specimen drawn

within 12.5 months prior to their BC diagnosis were eli-

gible for inclusion. ER, PR, and HER2 status were

extracted from medical records and centrally adjudicated

by WHI staff. The 121 matched pairs were randomly

assigned to a training set (n = 60 pairs) and a testing set

(n = 61 pairs). The use of human samples was approved

by the Institutional Review Board of the Fred Hutchinson

Cancer Research Center.

Laboratory methods

Plasma samples were interrogated using a customized

antibody array populated with 3290 full-length antibodies

to 2036 distinct targets, encompassing several classes of

proteins involved in diverse signaling pathways. Of the

3290 antibodies, 292 were included as standards targeting

CA19-9 (n = 96), CEACAM1 (n = 48), CSF3 (n = 48),

CXCL12 (n = 48), or IL1b (n = 48), while four antibod-

ies on the array served as technical controls targeting Cy3

(n = 2) or Cy3/Cy5 (n = 2). These standards and controls

included replicates of two independent antibodies for

CA19-9 and replicates of a single antibody for the other

targets. Protocols for array fabrication, sample treatment

and labeling, incubation of plasma with arrays, and array

scanning have been previously described [30–32]. Briefly,

for this study, 200 lg case and control plasma protein were

labeled with Cy5 and separately incubated for 90 min with

Cy3-labeled 200 lg reference plasma protein (a common

pool of plasma composed of samples collected from seven

women aged 45–72 years was used as a reference for all

samples) in 80 ll total volume (kept from drying using

LifterSlips, Fisher Scientific, Pittsburgh, PA). Samples

from a given matched pair (case and control) were incu-

bated on the same day. After washing, slides were scanned

in a GenePix 4000B microarray scanner and data extracted

using GenePix Pro 6.0 software (Molecular Devices, Sun-

nyvale, CA, USA).

Statistical analyses

Genepix results that raw data files were initially processed

using the R package limma [33, 34]. For each antibody,

fold change of signal (red channel) compared to reference

(green channel), the M value, was calculated as log2(Rc/
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Gc), where Rc is red corrected, and Gc is green corrected

(using the normexp background correction method). After

exclusion of technical control spots (n = 4 antibodies) and

all spots with GenePix flags B-50, antibody features on

each array were filtered based on the coefficient of varia-

tion (CV) for observed M values across triplicate spots.

Technical sources of variation were normalized by loess

procedures developed for microarrays, including within-

array print-tip loess and between-arrays reference channel

quartile normalization. Following normalization, triplicate

spots were summarized using their median. Antibody fea-

tures with missing M values in[ 30 % of the 121 matched

pairs (after CV filtering) were excluded from the analysis

(n = 819 of 3286). All statistical analyses were performed

using M values. Intra-array reproducibility was evaluated

by calculating the CV across triplicate spots of each anti-

body feature (Figure S1). Inter-array reproducibility was

examined by calculating the Pearson pair-wise correlation

coefficient (q) between arrays probed with an identical

plasma sample (Figure S2).

Paired t tests were conducted for each antibody feature

using the 121 BC cases and 121 matched controls. Anti-

bodies for which the mean difference in M values between

paired cases and controls differed significantly from zero (at

P\ 0.05) in both the training and testing sets were selected

as candidate markers. After exclusion of the four control

antibodies, Bonferroni correction for multiple comparisons

was conducted (a = 0.05/2467 = 2.03 9 10-5) using the

pooled dataset (training and testing), and Benjamini–Hoch-

berg false discovery rate q values were generated. Perfor-

mance metrics (AUC/sensitivity/specificity) were calculated

using covariate-adjusted marker values.

Multivariate classification models were constructed

using regularized logistic regression with elastic net pen-

alty (R package: glmnet) [35]. After exclusion of n = 7

subjects due to missing covariate values, 235 subjects were

available for analysis. Missing M values for the 2467

antibody features included in the main analysis were

imputed via the k-nearest neighbor method (R package:

knn). Equal numbers of cases and controls were randomly

allocated to a training set (75 %: n = 175), used for vari-

able selection and model selection, or a testing set (25 %:

n = 60), used for (preliminary) model validation. With the

mixing parameter (a) set to 0.5, fivefold cross-validation

was conducted within the training set only to select the

optimal value of the penalty parameter (k). A model was

generated using the complete training set data and used to

predict class values for subjects in the testing set. Monte

Carlo cross-validation (MCCV) was conducted using 100

different training (and associated testing) sets randomly

selected from the total study sample. Mean estimated area

under the receiver-operating characteristic (ROC) curve

(AUC) was calculated across the 100 testing sets. A

composite average ROC curve was generated (R package:

ROCR) [36].

Gene set enrichment analyses (GSEA) were based on

the Kyoto encyclopedia of genes and genomes (KEGG)

and gene ontology (GO) gene sets, available from the

Molecular signatures database (MSigDB). After exclusion

of antibodies specific for carbohydrate or non-human pro-

tein targets, 2396 of 2467 antibodies included in the main

analysis were available for GSEA (corresponding to pro-

teins encoded by 1693 unique genes). Of the 186 KEGG

gene sets obtained from MSigDB, 128 sets contained at

least five genes coding for proteins targeted by our arrays

(Table S1A). Of the 1454 available GO gene sets, 822 sets

contained at least five genes coding for proteins targeted by

our arrays (Table S1B). Wilcoxon rank-sum tests were

conducted on the test statistics obtained from paired t tests

(comparing M values of matched cases and controls). A

null distribution for the Wilcoxon test was generated from

analysis of 1000 permuted datasets in which the

case/control status of subjects in each matched pair was

randomly maintained or reversed. The (one-sided) P value

for each pathway was calculated as the fraction of all

permuted datasets in which the sum of the ranks of the

paired t test statistics for markers in the gene set was more

extreme than the observed sum of ranks for these markers’

test statistics in the real dataset. All statistical analyses

were conducted using Stata v13.1 (College Station, TX) or

R v3.03.

Using data from The Cancer Genome Atlas (TCGA), we

identified post-menopausal female subjects with Stage I/II

ER?/PR? infiltrating ductal breast carcinoma. Those with

available tumor RNA expression data were selected

(n = 130). Paired normal tissue had been profiled for

n = 10 of these women. RNA expression data was also

included from an additional 51 normal tissue specimens

isolated from BC cases not satisfying our inclusion criteria.

Technical details pertaining to RNA profiling have been

published previously [37, 38]. Microarray data were loess

normalized, and the ratio of the Cy5 channel (sample) and

Cy3 channel (reference) was log2-transformed to generate

gene expression values (E = log2 Cy5/Cy3). Welch’s

t tests were conducted to compare mean RNA expression

levels in the n = 130 tumor samples and n = 61 normal

samples. Marker fold changes were calculated as the ratio

of geometric mean signals in tumor samples versus nor-

mals: 2^lE,tumors/2^lE,normals.

Results

Cases and controls in our training and testing sets were

well-balanced with respect to matching covariates: age,

race/ethnicity, BMI, and HRT use (Table 1). None of the
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observed differences in the distributions of these variables

between cases and controls, in either the training or testing

set, reached statistical significance when assessed by v2

tests (data not shown). The antibody-array profiling plat-

form exhibited high levels of both intra-array and inter-

array reproducibility (Figures S1/S2), consistent with past

performance [30, 39]. When comparing cases to their

matched controls, statistically significant (P\ 0.05) mean

differences in signal intensity were observed for 328 of

2467 antibodies (13.3 %) in the training set. Of these 328

candidates, 39 were validated (P\ 0.05) in the testing set

(Table S2). In the pooled analysis (training and testing sets

combined), geometric mean within-pair fold changes of

(Rc/Gc) for the 39 identified candidates, comparing cases to

matched controls, ranged in magnitude from 0.76–1.11

(Table 2). Four markers remained significant after Bon-

ferroni correction for multiple comparisons (P\ 0.05/

2467 = 2.03 9 10-5): Colony stimulating factor 2

(CSF2), transferrin receptor (TFRC), RING1 and YY1

binding protein (RYBP), and integrin b4 (ITGB4) (Fig-

ure S3). Based on Western immunoblots, the printed array

antibodies for these top candidates recognized antigens of

the expected molecular weight and observed intensity

changes across different plasma samples appeared consis-

tent with array-based M values (Figure S4).

Nineteen additional candidates were captured when the

false discovery rate was set to q\ 0.05. TFRC and BRCA2

were each identified as nominal hits by two different

antibodies. AUCs based on covariate-adjusted marker

values ranged from 0.58 (CTGF) to 0.71 (CSF2), with

maximum sensitivity of 33 % at 95 % specificity (RYBP),

and maximum specificity of 30 % at 95 % sensitivity

(TFRC). Ten of the 39 candidates had a sensitivity of

C20 % at 95 % specificity, and three had a specificity of

C20 % at 95 % sensitivity. Among the top-performing

markers, some exhibited superior performance at high fixed

levels of sensitivity, relative to high fixed levels of speci-

ficity, while others exhibited skewed performance in the

opposite direction, as illustrated by the asymmetrically

shaped ROC curves for TFRC and RYBP, respectively

(Fig. 1). Exploratory analyses suggested that several

markers identified may exhibit stronger associations (lower

P values and similar or larger fold changes) closer to the

time of BC diagnosis: TFRC, ITGB4, SNX5, CD2,

NTRK1, CSF3R, BRCA1, and RASGRF2, among others

(Figure S5). Conclusive interpretation was limited by

reduced study power.

We next determined whether data from TCGA might

provide further support for any of the *40 candidate

markers identified. Since protein expression data were not

available, we evaluated RNA profiles for the corresponding

genes in 130 Stage I/II ER?/PR?/ductal breast tumors and

61 normal tissue samples (Table S3). 25 of the 37 tran-

scripts assessed exhibited statistically significant differ-

ences in mean abundance when comparing tumor and

normal tissue samples, including three of our top five

Table 1 Subject characteristics of 121 matched case–control pairs randomly assigned to either a training set or testing set

Training set Testing set

Cases

(n = 60)

Controls

(n = 60)

Cases

(n = 61)

Controls

(n = 61)

n % n % n % n %

Age

50–60 9 15.0 7 11.7 7 11.5 7 11.5

60–70 21 35.0 27 45.0 26 42.6 28 45.9

70–80 30 50.0 26 43.3 28 45.9 26 42.6

Race/ethnicitya

White 53 89.8 53 88.3 53 86.9 53 86.9

Non-white 6 10.2 7 11.7 8 13.1 8 13.1

Body mass index (kg/m2)

\25.0 (normal) 26 43.3 20 33.3 25 41.0 21 34.4

25–29.9 (overweight) 17 28.3 20 33.3 22 36.1 21 34.4

30.0 (obesity) 17 28.3 20 33.3 14 23.0 19 31.1

Current use of HRTa

Non user 20 34.5 20 34.5 21 35.0 21 35.0

Estrogen ? progestin 13 22.4 13 22.4 13 21.7 13 21.7

Unopposed estrogen 25 43.1 25 43.1 26 43.3 26 43.3

a Numbers may not add to total subjects due to missing data
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Table 2 Top-ranked antibodies by paired t test, comparing cases versus matched controls (P\ 0.05 in both training and testing sets)

Antibody name Gene Na FCb Pc qd Ne AUCf,i Sensg,i Spech,i

1 Colony stimulating factor 2 (granulocyte–macrophage) CSF2 97 1.08 4.00E - 08* 9.86E - 05 207 0.71 0.29 0.13

2 Transferrin receptor TFRC 95 0.76 3.10E - 06* 0.004 207 0.67 0.06 0.30

3 RING1 and YY1 binding protein RYBP 102 1.05 8.66E - 06* 0.007 216 0.69 0.33 0.10

4 Integrin, beta 4 ITGB4 120 1.05 1.24E - 05* 0.008 234 0.68 0.15 0.17

5 Matrix metallopeptidase 15 (membrane-inserted) MMP15 119 1.10 2.03E - 05 0.008 233 0.64 0.17 0.11

6 Sorting nexin 5 SNX5 119 1.06 2.06E - 05 0.008 233 0.68 0.21 0.11

7 IMP (inosine 50-monophosphate) dehydrogenase 2 IMPDH2 118 1.06 3.43E - 05 0.009 232 0.67 0.18 0.12

8 CD2 molecule CD2 117 1.06 3.44E - 05 0.009 231 0.66 0.21 0.13

9 Chloride channel, voltage-sensitive 3 CLCN3 119 1.04 3.57E - 05 0.009 233 0.66 0.22 0.09

10 Homeobox D13 HOXD13 118 1.07 3.69E - 05 0.009 232 0.67 0.16 0.13

11 DNA replication and sister chromatid cohesion 1 DSCC1 121 1.04 0.0001 0.024 235 0.63 0.17 0.09

12 G protein-coupled receptor 19 GPR19 120 1.08 0.0001 0.028 234 0.61 0.15 0.12

13 Neurotrophic tyrosine kinase, receptor, type 1 NTRK1 112 1.07 0.0002 0.032 227 0.64 0.13 0.05

14 Breast cancer 2, early onset BRCA2 121 1.05 0.0002 0.033 235 0.66 0.15 0.10

15 Colony stimulating factor 3 receptor (granulocyte) CSF3R 121 1.04 0.0003 0.033 235 0.63 0.26 0.05

16 Nephroblastoma overexpressed NOV 108 1.06 0.0003 0.033 221 0.63 0.19 0.09

17 Plexin D1 PLXND1 115 1.03 0.0003 0.033 229 0.63 0.18 0.15

18 Transferrin receptor TFRC 116 0.92 0.0004 0.037 230 0.64 0.03 0.17

19 Breast cancer 1, early onset BRCA1 109 1.06 0.0004 0.037 223 0.63 0.23 0.11

20 Tumor protein p63 TP63 118 1.04 0.0004 0.037 232 0.64 0.14 0.11

21 Angio-associated, migratory cell protein AAMP 113 0.96 0.0005 0.043 227 0.61 0.06 0.10

22 Connective tissue growth factor CTGF 112 0.96 0.0006 0.043 227 0.58 0.09 0.20

23 EPH receptor B6 EPHB6 120 1.03 0.0006 0.044 234 0.63 0.15 0.13

24 WD repeat and FYVE domain containing 3 WDFY3 120 1.03 0.0008 0.050 234 0.62 0.22 0.07

25 RAD23 homolog A (S. cerevisiae) RAD23A 110 1.10 0.0009 0.053 224 0.63 0.15 0.07

26 Epithelial cell adhesion molecule EPCAM 115 1.04 0.0009 0.054 229 0.60 0.16 0.04

27 Stromal cell derived factor 4 SDF4 119 1.04 0.0010 0.054 233 0.64 0.18 0.14

28 Ras protein-specific guanine nucleotide-releasing factor
2

RASGRF2 118 1.02 0.0013 0.062 232 0.63 0.23 0.03

29 Kallikrein-related peptidase 5 KLK5 120 1.03 0.0013 0.062 234 0.61 0.14 0.06

30 Breast cancer 2, early onset BRCA2 118 1.05 0.0014 0.063 232 0.62 0.12 0.10

31 CD40 ligand CD40LG 119 1.04 0.0015 0.063 232 0.60 0.11 0.11

32 Guanine nucleotide binding protein-like 3 (nucleolar) GNL3 118 1.05 0.0018 0.068 232 0.60 0.12 0.10

33 Thrombospondin 3 THBS3 119 1.02 0.0019 0.070 233 0.63 0.14 0.09

34 Argonaute RISC catalytic component 2 AGO2 118 1.11 0.0020 0.073 232 0.60 0.20 0.10

35 PBX/knotted 1 homeobox 1 PKNOX1 116 1.04 0.0022 0.077 231 0.61 0.19 0.07

36 Microtubule-associated protein, RP/EB family, member
1

MAPRE1 120 1.04 0.0025 0.085 234 0.61 0.09 0.09

37 Glucagon-like peptide 1 receptor GLP1R 111 0.95 0.0026 0.085 225 0.61 0.05 0.21

38 Corticotropin releasing hormone binding protein CRHBP 98 1.08 0.0028 0.091 212 0.61 0.10 0.07

39 Zic family member 3 ZIC3 100 1.07 0.0032 0.101 213 0.60 0.11 0.09

a Number of case/control pairs with non-missing marker values
b Geometric mean within-pair fold change of Rc/Gc, comparing cases to controls: 2^[Mcase - Mcontrol]
c Paired t test P value
d False discovery rate (Benjamini and Hochberg)
e Number of subjects with non-missing marker values
f Area under the curve (AUC)
g Sensitivity at 95 % specificity
h Specificity at 95 % sensitivity
i Performance metric calculated using marker values adjusted for age, race, BMI, HRT use, hybridization day, *P\ (0.05/2467) = 2.03 9 10-5

(Bonferroni threshold)
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ranked candidates (TFRC, RYBP, ITGB4). 14 of 25

showed changes directionally concordant with the plasma

protein alterations identified in our BC cases versus

controls.

To assess the utility of combining multiple candidates

into a composite marker panel, we conducted multivariate

modeling using regularized logistic regression with elastic

net penalty [40]. The mean AUC of models built using the

39 candidates listed in Table 2 and assessed across 100

rounds of MCCV, was 0.75 (SD = 0.06), with estimated

sensitivity of *30 % at 95 % specificity (Fig. 2a). Parsi-

monious models built with the top four markers reaching

Bonferroni significance (CSF2, TFRC, RYBP, ITGB4)

achieved comparable classification accuracy (Fig. 2b).

Gene set enrichment analyses were conducted to assess

whether plasma levels of proteins encoded by genes in

Fig. 1 Receiver-operating characteristic (ROC) curves for TFRC (a) and RYBP (b), based on covariate-adjusted marker values in the pooled

sample set

Fig. 2 Receiver-operating characteristic (ROC) curves for multivari-

ate classifiers based on a all 39 candidate protein markers identified

(Table 2), or b the top four candidate protein markers reaching

Bonferroni significance (CSF2, TFRC, RYBP, ITGB4). Study

participants were randomly divided into a training set (75 %:

n = 175) or testing set (25 %: n = 60). A multivariate classifier

was derived in the training set using the indicated markers and

evaluated in the testing set. After 100 rounds of Monte Carlo cross-

validation (MCCV), a composite average ROC curve was generated

(solid black) from the individual ROC curves (dotted lines) derived in

each testing set. Mean area under the ROC curve (AUC) was

calculated across all MCCV iterations. Estimated sensitivity at 95 %

specificity indicated by black circles
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defined KEGG/GO gene sets were significantly, concor-

dantly altered in cases relative to matched controls. Twelve

of the GO gene sets (and none of the KEGG sets) reached

significance in both the training and testing sets. (Table 3

and Figure S6). Two gene sets, microtubule cytoskeleton

and response to hormone stimulus, remained significant in

the pooled analysis when allowing for a false discovery

rate of q\ 0.25. Both appeared to be upregulated in cases

versus controls.

Discussion

This biomarker discovery study coupled the use of pre-

clinical plasma specimens with a powerful antibody-array

platform to identify candidate blood-based biomarkers for

ER?/PR? invasive ductal BC. Our arrays included[3000

antibodies directed against[2000 proteins, which encom-

pass many cytokines, adipokines, growth factors, and other

secreted or membrane proteins implicated in a range of

biological pathways dysregulated in BC. The putative

markers identified (37 distinct proteins) include both pre-

viously implicated and novel proteins in BC pathogenesis.

Half of these candidates are located either in the plasma

membrane (n = 12) or extracellular space (n = 8), with

the remainder divided between the nucleus (n = 10) or

cytoplasm (n = 7) (Ingenuity Pathway Analysis). The two

largest functional groups are membrane receptors (n = 9)

and transcription regulators (n = 7), with kinases,

peptidases, transporters, growth factors, and cytokines

accounting for most of the remaining share.

Among four candidates meeting Bonferroni signifi-

cance, two (TFRC and ITGB4) have been the focus of

multiple BC-related studies [41–46]. TFRC (transferrin

receptor), which functions in cellular uptake of iron and is

expressed on highly proliferating cells, was identified by

two independent antibodies on our array. Recent studies

have linked elevated TFRC protein expression in ER?

breast tumors to higher clinical grade, increased prolifer-

ative activity, and worse prognosis [41, 42]. Membrane-

bound TFRC is proteolytically cleaved to generate a sol-

uble form of the receptor, which circulates in the plasma

[47]. Interestingly, we observed lower levels of TFRC

protein in the pre-clinical plasma of BC cases relative to

controls. It remains uncertain, however, whether reduced

levels of circulating TFRC reflect decreased abundance of

cellular TFRC, particularly in breast tissue. In contrast to

TFRC, ITGB4 (b4 integrin) was elevated in the plasma of

cases relative to controls. ITGB4 belongs to the integrin

family of transmembrane receptors, which function in cell

adhesion, migration, and proliferation [48]. b4 integrin has

been linked to increased breast tumor size, nuclear grade,

and BC progression, and is believed to function in part

through activation of the MAPK and PI3K/Akt signaling

pathways [44–46, 49]. The 37 candidates for ER?/PR?

ductal BC show minimal if any overlap with those identi-

fied in our studies of triple-negative BC. While our pub-

lished report on TN BC [27] used an earlier-generation

Table 3 Top gene sets

identified as differentially

abundant in cases versus

matched controls, using

training, testing, or pooled

sample sets

S no. GO gene set Pa qb

Training Testing Pooled

1 Microtubule cytoskeleton : 0.001 0.024 \0.001 0.21

2 Response to hormone stimulus : 0.003 0.046 \0.001 0.21

3 Golgi apparatus : 0.045 0.042 0.004 0.50

4 Ruffle ; 0.007 0.036 0.004 0.50

5 Tubulin binding : 0.035 0.035 0.010 0.50

6 Monocarboxylic acid metabolic process : 0.033 0.016 0.011 0.50

7 Negative regulation of cellular biosynthetic process : 0.041 0.022 0.014 0.50

8 Organic acid metabolic process : 0.033 0.020 0.014 0.50

9 Carboxylic acid metabolic process : 0.033 0.020 0.014 0.50

10 Negative regulation of biosynthetic process : 0.041 0.022 0.014 0.50

11 Embryo implantation ; 0.029 0.042 0.031 0.50

12 Enzyme activator activity : 0.045 0.037 0.036 0.50

Arrows denote upregulation (:) or downregulation (;) of indicated gene set in cases relative to matched

controls, based on results from the pooled sample set
a P value derived from Wilcoxon rank-sum test, comparing an observed sum of ranks (for a given pathway)

in the actual dataset to a null distribution generated from 1000 permuted datasets
b False discovery rate (Benjamini and Hochberg), pooled sample set. 2396 antibody features were used in

these analyses. Each included marker had non-missing values for at least 85 case: control pairs (C70 %)
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array with only limited antibody overlap with the current

arrays, more recent side-by-side discovery studies for

ER?/PR? ductal and TN BC on the same platform point to

distinct patterns of proteomic alterations in the pre-clinical

plasma of women who develop these types of cancer (C.

Li, unpublished observations). Such differences are com-

patible with our growing recognition of BC sub-types as

disparate diseases on the epidemiologic, clinical, and

molecular levels, but larger studies are required for

confirmation.

The mechanisms by which pre-clinical BC may lead to

changes in the circulating plasma remain largely unknown.

Detected alterations, if not due to chance, could represent

(i) biological signals originating in the evolving target

tissue (breast) or (ii) systemic changes or responses asso-

ciated with a nascent cancer. In the former scenario, dys-

regulated neoplastic physiology might yield a modified

repertoire of secreted proteins [50], while elevated levels of

necrosis/apoptosis could produce increased spillage of

cellular components. Alternatively, enhanced systemic

inflammation or altered immune profiles [51] could

underlie observed changes in the plasma/serum. Future

studies using inducible in vivo models of carcinogenesis

and paired analysis of blood and tissue may provide further

mechanistic insights [52].

Our TCGA analyses indicated that 14 of our top 37

serum protein candidates exhibited significantly altered and

concordant changes in RNA expression, when comparing

breast tumor versus normal tissue. It remains unknown why

only a subset of the markers showed parallel changes in

tissue RNA expression, and some showed altered expres-

sion in the opposite direction. However, we note that RNA

and protein expression levels of a given gene within a

particular tissue may show only weak to moderate corre-

lation [53], likely reflecting complex post-transcriptional

and post-translational regulatory mechanisms. When con-

sidering serum protein and tissue RNA levels, the rate of

protein secretion or spillage into the bloodstream repre-

sents yet another potential layer of regulation.

If the identified marker candidates are externally val-

idated, an important objective will be to explore their

potential clinical utility. Under current practice, age and

sex remain the sole factors used on a widespread basis in

determining whether or not a screening mammogram is

recommended. More refined methods of BC risk assess-

ment that integrate epidemiologic factors with clinical

parameters (e.g., plasma protein measurements) could

tailor screening recommendations. Three scenarios for

using blood-based biomarkers to guide mammography

usage relate to identifying subgroups of higher-risk

women who are suitable for additional imaging: women

aged 50–69 who should be recalled early after a negative

mammogram; healthy women aged 75–79 who may

benefit from continued mammography; and women aged

50–69 who should be prioritized for imaging in low-

resource settings (e.g., rural areas). In these scenarios,

marker panels achieving even modest sensitivity (e.g.,

*30 %) at high fixed levels of specificity (95 %), such

as those derived in this study, would have the potential to

capture a significant number of additional women who

are most likely to benefit from mammography, without

flooding the system with those least likely to need

imaging. One important caveat with respect to our

modeling results is that performance estimates were

derived using the same set of samples used to identify

the included biomarker predictor variables. Given the

resulting likelihood of some level of optimism bias,

studies in external study populations are essential.

Our antibody-array platform has certain limitations.

First, it interrogates only a subset of the complete plasma

proteome, dictated by the set of included antibodies. Our

pathway analyses were somewhat limited by the absence of

data on many proteins belonging to KEGG/GO gene sets.

Second, relative to gold standard assays (sandwich

ELISA), the antibody array does not incorporate enzymatic

amplification or require multiple antibodies to bind a given

target at distinct epitopes. Thus, technical sensitivity and

specificity are unlikely to match the parameters of targeted

assays. Nevertheless, the array platform has shown excel-

lent concordance with ELISA for specific protein targets

[27, 30, 31]. Third, some antibodies failed on a sizable

number of study subjects, due to low intensity or highly

variable signals. The intended use of our array platform is

for discovery purposes, however, and any potential

downstream clinical assays would likely evaluate a small

number markers using ELISA.

Additional studies are needed to replicate our array-

based proteomic profiling results on independent sample

sets. Confirmed candidates would then be advanced as

potential biomarkers for further validation using gold

standard assays capable of absolute quantification, when

feasible. The potential clinical utility of these results will

require further investigation in larger external cohorts.

Integration of blood-based biomarker data and clinical/

epidemiologic characteristics may ultimately facilitate

development of multivariate classification models for

accurate BC risk stratification and early diagnosis.
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