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Abstract Accurate distant metastasis (DM) prediction is

critical for risk stratification and effective treatment deci-

sions in breast cancer (BC). Many prognostic mark-

ers/models based on tissue marker studies are continually

emerging using conventional statistical approaches ana-

lysing complex/dimensional data association with DM/

poor prognosis. However, few of them have fulfilled sat-

isfactory evidences for clinical application. This study

aimed at building DM risk assessment algorithm for BC

patients. A well-characterised series of early invasive pri-

mary operable BC (n = 1902), with immunohistochemical

expression of a panel of biomarkers (n = 31) formed the

material of this study. Decision tree algorithm was com-

puted using WEKA software, utilising quantitative

biomarkers’ expression and the absence/presence of distant

metastases. Fifteen biomarkers were significantly associ-

ated with DM, with six temporal subgroups characterised

based on time to development of DM ranging from\1 to

[15 years of follow-up. Of these 15 biomarkers, 10 had a

significant expression pattern where Ki67LI, HER2, p53,

N-cadherin, P-cadherin, PIK3CA and TOMM34 showed

significantly higher expressions with earlier development

of DM. In contrast, higher expressions of ER, PR and

BCL2 were associated with delayed occurrence of DM.

DM prediction algorithm was built utilising cases infor-

mative for the 15 significant markers. Four risk groups of

patients were characterised. Three markers p53, HER2 and

BCL2 predicted the probability of DM, based on software-

generated cut-offs, with a precision rate of 81.1 % for

positive predictive value and 77.3 %, for the negative

predictive value. This algorithm reiterates the reported

prognostic values of these three markers and underscores

their central biological role in BC progression. Further

independent validation of this pruned panel of biomarkers

is therefore warranted.

Keywords Breast cancer � Immunohistochemistry �
Metastasis � Risk stratification algorithm

Introduction

Distant recurrence is the major cause of cancer-related

deaths in breast cancer (BC) patients [1]. For cancer cells

to successfully colonise a secondary site, they have to fulfil

specific prerequisites to overcome the vast stresses

throughout the metastatic cascade [2]. Collectively, the

success of the metastatic process results from integration

and contribution of complex molecular pathways control-

ling cellular proliferation, survival, metabolism, invasion

and migration [3].

Accuracy in BC prognosis/prediction, particularly dis-

tant recurrence risk assessment, is critical for accurate

patients’ stratification and effective treatment decision-

making. Many prognostic markers and models based on
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tissue marker studies are continually emerging; however,

very few of them have fulfilled satisfactory evidence for

clinical application. Poor study design and misleading

statistical analyses have been proposed as to explain dis-

crepancies in research studies generating relevant clinically

useful prognostic markers [4].

Mining large datasets regarding the expression patterns

of a large number of biomarkers and clinical variables re-

quires stringent statistical approaches to derive robust

conclusions. Decision tree is an approach followed to au-

tomatically learn, through machine learning, to recognise

complex patterns and illustrate relations between observed

variables to make intelligent decisions. Therefore, decision

tree algorithms could help improving our basic under-

standing of cancer development and progression [5] which

can be used to assist the classification of BC cases by sorting

them based on feature or attribute values (e.g. tissue marker

expression). Each node in a decision tree represents a fea-

ture in a case to be classified, and each branch represents a

value that the node can assume. Cases are classified starting

at the root node and sorted based on their feature values [6].

Perhaps the most common algorithm in literature for

building decision trees is the C4.5 developed by Ross

Quinlan. C4.5 is a statistical classifier system which uses

the concept of information gain to make a tree of classifi-

catory decisions with respect to a previously chosen target

classification (e.g. distant recurrence). Each attribute of the

data can be used to make a decision that splits the data into

smaller subsets [7]. These outputs are then expressed as

models, in the form of decision trees or sets of if-then rules,

which can be used to classify new cases, with an emphasis

on making the models understandable as well as accurate.

In general, it is often possible to prune a decision tree to

obtain a simpler and more accurate tree [6, 8].

The aims of this study are to explore biomarkers of

greatest impact on distant metastasis (DM) development in

BC patients and their combinatorial behavioural expression

patterns, and to build a decision tree algorithm for pre-

dictive tissue markers of DM which could be used, fol-

lowing validation, in newly diagnosed BC cases.

Materials and methods

Patients and tumours

This study was based on a well-characterised cohort of

early stage (I–III) primary operable invasive BC

(n = 1902) from patients enrolled into the Nottingham

Tenovus Primary Breast Carcinoma Series between 1987

and 1998, and managed in accordance to a uniform pro-

tocol and has been comprehensively studied with a broad

range of markers [9, 10]. During the follow-up time within

this series, distant recurrence had developed in 578/1902

cases (30 %). The median time to DM was 128 months

(range 4–247 months).

This study included 31 biomarkers of clinical and bio-

logical relevance to BC tumourigenesis and progression [9,

11]. These were hormone receptors [oestrogen receptor

(ER), progesterone receptor (PR)], epidermal growth factor

receptor family members [HER1 (EGFR), HER2, HER3,

HER4], cytokeratins [basal CKs; CK5/6 and CK14, and

luminal CKs; CK7/8, 18 and 19], tumour suppressor and

cell cycle regulator proteins [p53 and P27] anti-apoptotic

BCL2, a proliferation marker (Ki-67/MIB1 clone), cadherin

family [E-cadherin, N-cadherin and P-cadherin], markers of

key molecular pathways [TGFb1, PIK3CA, pAkt-S473],
transcription factors [phospho-STAT3 and TWIST2],

markers reported to be associated with invasiveness and

tumour aggressiveness [CTEN, CD44 and CD24] [12, 13],

in addition to five markers/proteins encoded by five tran-

scripts/genes significantly expressed between metastatic

and non-metastatic BC (TOMM34, ZFN22, KRT23,

ST8SIA6, and chromogranin-A). These latter markers re-

sulted from ANN of analysis of cDNA expression data of

128 primary invasive frozen BC samples from the Not-

tingham Tenovus Primary Breast Carcinoma series previ-

ously studied using gene expression profiling (GEP) [14].

This approach stratified the transcripts on their ability to

classify samples based on the occurrence of DM (n = 35)

compared with those without DM (n = 93), as previously

described [15, 16]. These five proteins are encoded by ge-

nes/transcripts’ data analysed by artificial neuronal net-

work. These genes were amongst the top 40 differentially

expressed genes between metastatic and non-metastatic

cases. This research was approved by Nottingham Research

Ethics Committee 2 under the title of ‘‘Development of a

molecular genetic classification of breast cancer’’.

Immunohistochemistry (IHC)

Four-lm sections were cut from paraffin-processed block

of previously prepared TMAs and mounted on Superfrost

slides (Surgipath). MIB1 expression was determined using

full face FFPE breast tissue sections as previously de-

scribed [17]. Tissue sections were deparaffinised in xylene

(Genta Medica, York, UK), rehydrated in descending series

of ethanol, 10 s each. Heat-induced retrieval of antigen

epitopes was carried out using microwave treatment of

slides in 10 mM sodium citrate buffer (pH 6.0) for 20 min.

Slides were then incubated primary antibody in optimal

working dilution (Table 1). Secondary detection system

was NovoLinkTM Polymer Detection System (Leica,

RE7150-K). Reaction was visualised using freshly pre-

pared filtered solution of 3-30 Diaminobenzidine tetrahy-

drochloride (DAB, Dako, K3468). Counterstaining was
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performed with Mayer’s haematoxylin (DAKO, AR106)

for 6 min. Sections were dehydrated in alcohol, cleared in

xylene and coverslipped using DPX mounting medium

(BDH, Poole, UK).

Assessment of IHC staining

Slides were scanned as high resolution digital images

(0.45 lm/pixel) using a NanoZoomer slide scanner (Ha-

mamatsu Photonics, Welwyn Garden City, UK) and ac-

cessed using a web-based interface (Distiller, SlidePath

Ltd, Dublin, Ireland). TMA cores were scored at 920

magnification using a minimum of 24 high-resolution

screen (1920 9 1080).

Scoring of IHC staining of markers was performed using

the modified H-score method [18], except MIB1LI and

BCL2 which were scored as the percentage of expression.

All sections were scored without prior knowledge of the

patients’ pathologic or outcome data.

Statistical analysis

To establish a set of rules to determine to which group;

presence or absence of DM, a patient is more likely to be

assigned using its variables’ values; WEKA software was

used to compute the decision tree algorithm C4.5. Wilcoxon

test, a non-parametric version of t test, was used to specify

those markers appearing to behave differently in the two

groups of patients. Results were validated using univariate

Table 1 Dilution and

source/clone for the antibodies

used in this study

Marker Clone/source Dilution

1 ER [Clone SP1], Dako Corporation 1:150

2 PR [Clone PgR 636], Dako Corporation 1:100

3 HER2 [CerbB-2], Dako Corporation 1:250

4 EGFR [Clone EGFR.113], Novocastra 1:10

5 EGFR3 [Clone RTJ1], Novocastra 1:20

6 EGFR4

7 Ki67 [Clone MIB-1], Dako Corporation 1:50

8 P53 [DO7], Leica Biosystems, Newcastle, UK 1:50

9 Bcl-2 [Clone 124], Dako Corporation 1:400

10 P27 [Clone SX53G8], Dako Corporation 1:25

11 PIK3CA Sigma-HPA009985 1:50

12 pAKT-S474 Neomarkers-RB-10369-P1 1:150

13 TGFß1 Abcam-Ab27969 1:400

14 STAT3a Abcam-Ab76315 1:150

15 TWIST2a Abcam-Ab57997 3 lg/ml

16 E-cadherin [Clone HECD-1], Zymed Laboratories 1:100

17 N-cadherin Sigma-C3865 4 lg/ml

18 P-cadherin [clone 56], BD Biosciences 1:200

19 CTENa Abcam, ab57940 1:75

20 CD24b SWA11 mouse antibody 1:500

21 CD44 Cell Signalling-156-3c11 1:100

22 Ck18 [Clone DC10], Dako Corporation 1:50

23 Ck19 [Clone BCK 108], Dako Corporation 1:100

24 Ck7/8 [Clone CAM 5.2], Becton–Dickinson 1:2

25 CK5/6 [D5/16134], Boehringer Biochemica 1:100

26 CK14 Anti-human CK14, LL002, leicabiosystems, Newcastle, UK 1:100

27 Tomm34 Sigma-HPA018845 1:100

28 KRT 23 Abnova-H00025984 4 lg/ml

29 ST8SIA6 Sigma-HPA011635 1:75

30 ZFN22 Sigma-HPA016736 1:100

31 Chromogranin clone DAK-A3 1:100

a Microwave heat-induced retrieval of antigens’ epitopes was performed in citrate buffer at pH 6.0 for all

the studied markers except STAT3, CTEN and TWIST2 for which EDTA solution at pH 8.0 was used
b Gift from Professor P. Altevogt, German Cancer Research Centre, Heidelberg, Germany
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Cox regression analysis. A p value\0.05 (two-tailed) was

considered significant. Box plots were organised to visu-

alise the differential distribution of each marker between

those cases with metastatic disease from those without.

Results

Box plots for the distribution of all the 31 markers’ ex-

pression within the studied series with relevance to the

presence or absence of distant metastases are summarised

in Fig. 1a. According to these plots, the variable distribu-

tion of markers within both patients’ subsets can be in-

ferred. For instance, the H-score of PR expression for 95 %

of cases with DM ranges from ‘‘0–150’’, median 5, com-

pared with ‘‘0–200’’, median 90 in cases with no DM.

To test those markers which were the drivers of the two

groups, Wilcoxon test and univariate Cox regression ana-

lysis were performed. This resulted in a panel consisting of

15 biomarkers being significantly associated with distant

recurrence (p\ 0.001). These markers were Ki67/MIB1LI,

ER, PR, HER2, EGFR, p53, BCL2, N-cadherin, P-cadherin,

PIK3CA, pSTAT3 nuclear expression, TOMM34, ZFN22,

CD44 and Ck5/6. Table 2 displays these markers and the

functional group under which they could be classified.

Figure 1b displays box plots showing differential expres-

sion levels of this panel within metastatic versus non-

metastatic groups of the studied series. As these plots dis-

play, variable distribution of different markers between the

two groups could be appreciated. For instance, the H-score

of BCL2 expression for 95 % of cases with distant recur-

rence lies between ‘‘0–75’’, median 50, compared with

‘‘0–100’’, median 70 in cases with no distant recurrence.

Biomarker expression pattern and time to distant

metastasis

Based on time to development of DM in cases where dis-

tant recurrence occurred (n = 578 patients), six temporal

subgroups were characterised, which ranged from less than

1 year of follow-up to more than 15 years. These were (1)

\1 year (n = 50), (2) between 1 and 2 years (n = 102),

(3) [2 up to 5 years (n = 201), (4) [5 up to 10 years

(n = 155), (5)[10 up to 15 years (n = 56) and (6)[than

15 years (n = 14). Box blots were constructed to depict the

expression pattern of the 15 biomarker panel significantly

associated with DM within these temporal subgroups,

Fig. 2. According to box plots of these metastatic sub-

groups, 10 markers had a significant expression pattern

with respect to time of developing DM. However, the re-

maining five markers did not show this temporal relation

with occurrence of DM.

Markers with significant expression trend

within groups of time to distant recurrence

Within this group of markers, Ki67/MIB1LI, HER2, p53,

N-cadherin, P-cadherin, PIK3CA and TOMM34 showed

characteristic pattern of differential expression between the

six subgroups, where higher expression values were asso-

ciated with significantly earlier development of distant

recurrence and vice versa. For PIK3CA, the expression

values were very high for those cases that developed earlier

DM (mean H-sore = 210 in those developed DM in less

than 1 year compared with 130 in those developed DM

[10 years up to 15 years). In contrast, higher expression

values of ER, PR and BCL2, were observed to be associ-

ated with delayed occurrence of DM.

Markers with no observed expression trend

within the time to distant recurrence period

The remaining markers, however, (i.e. EGFR, phospho-

STAT3, ZFN22, CD44 and CK5/6), did not show an evi-

dent behavioural/differential trend in their expression with

relevance to the time to development of DM in the six

metastatic subgroups.

Decision tree-calculated metastasis prediction

algorithm

To build a distant recurrence risk assessment algorithm for

BC patients, decision trees were computed. For the purpose

of robustness, only cases with complete values for all

biomarkers were used to compute the decision tree. The

number of informative cases available for the 15 significant

markers was 176 cases, which constituted a test set for

building a decision tree algorithm for metastatic recurrence

prediction. DM had developed in 64 (36.3 %) cases, with

the remaining 112 (63.7 %) cases remaining DM free

throughout the period of follow-up. The input data for

WEKA software were the expression data of these 15

markers, entered as continuous data ‘‘H-score or % ex-

pression’’, and the metastatic status (Yes/No), with mini-

mum number of cases in each branch to be equal to or more

than 4. The resulting tree is as illustrated in Fig. 3.

According to the tree, four groups of patients were

characterised, based on the expression of three markers

p53, HER2 and BCL2, which were able to predict the

probability of DM in the test set. Cut-off points for these

three markers were automatically set by the software.

Table 3 displays these groups and the number of correctly

classified and misclassified cases in each of group.

This ability of this algorithm to classify patients on the

basis of probability of DM (i.e. DM Yes and DM No) was
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significantly associated with tumour size, tumour grade,

number of positive axillary lymph nodes and BC molecular

subtype as assessed by IHC [19]. Although associations

with axillary nodal stage and lymphovascular invasion

(LVI) did not reach statistical significance, more propor-

tions of cases with C4 positive axillary nodes experienced

Fig. 1 Box plots for the studied markers in cases with no distant

recurrence versus those with distant recurrence. The box for a certain

marker represents 95 % of cases. The horizontal bold line inside the

box is the median value of the marker. a Distribution of all markers

(n = 31) within the studied series. b Box plots of biomarker panel

showing significant expression between metastatic versus non-

metastatic patients’ subsets
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DM more than those with node negative disease (30 %

versus 13.5 %, respectively). Supplementary Table 1 dis-

plays the results of these associations. Multivariate Cox

regression analysis showed that this algorithm is sig-

nificantly associated with breast cancer-specific survival

(BCSS) and metastasis-free interval [p = 0.001, Hazard

ratio (HR) = 3.139, 95 % interval (CI) 1.640–6.011, and

HR 2.856, 95 % CI 1.538–5.305, respectively] indepen-

dently of grade, size, stage, molecular subtype and number

of positive axillary lymph nodes.

The precision rate of this algorithm in predicting DM

was evaluated using the positive predictive value (PPV)

and the negative predictive value (NPV) [20]. For this al-

gorithm, the PPV = 26/32 = 81.1 %, and the

NPV = 150/194 = 77.3 %.

Discussion

Within the studied series, DM had developed in 30 % of

cases during the period of follow-up and the outcome of

this group was markedly reduced compared to patients who

did not develop DM (5-year survival rate was 58 % com-

pared to 98 %, respectively). This significant decline in

patients’ survival is, to a large extent, attributable to the

biological differences in tumours with metastatic potential

from those without. Therefore, the molecular factors driv-

ing growth and differentiation pathways in tumours with

metastases were scrutinised to explore their relative con-

tribution in their non-metastatic tumour counterparts.

For this purpose, the expression pattern of 31

biomarkers with close relevance to BC biology and pro-

gression was studied with relevance to the occurrence of

DM. Based on their distributions as continuous variables,

many of the studied markers displayed variable expression

within both patients’ subsets with and without DM, re-

spectively. However, a panel formed of fifteen markers was

significantly associated with the occurrence of DM.

Functional categories within this biomarker panel re-

vealed that they belonged to molecular pathways respon-

sible for carcinogenesis and cancer progression including

hormonal receptors (ER, PR), epidermal growth factor re-

ceptor family members (EGFR, HER2), tumour growth

fraction as assessed by MIBL1, tumour suppressor p53,

anti-apoptotic BCL2, cell adhesion molecules (N-cadherin,

P-cadherin), signalling pathways and transcription factors

(PIK3CA, pSTAT3 and ZNF22), basal Ck14, TOMM34

and CD44.

In meta-analysis of publicly available BC GEP studies,

Wirapati and colleagues showed that the key biological

drivers in nine prognostic signatures were proliferation-

related genes, in addition to ER signalling and HER2

amplification [21]. The current IHC marker panel shared

ER, PR, HER2 and proliferative fraction as major drivers

of progression with GEP studies [21]. Additionally, p53

and BCL2 were among the major contributors of DM in the

IHC panel. Inactive TP53, as assessed by positive p53

protein expression, disturbs the functional braking and

emergency cell cycle arrest in genetically damaged cells

leading ultimately to cell cycle progression [22]. On the

other hand, BCL2 is a cellular pro-survival molecule that

protects transformed cells from apoptotic cell death.

Therefore, from functional point of view, p53 and BCL2

which were more expressed in metastatic cases, lead to

enhanced cell proliferation, through cell cycle progression

and cell immortalisation [23].

The expression of basal/myoepithelial markers has been

previously reported to contribute to the identification of a

subset of BC characterised by poor outcome, the basal-like

Table 2 Functional categories of biomarker panel associated with

the occurrence of distant recurrence and their descriptive measures

Tissue marker Distant metastasis Significance p value

No Yes

Mean (median)

Hormone receptors

ER 115 (125) 93 (100) \0.001

PR 108 (95) 78 (10) \0.001

EGFR family members

EGFR 11 (0) 17 (0) 0.002

HER2 30 (0) 52 (0) \0.001

Proliferation markers

Ki-67/MIB1LI 28 (14) 39 (30) \0.001

Tumour suppressor genes

p53 35 (0) 55 (0) \0.001

Anti-apoptotic

BCL2 50 (60) 40 (40) \0.001

Key Molecular Pathways

PIK3CA 135 (100) 160 (150) \0.001

Cadherin family members

N-cadherin 120 (100) 130 (100) 0.018

P-cadherin 55 (0) 70 (55) \0.001

Transcription factors

Phospho-STAT3 70 (30) 55 (15) 0.003

Markers of proposed stem cell lineage

CD44 80 (50) 60 (10) \0.001

Basal CKs

Ck5/6 10 (0) 15 (0) 0.006

Markers identified by gene microarray data analysis

Tomm34 90 (90) 115 (100) \0.001

ZNF22 40 (5) 50 (10) 0.002

All markers were scored using H-score (i.e. ranged from 0 to 300),

except MIB1LI and BCL2 which were scored as percentages (i.e.

ranged from 0 to 100)
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subtype [24]. In the current IHC panel, two markers could

be assigned into this category of markers: EGFR and Ck14.

These results support recommendations of using these two

makers, beside ER, PR and HER2 negativity, as additional

surrogates in characterising BCs with basal phenotype [25].

Moreover, the roles played by PIK3CA in BC progression

through its downstream effectors, especially through driv-

ing an epithelial-to-mesenchymal transition program

(EMT) with upregulation of N-cadherin and P-cadherin,

have been reported in the same series [26, 27], as well as in

others [28].

Metastatic recurrence developed in these patients with

primary BC over a time schedule ranged from 4 months to

more than 15 years. Ten markers of the IHC biomarker

panel displayed differential expression patterns within the

temporal groups of time to DM. These include ER, PR,

HER2, MIB1LI, p53, BCL2, N-cadherin, P-cadherin,

PIK3CA and TOMM34. However, the remaining five

markers did not show this sort of trend. Markers of poor

prognostic impact [MIB1LI, HER2, p53, N-cadherin,

P-cadherin, PIK3CA and TOMM34] were more expressed

in cases where DM had manifested earlier, while less

Fig. 2 Box plot showing expression pattern of metastatic biomarker

panel within the six temporal groups within the metastatic group

based on time to DM. a \1 year (n = 50), b from 1–2 years

(n = 102), c [2 up to 5 years (n = 201), d [5 up to 10 years

(n = 155), e[10 up to 15 years (n = 56) and F[15 years (n = 14).

Y axis represents the H-score or percent expression of markers on

X axis

Fig. 3 Decision tree algorithm for predicting distant recurrence.

Circles represent the markers in the algorithm (p53, HER2 and

BCL2). Rectangles represent feature value tested (DM); Zero = No

DM, One = Yes DM and numbers represent subsets of patients

correctly classified and misclassified, respectively. Branches emerg-

ing from each marker are levels (H-score for p53 and HER2, and

percentage of BCL2) of expression below or above which a specific

case is to be classified into either zero or one

Breast Cancer Res Treat (2015) 151:325–333 331

123



expression was observed with prolonged metastasis-free

intervals. The reverse was true for biomarkers of good

prognostic impact [ER, PR and BCL2]. These findings

could be interpreted in view of the concept of tumour

dormancy, in which disseminated cancer cells leaving the

primary tumour stay dormant for variable periods of times

in another anatomical niche that could extend into many

years. During this dormancy stage, cells may remain qui-

escent or form clinically undetectable micrometastases.

Entering of these dormant cells or micrometastatic nodules

into an overt progressive growth phase leads to the com-

mencement of clinically detectable metastasis. The length

of dormancy periods has been determined by balancing cell

proliferation and apoptosis [29, 30]. More insight into the

differentially expressed markers between early and late

metastatic groups reveals, once again, that major drivers of

BC progression, especially proliferation and apoptosis

regulator, not only play major roles in emergence of re-

currences but also in the time of their arousal.

Using the 15 IHC biomarker panel and decision tree, a

probabilistic algorithm was computed to be applied for risk

assessment of DM in BC patients. According to the re-

sulting algorithm, four risk groups of patients were char-

acterised. Expression levels of p53, HER2 and BCL2 at

automatically-generated specific cut-off points were able to

predict the probability of distant recurrence in the studied

set with satisfactory precision rate 81.1 % PPV and 77.3 %

NPV. Therefore, a tumour suppressor, an oncogene and an

anti-apoptotic marker could be reliably used in DM risk

prediction. In the root node of the decision tree, p53 ex-

pression was the first determinant, with distant recurrence

expected in cases of high p53 (H-score[60) with HER2 or

p53 high, low HER2 and low BCL2. However, low p53

alone or high p53, low HER2 and high BCL2 were asso-

ciated with lower risk of DM. The ability of this

probabilistic model in stratifying patients into DM risk

groups was significantly associated with tumour size,

grade, number of positive axillary lymph nodes and BC

molecular subtype. Moreover, the model was significantly

associated with both BCSS and metastasis-free interval,

independent of other factors. This algorithm reiterates the

documented prognostic values of these three markers and

underscoring the central biological role played by each of

these three markers in BC progression [31–33]. According

to these results, this small or pruned panel of biomarkers

could be used with acceptable success in distant recurrence

prediction. However, its performance needs to be validated

in an independent BC patient series especially on a

prospective basis.

Conclusions

Metastatic recurrence in the studied series appears to result

from contribution of a molecular biomarker panel control-

ling the major nodes in carcinogenic and progression path-

ways including hormonal receptors, growth factors, tumour

suppressor, apoptotic regulator, cell adhesion apparatus and

transcription factors. A predictive algorithm formed of p53,

BCL2 and HER2 IHC expression was able to successfully

predict the probability of distant recurrence, which requires

independent validation. These findings affirm thatmetastasis

is an inherent early cancer trait that could be predicted from

the primary tumour biomarker expression profile.
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