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Abstract Everolimus (RAD001, Afinitor�) is an oral,

selective mTOR inhibitor recently approved by the US-

FDA in combination with exemestane for treatment of

hormone receptor positive advanced breast cancer. To date,

no molecular predictors of response to everolimus in breast

cancer have been identified. We hypothesized predictive

markers could be identified using preclinical models. Using

a molecularly characterized panel of human breast cancer

and immortalized breast epithelial cell lines, we deter-

mined sensitivity to everolimus alone or in combination

with ER- or HER2- targeted therapy. Gene expression

microarrays and comparative genomic hybridization were

performed on the cell lines to identify predictors of

response to everolimus. Among 13 everolimus-sensitive

cell lines, 10/13(77 %) were luminal, while in 26 resistant

cell lines, 16/26(62 %) were non-luminal, and 10/26(38 %)

were luminal. Only 3/24 non-luminal lines were sensitive,

two of which were HER2?. Everolimus enhanced the anti-

proliferative effect of both tamoxifen (TAM) and fulves-

trant (FUL) in ER? breast cancer cell lines, as well as

trastuzumab in HER2? cell lines. Everolimus ? FUL but

not everolimus ? TAM reversed acquired resistance to

TAM. Everolimus inhibited mTOR in tested cell lines by

decreasing S6 phosphorylation, mediating its anti-prolif-

erative effect by G0/G1 cell cycle arrest and induction of

apoptosis. Chromosomal amplifications of AURKA (p val-

ue = 0.04) and HER2 (p value = 0.03) were each associ-

ated with increased sensitivity to everolimus. Transcript

expression microarrays identified GSK3A, PIK3R3, KLF8,

and MAPK10 among the genes overexpressed in sensitive

luminal lines, while PGP, RPL38, GPT, and GFAP were
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among the genes overexpressed in resistant luminal cell

lines. These preclinical in vitro data provide further support

for continued clinical development of everolimus in lu-

minal (ER? or HER2?) breast cancer in combination with

targeted therapies. We identified several potential mole-

cular markers associated with response to everolimus that

will require validation in clinical material.

Keywords Everolimus � mTOR � Breast cancer �
Predictors of response

Abbreviations

ANOVA Analysis of variance

EMT Epithelial-to-mesenchymal transition

ER Estrogen receptor

FITC Fluorescein isothiocyanate

FUL Fulvestrant

IC50 Drug concentration that provides 50 %

growth inhibition

mTOR Mammalian target of rapamycin

HER2 Human epidermal growth factor receptor 2

Nim-DAPI Nuclear isolation medium–4,6-diamidino-2-

phenylindole dihydrochloride

OS Overall survival

PI3K Phosphoinositide 3-kinase

PFS Progression-free survival

PTEN Phosphatase and tensin homolog

RR Relative risk

TAM Tamoxifen

TNBC Triple-negative breast cancer

TTP Time to progression

Introduction

Molecular profiling of human breast cancers has revealed

distinct subtypes that are characterized and often driven by

altered signaling pathways [1, 2]. One such signaling

pathway that has been shown to be altered in many human

cancers is the phosphatidylinositol 3-kinase (PI3K)/

AKT/mammalian target of rapamycin (mTOR) pathway.

This pathway has been shown to play a critical role in cell

proliferation, migration, differentiation, and survival [3].

The mTOR protein is a 289-kD intracellular serine/thre-

onine kinase with activity important in regulating the PI3K

pathway through modulation and integration of signals

from the intracellular and extracellular environments [4].

mTOR is a component of two multiprotein complexes:

mTORC1 and mTORC2 [5]. Activation of mTORC1 leads

to production of proteins via phosphorylation of eukaryotic

initiation factor 4E binding protein 1 (4E-BP1) and p70

ribosomal S6 kinase 1 (S6K1) [4]. The activation and

downstream effects of mTORC2 are less well defined, but

evidence suggests a role in cell survival, proliferation,

metabolism, and cytoskeletal organization [4, 6–9].

While the PI3K/AKT/mTOR pathway appears to be

critically important in numerous normal cell processes, its

dysregulation has been demonstrated to be a significant

factor in the pathogenesis of multiple cancers [3, 10, 11].

Breast cancers often bear molecular alterations that activate

the PI3K/AKT/mTOR pathway such as overexpression of

tyrosine kinases, downregulation of the tumor suppressor

PTEN [12–15], activation of PI3K [16–18], or overex-

pression/hyperactivation of AKT [19]. Given the funda-

mental role of PI3K/AKT/mTOR signaling in cancer

pathophysiology, therapeutic agents have been developed

to target various components of the pathway. One such

agent is everolimus (RAD001, Afinitor�, Novartis, Basel,

Switzerland), an orally administered derivative of ra-

pamycin that is a selective allosteric mTORC1 inhibitor

[20–23]. Everolimus forms a complex with the intracellular

receptor FKBP12 [24, 25] and may indirectly inhibit

mTORC2 by sequestering free mTOR so that the assembly

of mTORC2 complexes is precluded [8].

Everolimus has received approval by the US Food and

Drug Administration (FDA) for treatment of hormone re-

ceptor-positive advanced breast cancer in combination with

exemestane in post-menopausal patients with non-steroidal

aromatase inhibitor-refractory disease, based on the results of

a phase III randomized study [26]. Studies evaluating the use

of everolimus in combination with HER2-targeted agents

have also reported promising initial results [27–31].

To date, no consistent molecular determinants of re-

sponsiveness to everolimus have been defined, nor have

studies clearly delineated subsets of breast cancer most

likely to be sensitive to mTOR inhibition. Some data

suggest that activation status of the PI3K/AKT/mTOR

pathway may be an indicator of mTOR sensitivity [20, 32–

34], while other data show no such association [35]. Large

panels of molecularly characterized breast cancer cell lines

are valuable tools for better defining molecular subtypes

and screening biologically targeted therapies [36–38]. To

assess the activity of everolimus in different molecular

subtypes of breast cancer and to better understand mole-

cular determinants of response to mTOR inhibition, we

assessed the in vitro effects of everolimus as a single agent

across a panel of 49 human breast cancer and 3 immor-

talized breast epithelial cell lines. In addition, we assessed

the activity of everolimus in combination with tamoxifen,

fulvestrant, and trastuzumab in selected estrogen receptor

positive (ER?) and HER2 amplified cell lines,

respectively.
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Materials and methods

Cell lines, cell culture, and reagents

Our molecularly characterized cell line panel included 49

breast cancer cell lines and 3 immortalized breast epithelial

cell lines representing the known molecular subgroups of

breast cancer as previously described [38, 39]. Cell lines

conditioned for acquired everolimus resistance were

established in our laboratories as described previously [38,

39]. Everolimus (Afinitor�) was obtained from Novartis

(Basel, Switzerland) and dissolved in DMSO (20 lM).

Point mutation data from the cancer cell line

encyclopedia

The cancer cell line encyclopedia (CCLE) project has se-

quenced 4059 protein-coding genes via solution phase

hybrid capture and massively parallel sequencing. These

point mutation data were downloaded from the Broad In-

stitute’s publicly available database (http://www.broad

institute.org/ccle/home) and incorporated into the UCLA

Translational Oncology Research Laboratory (TORL)’s

database for those cell lines where the two panels overlap.

Data were available on 38 of the cell lines in UCLA-

TORL’s everolimus response panel. The CCLE has pre-

restricted its whole-exome sequencing dataset for several

inclusion criteria with the intention of enriching for onco-

genic ‘‘driver’’ alterations [40].

Detailed information on cell lines, proliferation assays,

comparative genomic hybridization, microarray analysis,

flow cytometry analysis of cell cycle and apoptosis, west-

ern blot, and statistical analysis have been previously de-

scribed [37, 38, 41] and can be found in online resource

Supplementary Materials and Methods.

Results

Response to everolimus and molecular subtypes

of breast cancer

A panel of 49 human breast cancer cell lines and 3 im-

mortalized breast epithelial cell lines were used to test the

anti-proliferative effects of everolimus. We observed

relatively flat dose response curves over a wide range of

concentrations in a majority of cell lines. For this reason,

IC50 alone was deemed to be inadequate to classify re-

sponse. Instead, a non-standard two-criterion cutoff was

used to determine sensitivity such that those cell lines with

an IC50 below 1 nM and those with more than 80 % growth

inhibition at 100 nM were classified as sensitive. Those

cell lines with an IC50 over 50 nM were classified as

resistant. The rest were classified as intermediately sensi-

tive. Based on these response criteria, 13 cell lines were

classified as sensitive, 13 as intermediate, and 26 as re-

sistant to everolimus (Table 1).

Four HER2-amplified lines that were conditioned for

acquired resistance to trastuzumab or lapatinib were in-

cluded in the panel (Table 1). While the BT-474 parental

line was everolimus sensitive, the two resistant lines

showed intermediate sensitivity. The SK-BR-3 parental

line and SK-BR-3-LR were resistant to everolimus, and the

SK-BR-3-TR line had intermediate sensitivity.

A total of 13 cell lines were determined to be sensitive

to everolimus, and the majority (10/13; 77 %) represented

the luminal subtype. Of these, 10/13 (77 %) were ER? (5

HER2?, 5 HER2-), and 3 were basal/post-EMT (2 ER-/

HER2?, 1 ER-/HER2-). While the sensitive lines were

enriched for ER expression, not all of the ER? responded

to everolimus with 8/21 (38 %) ER? classified as resistant

(Table 1). The remainder of the lines in the panel was

determined to have intermediate sensitivity. Similar re-

sponse distributions were observed for the cell lines con-

stituting the HER2? subtype, i.e., 7/21 (33 %) sensitive

versus 6/21 (29 %) resistant.

Of 26 resistant cell lines, 16 (62 %) were non-luminal

(either basal or post-EMT) or immortalized (ER- and

HER2-). In contrast only 3/24 (13 %) non-luminal

(basal/post-EMT) lines were sensitive to everolimus, two

of which were HER2?. All three immortalized cell lines

were classified as resistant.

These findings suggest that, despite enrichment for ER and

HER2 in sensitive cell lines and loss of these markers in re-

sistant cell lines, these subtype classifications alone do not

fully explain the differences in response to everolimus, and a

search for other molecular predictors of response is warranted.

Everolimus enhances the anti-proliferative effect

of tamoxifen and fulvestrant in ER-positive breast

cancer cell lines

The combinations of everolimus with the estrogen receptor

antagonists, TAM and FUL, were evaluated on three

ER ? luminal breast cancer cell lines with variable everolimus

single-agent activity (sensitive; MDA-MB-415 and CAMA-1,

and resistant; MCF-7). We observed an enhancement of the

anti-proliferative effect of TAM and FUL with everolimus in all

three tested cell lines (Supplementary Fig. S1).

Everolimus in combination with hormone pathway

and HER2-targeting agents

Combinations of everolimus with TAM or FUL were

evaluated in MCF-7 cells conditioned for acquired resis-

tance to tamoxifen by a long-term estrogen deprivation
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Table 1 The calculated response parameters for each cell line and its molecular classification

Cell line Average inhibition

at 100 nM (%)

Average IC50

(nM)

Classification Breast cancer

subtype

HER2 status ER status

HCC-1500 [100 \0.05 Sensitive Luminal Normal Positive

MDA-MB-175 [100 \0.4 Sensitive Luminal Normal Positive

ZR-75-30 [100 \ 0.05 Sensitive Luminal Amplified Positive

HCC-202 [100 0.08 Sensitive Luminal Amplified Positive

BT-474 [100 0.06 Sensitive Luminal Amplified Positive

EFM-192A [100 0.12 Sensitive Luminal Amplified Positive

HCC-1419 [100 0.20 Sensitive Luminal Amplified Positive

CAMA-1 [100 \ 0.4 Sensitive Luminal Normal Positive

HCC-1569 91.8 0.15 Sensitive Post-EMT Amplified Negative

MDA-MB-415 91.7 \ 0.4 Sensitive Luminal Normal Positive

EFM-19 90.3 0.72 Sensitive Luminal Normal Positive

HCC-1954 88.5 0.52 Sensitive Basal Amplified Negative

HCC-38 87.6 0.28 Sensitive Basal Normal Negative

BT-474-LR [100 3.19 Intermediate Luminal Amplified n/a

HCC-1187 91.2 2.32 Intermediate Basal Normal Negative

UACC-893 86.9 7.21 Intermediate Luminal Amplified Positive

BT-474-TR 67.9 \ 0.05 Intermediate Luminal Amplified n/a

HCC-1395 66.8 16.81 Intermediate Post-EMT Normal Negative

ZR-75-1 66.3 13.72 Intermediate Luminal Normal Positive

BT-549 61.3 3.07 Intermediate Post-EMT Normal Negative

SK-BR-3-TR 60.7 37.96 Intermediate Luminal Amplified n/a

SUM-190 59.6 12.30 Intermediate Luminal Amplified Positive

SUM-225 59.4 29.74 Intermediate Luminal Amplified Negative

BT-20 58.4 0.73 Intermediate Basal Normal Negative

JIMT-1 53.2 \0.05 Intermediate n/a Amplified n/a

MDA-MB-453 51.7 6.56 Intermediate Luminal Amplified Negative

T-47D 50.2 67.37 Resistant Luminal Normal Positive

MDA-MB-361 50.0 [100 Resistant Luminal Amplified Positive

MDA-MB-468 48.9 [100 Resistant Basal Normal Negative

SK-BR-3 48.5 [100 Resistant Luminal Amplified Negative

DU-4475 47.5 [100 Resistant Basal Normal Negative

HCC-1806 45.8 [100 Resistant Basal Normal Negative

KPL-1 43.0 [100 Resistant Luminal Normal Positive

HCC-1143 42.6 [100 Resistant Basal Normal Negative

UACC-812 42.4 [100 Resistant Luminal Amplified Positive

Hs578T 41.3 [100 Resistant Post-EMT Normal Negative

MCF-7 40.4 [100 Resistant Luminal Normal Positive

MDA-MB-134 38.6 [100 Resistant Luminal Normal Positive

SK-BR-3-LR 38.1 [100 Resistant Luminal Amplified n/a

MDA-MB-435 32.9 [100 Resistant Post-EMT Normal Negative

HCC-1937 31.1 [100 Resistant Post-EMT Normal Negative

CAL-51 30.4 [100 Resistant Post-EMT Normal Negative

MDA-MB-231 29.3 [100 Resistant Post-EMT Normal Negative

UACC-732 26.8 [100 Resistant Luminal Amplified Positive

184B5 26.4 [100 Resistant Immortalized Normal Negative

MDA-MB-157 25.9 [100 Resistant Post-EMT Normal Negative

MDA-MB-436 22.8 [100 Resistant Post-EMT Normal Negative
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(MCF7-TAMR). The anti-proliferative effect of the

everolimus ? tamoxifen combination in tamoxifen-resis-

tant MCF7 cells was similar to the effect of single-agent

tamoxifen (Supplementary Fig. S2). Conversely, ever-

olimus potentiated the anti-proliferative effect of fulves-

trant in this cell line suggesting that

everolimus ? fulvestrant may be a combination that re-

verses acquired resistance to tamoxifen.

The combination of everolimus with trastuzumab was

evaluated in two HER2? breast cancer cell lines: one

everolimus sensitive (BT-474) and one everolimus resistant

(SK-BR-3). In both cell lines, growth inhibition was en-

hanced with the combination of everolimus and

trastuzumab compared to either agent used alone (Sup-

plementary Fig. S3).

Biochemical effects of everolimus on signal

transduction

To evaluate differential effects of everolimus on S6 and

AKT activation, western blot analyses were performed in a

subset of cell lines with variable sensitivities to everolimus.

Cells were treated with 100 nM everolimus and harvested

at 6 time points between 10 min and 48 h as described in

Supplementary Materials and Methods.

We observed a significant inhibition of S6 phosphory-

lation in all tested cell lines after 30 min exposure to

everolimus regardless of sensitivity to growth inhibitory

effects (Fig. 1). This was accompanied by a less pro-

nounced decrease in total S6 in sensitive cell lines. Feed-

back activation of AKT phosphorylation was observed in

RAD001 sensitive (BT-474), intermediate (ZR-751), and

resistant (KPL-1) cell lines. The effect of everolimus on

total AKT was variable among the tested cell lines (Fig. 1).

In summary, we confirmed that everolimus inhibits

mTOR in all tested cell lines by decreasing the phospho-

rylation of its downstream target S6. In addition, we ob-

served a decrease in the total S6 protein in sensitive cell

lines. AKT phosphorylation increased most of the cell lines

tested irrespective of sensitivity.

Effects of everolimus on cell cycle and apoptosis

The effects of everolimus on the cell cycle were analyzed

in a subset of sensitive, intermediate, and resistant cell

lines. Cells were exposed to everolimus at 10 nM for

5 days, and then flow cytometry was performed using Nim-

DAPI staining. G0/G1 cell cycle arrest was observed in the

two sensitive and the one intermediate cell line tested but

was not observed in resistant lines (Fig. 2).

Similarly, the effect of everolimus on apoptosis was

determined in the same subset of cell lines. For this assay,

cells were exposed to 100 nM of everolimus for 5 days and

then analyzed with a dual stain flow cytometry protocol

using Annexin V-FITC and propidium iodide. A significant

increase in Annexin-V positive cells was seen in sensitive

cell lines (Fig. 3). Together, these data suggest that the

anti-proliferative effect of everolimus is mediated by both

inhibition of the cell cycle and the induction of apoptosis.

Genotype-response association screening

After determining response to everolimus, we interrogated

two large genomic datasets for candidate sensitivity or

resistance biomarkers including point mutations from the

CCLE database and copy number alterations (CNAs) from

our own CGH arrays. Due to the large number of genetic

alterations in these datasets relative to the number of cell

lines in our study, false positives were a major concern. To

minimize this problem, we used the publicly available gene

ontology (GO) database to restrict our candidate biomarker

set to those alterations most likely to be involved in PI3K/

AKT/mTOR signaling (GO IDs: GO:0048015, GO:

0014068, GO:0043552, GO:0014065). This gene list was

cross referenced against the COSMIC gene census to fur-

ther limit the list to genes where oncogenic driver muta-

tions have been described. Our final candidate biomarker

set consisted of 23 genes where either point mutations or

CNAs were identified in our panel. Alterations in each of

these genes were tested for an association with everolimus

sensitivity or resistance (Table 2).

Table 1 continued

Cell line Average inhibition

at 100 nM (%)

Average IC50

(nM)

Classification Breast cancer

subtype

HER2 status ER status

HCC-2218 17.0 [100 Resistant Luminal Amplified Positive

COLO-824 14.6 [100 Resistant Basal Normal Negative

MCF-10A 14.6 [100 Resistant Immortalized Normal Negative

184A1 12.0 [100 Resistant Immortalized Normal Negative

HCC-70 8.1 [100 Resistant Basal Normal Negative

Sensitivity to everolimus was defined as the average inhibition at 100 nM [ 80 % and IC50 \ 1 nM. Resistance was defined as IC50 [ 50 nM.

Included are molecular subtype and HER2 and estrogen receptor (ER) status. n/a, not applicable; Post-EMT, cell lines classified as representing

breast cancers that had undergone an epithelial-to-mesenchymal transition
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Only two genotype-response associations were found to

be statistically significant at a = 0.05. Chromosomal am-

plifications of AURKA (p value = 0.04) and HER2 (p val-

ue = 0.03) were each associated with increased in vitro

sensitivity to everolimus. Of note, mutation of neither

PIK3CA nor PTEN was significantly associated with re-

sponse to everolimus.

Identification of differentially expressed genes

and sensitivity to everolimus

Gene expression profiles were next used to identify genes

associated with response to everolimus. First, we compared

sensitive cell lines (n = 13) and resistant cell lines (n = 25)

(acquired resistance cell lines were excluded). This approach

identified 232 differentially expressed probes (p B 0.01),

where 137 genes demonstrated increased expression in

sensitive cell lines and 79 genes were increased in de novo

resistant lines (Supplementary Table S1). Hierarchical

clustering of the 38 cell lines across the 232 probes was

performed. Two major branches were identified: one branch

included 19 luminal lines and one HER2? non-luminal cell

line, and the other branch included all of the non-luminal

lines (n = 18) (Supplementary Fig. S4). The 10 everolimus-

sensitive luminal cell lines clustered together within the lu-

minal branch.

We next compared only luminal breast cell lines clas-

sified as sensitive (n = 10) or resistant (n = 9) to ever-

olimus. A total of 124 probes were differentially expressed

(p B 0.01), where 72 genes demonstrated increased ex-

pression in sensitive lines, and 48 genes were increased in

resistant lines (Supplementary Table S2). Two major

branches were identified corresponding to everolimus

sensitivity (Supplementary Fig. S5). Genes having a higher

average expression level in luminal cell lines sensitive to

everolimus included GSK3A, PIK3R3, KLF8, and

MAPK10, whereas PGP, RPL38, GPT, and GFAP were

found to be higher in resistant luminal cell lines.

Discussion

Dysregulation of the PI3K/AKT/mTOR pathway has been

shown to play a role in breast cancer growth, progression,

and treatment resistance, making it an attractive target for

novel therapeutic agents. Using a large panel of well-

characterized human breast cancer cell lines representing

BT-474
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Fig. 1 The effects of everolimus on total and phosphorylated S6 and

AKT. The effects of everolimus were measured in a subset of cell

lines with a variable sensitivity to everolimus by western blot as

described in Supplementary Materials and Methods. All cell lines

were treated with 100 nM everolimus for 10 min–48 h. a Sensitive

cell lines BT-474 and HCC-1419, b intermediate ZR-75-1, c resistant

MDA-MB-231 and KPL-1. There was a significant inhibition of S6

phosphorylation in all tested cell lines and a less pronounced decrease

in total S6 in sensitive cell lines. There was an increase in AKT

phosphorylation in sensitive BT-474, intermediate ZR-75-1 (peak at

8 h), and resistant KPL-1. The effect of everolimus on total AKT was

variable
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the known molecular subtypes of breast cancer, we iden-

tified significant enrichment of ER? and HER2? cell lines

among those classified as sensitive to everolimus. Bio-

chemical studies did not reveal any correlation with the

ability of everolimus to block downstream mTOR signal-

ing with growth inhibition given that everolimus blocked

S6 activation in both sensitive and resistant cell lines.

However, the drug’s ability to induce G0/G1 arrest and

apoptosis was only seen in the cell lines classified as sen-

sitive. These observations are consistent with other studies

[23]. Interestingly, we also demonstrated that everolimus

induces feedback activation of AKT which was a phe-

nomenon thought to be important in escaping the drug’s

effect; however, it was observed in both sensitive and re-

sistant cell lines in the current study.

Additionally, combination therapy data indicate that

everolimus enhances the anti-proliferative effect of both

tamoxifen and fulvestrant in ER? luminal cell lines. The

combination of everolimus plus fulvestrant was active in

MCF-7 tamoxifen-resistant cells that had been generated by

long-term estrogen deprivation. These findings as well as

those from other preclinical studies [42, 43] provide evi-

dence that everolimus may reverse endocrine resistance.

Two relevant randomized clinical trials have now been re-

ported in which post-menopausal women with ER?, aro-

matase inhibitor-resistant advanced breast cancer were

randomly assigned to receive an endocrine agent plus

placebo or everolimus. In both studies, patient outcomes

(clinical benefit rate, time to progression, and progression-

free survival) were significantly better when everolimus was

% 

% 

% 
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(b) 

(c)
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* 

Fig. 2 Effects of everolimus on cell cycle. Cell lines with variable

sensitivity to everolimus were treated with 10 nM everolimus for

5 days. a Sensitive cell lines show a G0/G1 arrest. b In intermediate

cell lines, everolimus caused variable effects on the cell cycle. c No

effect on the cell cycle was observed in resistant cell lines. The

average growth inhibitory effect of 10 nM everolimus for each cell

line is shown in parentheses. Solid bars- control samples; striped

bars- treated samples. Error bars represent standard error for two

separate experiments. *Indicates p \ 0.05 compared to control
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added to either tamoxifen [44] or exemestane [26]. While our

in vitro experiments did not combine everolimus with an

aromatase inhibitor, the data generated add to the growing

preclinical and clinical literature that shows inhibiting

mTOR may restore sensitivity to hormonal manipulation in

the setting of endocrine resistance.

Our in vitro analyses also indicate that HER2-amplified

breast cancer cell lines are sensitive to everolimus. These

data support the findings from our group [45] and others

showing preclinical activity of everolimus and

everolimus ? trastuzumab in HER2? breast cancer cells.

The clinical activity of everolimus, trastuzumab, and taxane

chemotherapy in treatment naı̈ve HER2? metastatic breast

cancer is currently being evaluated in an ongoing random-

ized phase III study (BOLERO-1, NCT00876395). In addi-

tion, we have observed robust preclinical activity of

everolimus in HER2? breast cancer with de novo resistance

to trastuzumab [45]. These preclinical data have been

validated in several phase I and II clinical trials demon-

strating that addition of everolimus to trastuzumab may re-

verse trastuzumab resistance in some patients [27–29].

Recently, a phase III randomized trial (BOLERO-3)

evaluating trastuzumab and vinorelbine plus everolimus or

placebo in trastuzumab-pretreated advanced HER2? dis-

ease reported a statistically significant improvement in in-

vestigator assessed PFS for everolimus-treated patients [31].

Cell lines classified as non-luminal (basal or post-EMT),

or immortalized (ER- and HER2-) were much more

likely to be resistant to everolimus. Only one triple-nega-

tive cell line was classified as sensitive in our study. These

findings are in contrast to a recently reported preclinical

evaluation of everolimus in 9 triple-negative breast cancer
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Fig. 3 Effects of everolimus on

apoptosis. Cell lines with

variable sensitivity to

everolimus were treated with

100 nM everolimus for 5 days

a Sensitive cell lines show an

increase in Annexin-V positive

cells as compared with no

increase in b intermediate or

c resistant cell lines. The

average growth inhibitory effect

(INH) of 100 nM everolimus for

each cell line is shown in

parentheses. Solid bars- control

samples; striped bars- treated

samples. Error bars represent

standard error for two separate

experiments. *Indicates

p \ 0.05 compared to control
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(TNBC) cell lines [46]. There are several important dif-

ferences in both experimental design and analytical

methodology that may explain this discrepancy. The pro-

liferation assays performed differed in duration of treat-

ment (5 days vs. 4 days), method of cell quantification

(cell counting vs. CCK-8 colorimetric assay), and method

of calculation of cell growth inhibition. In addition, ever-

olimus is an allosteric inhibitor and has a flat dose–re-

sponse curve. This observation makes the use of IC50 alone

a difficult measure by which to stratify sensitivity/resis-

tance outcomes. Given these concerns, we chose to use a

multi-factorial cutoff for sensitivity in our analyses.

Through an unbiased analysis on a large panel of cell

lines, we determined that only 38 % of ER? and 33 % of

HER2? breast cancer cell lines were classified as sensitive

to everolimus. These data recapitulate the clinical obser-

vations with everolimus [26–29] suggesting that the com-

monly used subtypes of breast cancer alone do not fully

explain the differential response to everolimus and that

additional other predictive biomarkers may exist.

In order to identify other genomic biomarkers that may

predict differential sensitivity, we used several large ge-

nomics datasets with a particular focus on genes involved in

PI3K/AKT/mTOR signaling and its regulation. In this ana-

lysis, chromosomal amplifications of HER2 and AURKA

were each associated with increased sensitivity to ever-

olimus in vitro.

AURKA encodes for the serine/threonine kinase Aurora

A and is amplified and overexpressed in multiple malig-

nancies, including breast cancers. It regulates centrosome

maturation and mitotic spindle assembly during mitotic

progression [47, 48]. Overexpression of Aurora A results in

the activation of AKT [49, 50] and cooperates with PI3K/

AKT/mTOR pathway in oncogenic transformation [51].

Our findings indicating an association of Aurora A am-

plification with everolimus sensitivity suggests that acti-

vation of PI3K/AKT/mTOR pathway by Aurora A,

possibly via activation of AKT, may sensitize breast cancer

cells to everolimus. Whether AURKA amplification is a

biomarker for everolimus sensitivity will need to be further

explored in mechanistic studies and confirmed in clinical

settings.

Microarray profiles were used to identify genes whose

expression pattern is associated with response to ever-

olimus. When we compared sensitive luminal breast cell

lines to resistant luminal cell lines and performed

Table 2 Gene alterations tested

for association with response to

everolimus

Gene alterations selected as

described in Methods. Copy

number variations were

obtained from CGH analysis in

48 cell lines. Point mutations

obtained from CCLE database

for 38 cell lines in our panel

CHR AMP chromosomal

amplification, CHR DEL

chromosomal deletion, LOF PM

loss-of-function point mutation,

ACT PM activating point

mutation

* p \ 0.05

Gene Alteration Mutations (n) Sensitive (n) Intermediate (n) Resistant (n) p value

ERBB2 CHR AMP 17 7 5 5 0.03*

AURKA CHR AMP 14 7 2 5 0.04*

SPAG5 CHR AMP 5 3 0 2 0.08

FGF19 CHR AMP 12 5 3 4 0.15

RPS6KB1 CHR AMP 7 2 0 5 0.16

MDM2 CHR AMP 2 0 0 2 0.19

EGFR CHR AMP 3 0 1 2 0.26

FGFR1 CHR AMP 5 1 2 2 0.27

FGF10 CHR AMP 1 0 0 1 0.31

TOP2A CHR AMP 3 1 0 2 0.33

PTEN CHR DEL 1 0 0 1 0.31

CBL LOF PM 1 1 0 0 0.17

TSC2 LOF PM 1 1 0 0 0.17

GATA3 LOF PM 1 0 0 1 0.27

BUB1B LOF PM 3 1 1 1 0.43

PTEN LOF PM 8 3 2 3 0.43

NF1 LOF PM 6 2 1 3 0.47

PTPN11 ACT PM 2 2 0 0 0.06

KDR ACT PM 1 0 1 0 0.08

PIK3CA ACT PM 13 6 3 4 0.17

AKT1 ACT PM 1 0 0 1 0.27

ERBB2 ACT PM 1 0 0 1 0.27

KIT ACT PM 1 0 0 1 0.27

PDGFRA ACT PM 1 0 0 1 0.27

FGFR2 ACT PM 2 1 0 1 0.36
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hierarchical clustering, two major branches were identified

corresponding to everolimus sensitivity. Genes that had

higher average expression in luminal cell lines sensitive to

everolimus included GSK3A, PIK3R3, KLF8, and

MAPK10, whereas PGP, RPL38, GPT, and GFAP were

higher in resistant luminal cell lines. GSK3A, PIK3R3, and

KLF8 are known to interact with PI3K/AKT/mTOR sig-

naling, and PGP is reported to be downregulated by PI3K/

AKT inhibition in lymphoma cell lines [52–54]. We did

not detect any significant difference in gene expression of

LKB11 (STK11) or 4EBP1 (EIF4EBP1) in sensitive versus

resistant lines. These data require further exploration and

validation and currently serve as hypothesis-generating

observations.

To date, exploratory analyses from clinical trials

evaluating everolimus have failed to consistently identify

any predictive biomarkers of response including activation

of the PI3K pathway (via mutations or changes in expression

of protein components). Similar to other studies [33, 55], we

observed no association between PTEN mutation and re-

sponse to everolimus in vitro. In contrast, an exploratory

subset analysis of BOLERO-3 suggests that low PTEN ex-

pression may predict greater benefit from everolimus in

HER2? metastatic breast cancers [56]. We also do not ob-

serve any association between PIK3CA mutations and re-

sponse to everolimus in the current study. This is consistent

with findings from a subset analysis of the BOLERO-2 trial

in which gene alterations in the PI3K pathway did not cor-

relate with response to everolimus [35]. Conversely, the

BOLERO-2 analysis did show that patients with tumors that

were either wild type or bearing only one alteration among

the PIK3CA, PTEN, CCND1, and FGRF1/2 genes had a

better PFS compared to those with multiple alterations [35].

Data from the current broad analysis of everolimus re-

sponse in a large breast cancer cell line panel continue to

support further development of everolimus in luminal ER?

and HER2? breast cancer. These analyses have identified

several candidate biomarkers that may predict response to

everolimus; however, these markers will require further

validation in ongoing clinical trials of the drug in this disease.
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