EPIDEMIOLOGY

Immunoassay and Nb2 lymphoma bioassay prolactin levels and mammographic density in premenopausal and postmenopausal women the Nurses' Health Studies

Megan S. Rice · Shelley S. Tworoger · Kimberly A. Bertrand · Susan E. Hankinson · Bernard A. Rosner · Yvonne B. Feeney · Charles V. Clevenger · Rulla M. Tamimi

Received: 18 November 2014/Accepted: 3 December 2014/Published online: 13 December 2014 © Springer Science+Business Media New York 2014

Abstract Higher circulating prolactin levels have been associated with higher percent mammographic density among postmenopausal women in some, but not all studies. However, few studies have examined associations with dense area and non-dense breast area breast or considered associations with prolactin Nb2 lymphoma cell bioassay levels. We conducted a cross-sectional study among 1,124 premenopausal and 890 postmenopausal women who were controls in breast cancer case–control studies nested in the Nurses' Health Study (NHS) and NHSII. Participants provided blood samples in 1989–1990 (NHS) or 1996–1999 (NHSII) and mammograms were obtained from around the time of blood draw. Multivariable linear models were used to assess the associations between prolactin levels (measured by immunoassay or bioassay) with percent density, dense area, and non-dense area.

M. S. Rice (⊠) · S. S. Tworoger · K. A. Bertrand · S. E. Hankinson · B. A. Rosner · R. M. Tamimi Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave 3rd Floor, Boston, MA 02115, USA e-mail: nhmsr@channing.harvard.edu

M. S. Rice · S. S. Tworoger · K. A. Bertrand · S. E. Hankinson · R. M. Tamimi Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA

S. E. Hankinson Division of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA, USA

Y. B. Feeney Department of Pathology, Northwestern University, Chicago, IL, USA

C. V. Clevenger Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA Among 1,124 premenopausal women, percent density, dense area, and non-dense area were not associated with prolactin immunoassay levels in multivariable models (p trends = 0.10, 0.18, and 0.69, respectively). Among 890 postmenopausal women, those with prolactin immunoassay levels in the highest versus lowest quartile had modestly, though significantly, higher percent density (difference = 3.01 percentage points, 95 % CI 0.22, 5.80) as well as lower non-dense area (p trend = 0.02). Among women with both immunoassay and bioassay levels, there were no consistent differences in the associations with percent density between bioassay and immunoassay levels. Postmenopausal women with prolactin immunoassay levels in the highest quartile had significantly higher percent density as well as lower non-dense area compared to those in the lowest quartile. Future studies should examine the underlying biologic mechanisms, particularly for non-dense area.

Keywords Mammographic density · Breast cancer risk · Prolactin · Epidemiology · Plasma biomarkers

Abbreviations

- NHS Nurses' Health Study
- BMI Body mass index
- BBD Benign breast disease
- CV Coefficient of variation
- ICC Intraclass correlation coefficient

Introduction

Mammographic density is the radiographic appearance of the breast on a mammogram and is a strong predictor of subsequent breast cancer risk [1]. Epithelial and stromal tissue in the female breast is radiodense and appears light on a mammogram, whereas fat is radiolucent and appears dark. Women with over 75 % dense tissue on a mammogram have 4–6 times the risk of breast cancer compared to women with little to no dense tissue [1, 2]. Mammographic density is associated with a number of reproductive factors, including parity, and is thought to represent cumulative exposure to hormones.

Prolactin, a hormone involved in the normal differentiation of mammary epithelium, may influence breast cancer risk through cellular proliferation and survival [3]. Higher circulating prolactin levels have been associated with higher mammographic density among postmenopausal women in some [4, 5], but not all studies [6, 7]. For example, in a previous analysis of 489 postmenopausal women in the Nurses' Health Study (NHS), there was no significant association between prolactin and percent mammographic density [8]. The few studies in premenopausal women have not observed an association [4, 7, 9]. In addition, only two studies examined the association with non-dense area of the breast [9, 10], with one study reporting an inverse association with prolactin levels among postmenopausal women [10]. This area is of particular interest as the dense area and nondense area of the breast may have independent effects on breast cancer risk [11, 12].

Prior studies have determined prolactin levels using an immunoassay that measures multiple forms of circulating prolactin. However, this immunoassay may not reflect levels of bioactive prolactin, as prolactin isoforms have varying biological activities [13, 14]. The Nb2 lymphoma cell bioassay is a sensitive measure of somatolactogenic activity of prolactin in plasma [15]; however, data on prolactin bioassay levels and breast cancer or breast density are limited [16]. Therefore, the purpose of this cross-sectional study was to examine the association between circulating prolactin levels, as measured by the Nb2 lymphoma cell bioassay, with measures of mammographic density among both premenopausal and postmenopausal women in the NHS and NHSII. Further, we updated our previous analysis of prolactin immunoassay levels and percent density to include over 1,100 premenopausal women as well as approximately 400 additional postmenopausal women. Further, this updated analysis also examines the relationship between prolactin levels with dense area and non-dense area of the breast.

Materials and methods

Study population

The NHS cohort began in 1976 when 121,700 female registered nurses, 30–55 years of age and residing in 11

U.S. states completed an initial questionnaire. In 1989, 116,430 female registered nurses, aged 25–42, from 14 U.S. states completed an initial questionnaire forming the NHSII cohort. Both cohorts are followed by biennially mailed questionnaires to collect information on exposures and covariates as well as incident diseases.

In 1989-1990, 32,826 NHS participants, aged 43-70, provided blood samples. Between 1996 and 1999, we obtained blood samples from 29,611 NHSII members, aged 32-45 years. Characteristics of both cohorts and blood collection details have been described previously [17–20]. Briefly, in the NHSII, premenopausal women who had not taken any type of hormones, been pregnant, or breastfed in the previous 6 months (n = 18,521), provided timed blood samples on the third to fifth day of their menstrual cycle (follicular sample) and 7-9 days before the anticipated start of their next cycle (luteal sample). Follicular plasma was aliquoted by the participant between 8 and 24 h after collection and frozen. All NHS participants as well as NHSII women who were ineligible to provide timed samples (i.e., perimenopausal, postmenopausal, had a simple hysterectomy, currently used oral contraceptives or other hormones, or declined to give timed samples; n = 11,090) provided a single blood sample (referred to as "untimed" samples). For both timed and untimed samples, women shipped the blood to our laboratory, with an ice-pack, via overnight courier, where the samples were processed, separated into plasma, red blood cell, and white blood cell components, and aliquoted into labeled cryotubes.

We restricted our analysis to women who were controls in the NHS or NHSII nested breast cancer case-control studies and were matched to cases diagnosed between 1990 and 2004 (NHS) or 1999 and 2007 (NHSII) [17, 21]. Breast cancer cases were matched to one or two controls on age, menopausal status at blood draw and diagnosis, current postmenopausal hormone use (PMH), month, time of day, fasting status at time of blood collection, and luteal day (NHSII timed samples only). We collected mammograms conducted as close as possible to the date of blood collection for women in the nested breast cancer case-control studies. Among controls in the NHS and NHSII casecontrol studies, 2,939 had measures of prolactin immunoassay levels, mammographic density, and body mass index (BMI). We next excluded five controls whose prolactin immunoassay levels were determined to be outliers based on the generalized extreme studentized deviate many-outlier detection approach [22]. We further restricted our study population to the 1,124 women who were premenopausal at both blood collection and mammogram as well as 890 women who were postmenopausal at both blood collection and mammogram and who reported no current PMH use. The median time between mammography and blood collection was 9 months for premenopausal women and 13 months for postmenopausal women. As part of another nested study of prolactin Nb2 bioassay levels and breast cancer risk, 551 of these women (317 premenopausal and 234 postmenopausal) had prolactin bioassay levels measured. The study was approved by the Committee on the Use of Human Subjects in Research at the Brigham and Women's Hospital.

Laboratory assays

Prolactin was assayed by microparticle enzyme immunoassay in 12 batches for untimed samples in the NHS and in three batches for luteal, follicular, and untimed samples in the NHSII. We averaged the prolactin levels in follicular and luteal samples among women in the NHSII who provided timed samples. Samples were assayed at the Reproductive Endocrinology Unit Laboratory at the Massachusetts General Hospital using the AxSYM immunoassay system (Abbott Diagnostics, Chicago, IL) as well as by Christopher Longcope, MD (University of Massachusetts Medical Center, Worcester, MA), using the IMx System (Abbott Laboratory, Abbott Park, IL). The correlation between the two laboratories was 0.91 and across different batches within the same dataset was greater than 0.95. The limit of detection was 0.6 ng/mL. Nb2 was assayed in the NHS in 65 batches and in the NHSII in 39 batches, for a total of 104 batches consisting of approximately 25-30 women each. The Nb2 bioassay for biologically active somatolactogen was performed in duplicate as previously described [15, 23]. To assess prolactin variability, 10 % blinded replicate quality control (QC) samples were randomly interspersed across the entire set of participant samples. All immunoassay batches had QC samples; however, due to the smaller batch size of the bioassay, 77 of the 104 bioassay batches included blinded QC samples. Average within batch coefficients of variation (CVs) was less than 12 % for the immunoassay. For the bioassay, within batch CVs were calculated either using blinded QC samples (n = 77 batches) or using the average CV of the duplicate participant samples within a batch if blinded QCs were not available (n = 27 batches). For 97 of batches, CVs ranged from 0.3 to 17.3 % the (mean = 7.0 %). Seven batches had CVs above 20 % (range 21.5–26.6). Therefore, we conducted a sensitivity analysis excluding these seven batches. The between batch CV for the bioassay was 40 %.

Mammographic density

The craniocaudal views of both breasts were digitized with a Lumisys 85 laser film scanner. Using the Cumulus software for computer-assisted thresholding, we measured absolute dense area, absolute non-dense area (the total area minus the dense area), and percent dense area (the dense area divided by the total area) and averaged the density parameters of both breasts. Images from NHS participants were read in two batches by two readers. In NHSII, a single observer read the mammograms in two batches, 3 years apart with a small number of mammograms included in both batches. While there was high reproducibility within each batch, there was evidence of between batch variability in the NHSII. Therefore, for the overall NHSII breast cancer case-control mammography dataset, we used multivariable linear regression models to estimate the effect of batch on density measurements, controlling for age, menopausal status, BMI, and case-control status [18]. We then adjusted density measurements in the second NHSII batch by adding the coefficient for mammogram batch to the raw value to estimate the measurements that would have been obtained if the mammogram had been included in the first batch. For all batches, readers were blinded to case-control status.

Covariate data

We used the covariate information from the biennial questionnaire preceding the mammogram date to obtain data on the following covariates: BMI (kg/m²), history of benign breast disease (BBD), family history of breast cancer, age at menarche, age at first birth and parity, breastfeeding, smoking, alcohol intake, past PMH use, and age at menopause.

Statistical analysis

Due to batch-to-batch variation over time, we recalibrated prolactin immunoassay and bioassay levels from all batches to have a comparable distribution to an average batch according to methods outlined by Rosner et al. [24]. Using this method, we assumed that all batches combined represented an average batch. We then regressed prolactin immunoassay or bioassay levels on indicator variables for batch as well as the following covariates: age, BMI, fasting status, time of blood collection, parity, history of PMH use, and use of antidepressants at the time of blood collection. Prolactin immunoassay and bioassay levels were then recalibrated based on the coefficients for each batch and the average of the batch coefficients. We classified the recalibrated values into quartiles based on the overall distribution.

We used generalized linear models adjusting for matching factors to evaluate the association of prolactin immunoassay and bioassay levels with mammographic density. These models accounted for any correlation between controls that were matched to the same case. We modeled square-root-transformed dense area and non-dense area on

mammogram as outcomes since both distributions were skewed. We estimated the difference from the lowest quartile of percent density, square-root dense area, and square-root non-dense area for each quartile of prolactin levels. We tested for trend using Wald tests by ordinally modeling the median of the quartiles. Our primary model adjusted for age (continuous) and matching factors with subsequent models additionally adjusting for correlates of prolactin and breast density including history of BBD, family history of breast cancer, age at menarche, age at first birth, parity, breastfeeding, antidepressant use, smoking status, alcohol use, BMI, as well as past PMH use and age at menopause (among postmenopausal women). To determine if the associations between prolactin levels and percent density varied by age (<45, 45+ years for premenopausal; <60, 60+ for postmenopausal), BMI (<25, $25 + \text{kg/m}^2$), cohort (NHS, NHS2; in premenopausal women) and sample type (timed, untimed; in premenopausal women), we calculated Wald tests for the interaction term between the ordinal median variable for the hormone and the binary age, BMI, cohort, and sample type variables. In addition, we conducted a secondary analysis restricting our analysis of prolactin immunoassay levels to the 551 women who also had Nb2 bioassay levels measured to allow a better comparison between the two assays. Lastly, in sensitivity analyses, we restricted to parous women, restricted to NHS women among postmenopausal women, and excluded seven batches with CVs > 20 % in our analysis of prolactin Nb2 bioassay levels. We considered a two-sided p value of less than 0.05 to be statistically significant and used SAS 9.2 software (SAS Institute, Cary, NC, USA) for all analyses.

Results

For both pre- and postmenopausal women, those in the highest category of percent mammographic density were younger, had a lower BMI, were more likely to be nulliparous, and were more likely to have a history of BBD compared to women in the lowest quartile of mammographic density (Table 1).

In multivariable models, we did not observe a statistically significant association between prolactin immunoassay levels and percent mammographic density, dense area, or non-dense area in the 1,124 premenopausal women (*p* trends ≥ 0.10) (Table 2). For example, in our fully adjusted model, women in the highest quartile of prolactin levels had 2.24 % points higher percent mammographic density than women in the lowest quartile (95 % CI -0.79, 5.27, *p* trend = 0.10). Among 890 postmenopausal women, those in the highest quartile of prolactin levels had significantly higher percent mammographic density

compared to those in the lowest quartile of levels (difference = 3.01, 95 % CI 0.22–5.08); however, the trend across quartiles did not reach statistical significance (*p* trend = 0.07). Interestingly, prolactin immunoassay levels were significantly inversely associated with nondense area (*p* trend = 0.02), but not with dense area (*p* trend = 0.40).

Next, we examined the association between prolactin and mammographic density among the 551 women with prolactin measured by both the immunoassay and Nb2 bioassay. Among 317 premenopausal women, both prolactin immunoassay and bioassay levels were positively associated with percent density, though the difference between extreme quartiles of prolactin was significant only for immunoassay levels. Women in the highest quartiles of prolactin levels had 6.51 (95 % CI 0.19, 12.82, p trend = 0.05) and 3.85 (-2.23, 9.93, p trend = 0.22) percentage point higher density compared to women in the lowest quartiles, for the immunoassay and bioassay, respectively (Table 3). The association between bioassay levels and percent density in premenopausal women was somewhat stronger when we restricted to bioassay batches with CVs < 20 % (N = 296; comparable difference = 5.79 % points, 95 % CI -0.56, 12.15; p trend = 0.08). There was no significant association between prolactin immunoassay or Nb2 bioassay levels and dense or non-dense area (p trends ≥ 0.09 , respectively). Among 234 postmenopausal women, there was no association between prolactin immunoassay levels and percent density, dense area, or non-dense area (p trend = 0.89, 0.70, and 0.79, respectively) (Table 4). In contrast, there was a significant inverse association with non-dense area (p trend = 0.01) as well as a non-significant positive association between prolactin Nb2 bioassay levels and percent density (p trend = 0.06) among these same women. Women in the highest quartile of prolactin Nb2 bioassay levels had 4.80 % points higher mammographic density compared to women in the lowest quartile (95 % CI -1.81, 11.42). However, the association between bioassay levels and percent density in postmenopausal was stronger when we restricted to the batches with CVs < 20 % (N = 220; comparable difference = 5.60, 95 % CI -0.96, 12.16; p trend = 0.03). The association between prolactin immunoassay levels and percent density did not vary by age for either premenopausal (p-interaction = 0.22) or postmenopausal women (p-interaction = 0.61) nor by BMI for either premenopausal (pinteraction = 0.29) or postmenopausal women (p-interaction = 0.45). Further, the association did not differ by cohort (p-interaction = 0.23) or sample type (p-interaction = 0.35) among premenopausal women. Lastly, the association among postmenopausal women was similar when we excluded NHS2 postmenopausal women (e.g.,

Table 1 Characteristics of 1,124 premenopausal and 890 postmenopausal women by quartile of percent mammographic density, NHS and NHSII, mean (SD) or N (%)

	Premenopaus	al			Postmenopau	ısal		
	Percent Mam	mographic Der	nsity		Percent Man	mographic Der	nsity	
	Q1 (<24 %) N = 281	Q2 (24–40 %) N = 281	Q3 (40–57 %) N = 281	Q4 (57+%) N = 281	Q1 (<9%) N = 222	<i>Q</i> 2 (9–18 %) <i>N</i> = 223	Q3 (18–31 %) N = 221	Q4 (31+%) N = 224
Mean (SD)								
Age (years)	47.5 (4.3)	46.8 (4.5)	45.8 (4.3)	45.4 (4.3)	62.4 (6.1)	61.9 (6.7)	61.0 (7.8)	58.1 (7.8)
BMI (kg/m ²)	29.8 (6.1)	25.6 (4.2)	24.0 (4.0)	22.2 (2.9)	30.0 (5.8)	26.9 (4.9)	25.5 (4.5)	23.5 (3.6)
Age at menarche	12.1 (1.4)	12.4 (1.4)	12.6 (1.4)	12.7 (1.4)	12.6 (1.6)	12.4 (1.3)	12.6 (1.4)	12.6 (1.5)
Parity (among parous)	2.7 (1.1)	2.6 (1.0)	2.5 (1.0)	2.3 (0.8)	3.6 (1.7)	3.7 (1.8)	3.4 (1.5)	3.0 (1.5)
Age at first birth (among parous)	25.3 (4.2)	26.1 (4.1)	26.3 (4.2)	26.2 (3.9)	25.3 (3.2)	25.0 (3.2)	25.6 (3.5)	25.7 (3.5)
Alcohol (gm/day)	4.3 (7.8)	4.1 (6.5)	5.3 (8.7)	4.9 (8.5)	5.4 (9.2)	5.3 (8.7)	4.7 (8.3)	6.6 (9.9)
Age at menopause (years)	-	-	_	_	50.0 (4.0)	49.5 (4.7)	49.2 (4.7)	47.9 (6.0)
N (Percent)								
Nulliparous	29 (10.3)	23 (8.2)	40 (14.2)	49 (17.4)	9 (4.1)	7 (3.1)	18 (8.1)	29 (13.0)
Breastfeeding (amo	ng parous)							
Never	81 (32.1)	58 (22.5)	48 (19.9)	60 (25.9)	99 (46.5)	96 (44.4)	82 (40.4)	81 (41.5)
1-18 months	100 (39.7)	119 (46.1)	105 (43.6)	114 (49.1)	96 (45.1)	96 (44.4)	99 (48.8)	91 (46.7)
18+ months	71 (28.2)	81 (31.4)	88 (36.5)	58 (25.0)	18 (8.5)	24 (11.1)	22 (10.8)	23 (11.8)
History of BBD	114 (40.6)	119 (42.4)	140 (49.8)	176 (62.6)	74 (33.3)	90 (40.4)	93 (42.1)	116 (51.8)
Family history of breast cancer	18 (6.4)	34 (12.1)	26 (9.3)	26 (9.3)	31 (14.0)	34 (15.3)	36 (16.3)	31 (13.8)
Smoking								
Never	158 (56.2)	158 (56.2)	184 (65.5)	189 (67.3)	95 (42.8)	95 (42.6)	126 (57.0)	120 (53.6)
Past	94 (33.5)	100 (35.6)	77 (27.4)	76 (27.1)	101 (45.5)	97 (43.5)	79 (35.8)	77 (34.4)
Current	29 (10.3)	23 (8.2)	20 (7.1)	16 (5.7)	26 (11.7)	31 (13.9)	16 (7.2)	27 (12.1)
Past PMH Use	-	-	-	-	72 (32.4)	78 (35.0)	87 (39.4)	73 (32.6)
Cohort								
NHS	146 (52.0)	120 (42.7)	89 (31.7)	105 (37.4)	217 (97.8)	215 (96.4)	209 (94.6)	197 (88.0)
NHSII	135 (48.0)	161 (57.3)	192 (68.3)	176 (62.6)	5 (2.3)	8 (3.6)	12 (5.4)	27 (12.1)
Timing of blood sat	mple							
Untimed	199 (70.8)	180 (64.1)	139 (49.5)	151 (53.7)	222 (100.0)	223 (100.0)	221 (100.0)	224 (100.0)
Timed	82 (29.2)	101 (35.9)	142 (50.5)	130 (46.3)	_	_	_	-

difference between extreme quartiles = 3.02, 95 % CI 0.21, 5.84, *p* trend = 0.06). Overall, the observed associations were similar when we restricted to parous women (data not shown).

Discussion

In our analysis of over 1,100 premenopausal women, there was no association between prolactin immunoassay levels and mammographic density. Among 890 postmenopausal women, we observed higher percent density among women in the highest quartile of prolactin immunoassay levels as well as an inverse association between immunoassay levels and non-dense area. In a subset of 234 postmenopausal women, there was a non-significant positive association between percent density and prolactin levels measured by the Nb2 lymphoma cell bioassay, but not for prolactin levels measured by the immunoassay. Our results are consistent with several studies that have observed no association between prolactin immunoassay levels and percent density, dense area, or non-dense area among premenopausal women [4, 7, 9]. In our previous analysis of 489 postmenopausal women in the NHS, we observed that women in the highest quartile of prolactin levels had a nonsignificant 3.7 % point higher percent density [25]. In our

Table 2Differencesthe NHS and NHSII	Differences in m nd NHSII	ammographic density	y measures by quartile	ss of plasma prolactin	immunoass	say levels (ng/r	nL) among 1,124 pre	Table 2 Differences in mammographic density measures by quartiles of plasma prolactin immunoassay levels (ng/mL) among 1,124 premenopausal women and 890 postmenopausal women in the NHS and NHSII	d 890 postmenopausal	women in
	Premenopaus	Premenopausal ($N = 1124$)				Postmenopau	Postmenopausal $(N = 890)$			
	Q1 < 9.3 $Q2 9.3-12.(N = 281) (N = 281)$	Q1 < 9.3 $Q2 9.3-12.5(N = 281) (N = 281)$	$Q3 \ 12.5-17.3$ (N = 280)	Q4 > 17.3 (N = 282)	p trend	Q1 < 7.1 (N = 221)	Q1 < 7.1 $Q2 7.1-9.4(N = 221) (N = 224)$	$Q3 \ 9.4-12.5$ (N = 222)	$Q4 \ 12.5+$ (N = 223)	<i>p</i> trend
Percent density (%)	ity (%)									
Model 1 ^a Ref	Ref	-0.71 $(-4.07, 2.64)$	3.26(-0.14, 6.67)	3.73 (0.20, 7.27)	0.01	Ref	4.13 (1.13, 7.14)	5.99 (2.90, 9.09)	5.99 (2.76, 9.21)	<0.0001
Model 2 ^b Ref	Ref	0.19 (-2.66, 3.04)	2.25 (-0.66, 5.16)	2.24 (-0.79, 5.27)	0.10	Ref	2.67 (0.08, 5.26)	2.27 (-0.45, 4.98)	3.01 (0.22, 5.80)	0.07
Square-root	Square-root dense area (cm ²)									
Model 1 ^a Ref	Ref	0.00(-0.41, 0.41)	0.26 (-0.16, 0.67)	$0.41 \ (-0.02, \ 0.85)$	0.03	Ref	$0.51 \ (0.09, \ 0.93)$	$0.41 \ (-0.01, \ 0.84)$	0.65 (0.21, 1.09)	0.01

n ii	
omen	
l w	
ausa	
gou	
mer	
ost	
90 p	
d 89	
u an	
mer	
MO	
ısal	
pai	
lenc	
ren	
24 p	
1,12	
gu	
amo	
Ľ)	
g/m	
s (n	
vel	
y le	
assa	
our	
JUIC	
nin	
acti	
prol	
na j	
lasr	
of p	
les e	
artil	
' qua	
s by	
ure	
leas	
уn	
nsit	
c de	
phic	
gra	
omu	
nan	
in r	
ces	SII
ren	HN
hiffe	l bu
2 2	NHS and
ble 2	HN

$<\!0.001$	0.07		0.01	0.40		< 0.0001	0.02
5.99 (2.76, 9.21)	3.01 (0.22, 5.80)		0.65 (0.21, 1.09)	0.28 (-0.14, 0.70)		-0.99(-1.59, -0.40)	-0.51 (-0.96, -0.05)
5.99 (2.90, 9.09)	2.27 (-0.45, 4.98)		0.41 (-0.01, 0.84)	0.03 (-0.38, 0.44)		-1.08 (-1.66, -0.51)	-0.43(-0.87, 0.01)
4.13 (1.13, 7.14)	2.67 (0.08, 5.26)		$0.51 \ (0.09, \ 0.93)$	0.37 (-0.03, 0.76)		-0.46(-1.03, 0.10)	-0.07 (-0.50, 0.36)
Ref	Ref		Ref	Ref		Ref	Ref
0.01	0.10		0.03	0.18		0.13	0.69
3.73 (0.20, 7.27)	2.24 (-0.79, 5.27)		0.41 (-0.02, 0.85)	$0.26 \ (-0.16, \ 0.68)$		-0.36(-0.94, 0.21)	-0.12 (-0.56, 0.33)
3.26(-0.14, 6.67)	2.25 (-0.66, 5.16)		0.26 (-0.16, 0.67)	0.13 (-0.28, 0.53)		-0.50 (-1.06, 0.05)	-0.36 (-0.78, 0.07)
-0.71 $(-4.07, 2.64)$	0.19 (-2.66, 3.04)		0.00(-0.41, 0.41)	0.03 (-0.37, 0.42)	2m ²)	0.02 (-0.53, 0.57)	-0.15 (-0.56, 0.27)
Ref	Ref	quare-root dense area (cm ²)	Ref	Ref	quare-root non-dense area (cm^2)	Ref	Ref
Model 1 ^a	Model 2 ^b Ref	Square-root	Model 1 ^a Ref	Model 2 ^b Ref	Square-root	Model 1 ^a Ref	Model 2 ^b Ref

^a Model 1: age at mammography (continuous), month of blood draw (continuous), fasting status (≤ 8 h or unknown, ≥ 8 h since last meal), time of day (12 am-5:59 am, 6:00 am-7:59 am, 8:00 am) and ≥ 8 h since last meal). am-11:59 pm), and cohort

^b Includes covariates in Model 1 and history of bbd (yes/no), family history of breast cancer (yes/no), age at menarche (<12, 13, 14+), parity and age at first birth (nulliparous, 1–2 children age at first birth \geq 30 year, 3+ children age at first birth \geq 5+ year), breastfeeding (<1 month, 1–18 months, 18+ months), alcohol consumption (0, <5, 5- <15, \geq 15 g/d, missing), smoking status (never, past, current), past PMH use (postmenopausal only), and age at menopause (postmenopausal only)

^c Includes covariates in Model 2 and BMI (continuous)

$\overline{Q1} < 9.2 (N = 79) ($ Percent density (%) Model 1 ^a Ref Model 2 ^b Ref Square-root dense area (cm ²) Model 1 ^a Ref Model 2 ^b Ref Model 1 ^a Ref Model 2 ^b Ref	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q3 13.0-17.4 $(N = 79)$ $5.38 (-1.22, 11.98)$ $4.60 (-1.37, 10.57)$ $0.56 (-0.27, 1.39)$ $0.56 (-0.29, 1.04)$ $0.23 (-0.59, 1.04)$ $-0.76 (-1.80, 0.29)$ $-0.76 (-1.80, 0.29)$ $-0.67 (-1.51, 0.17)$ $month of blood draw (consurder or consurder or cons$	$Q4 > 17.4$ $(N = 80)$ 98) 3.32 (-3.57, 10.22) 57) 6.51 (0.19, 12.82) 9) 0.69 (-0.17, 1.55) 9) 0.69 (-0.17, 1.55) 9) 0.20 (-0.90, 1.29) 9) 0.20 (-0.90, 1.29) 7) -0.10 (-1.00, 0.79) draw (continuous), fasting in the east cance year, 1-2 children age at f consumption (0, <5 , $5 \le 1$ consumption (0, <5 , $5 \le 1$ artiles of plasma prolactin i	<i>p</i> trend <i>p</i> trend 2) 0.28 0.05 0.05 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 1.8 0.09 0.09 0.09 0.09 1.8 0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.09 0.00 0.09 0.00	$\begin{array}{c} \overline{Q1} < 6.4 \\ (N = 80) \\ Ref \\ N unknown, \\ or unknown, \\ or unknown, \\ missing), and \\ y and bioassay \\ y and$	0 trend $\overline{O1} < 6.4$ $Q2 6.4-8.8$ $Q3 8.8-11.9$ $(N = 80)$ $(N = 79)$ $(N = 78)$ $(N = 80)$ $(N = 79)$ $(N = 78)$ $(N = 80)$ $(N = 79)$ $(N = 78)$ $(D3)$ Ref $2.85 (-3.68, 9.39)$ $6.79 (0.28, 13.3)$ $(D3)$ Ref $2.85 (-3.68, 9.39)$ $6.79 (0.28, 13.3)$ $(D3)$ Ref $2.85 (-3.68, 9.39)$ $6.79 (0.28, 13.3)$ $D3$ Ref $-0.90 (-0.90, 0.73)$ $0.65 (-0.17, 1.4)$ $D3$ Ref $-0.04 (-0.95, 0.68)$ $0.43 (-0.39, 1.2)$ $D3$ Ref $-0.014 (-0.95, 0.68)$ $0.43 (-0.39, 1.2)$ $D4$ Ref $-0.14 (-0.95, 0.68)$ $0.43 (-1.95, 0.1)$ $D4$ Ref $-0.14 (-0.95, 0.68)$ $0.43 (-1.95, 0.1)$ $D4$ Ref $-0.14 (-0.95, 0.68)$ $0.43 (-1.92, 0.1)$ $D4$ Ref $-0.14 (-0.95, 0.68)$ $0.43 (-1.92, 0.1)$ $D64$ Ref $-0.76 (-1.60, 0.08)$ $-0.94 (-1.30, 0.2)$ $D64$ Ref $-0.76 (-1.60, 0.08)$ $-0.94 (-1.30, 0.2)$ $D64$ Ref<	Q3 8.8-11.9 $(N = 78)$ $(5.79 (0.28, 13.30)$ $3.94 (-1.95, 9.83)$ $0.65 (-0.17, 1.46)$ $0.65 (-0.17, 1.46)$ $0.43 (-0.39, 1.25)$ $-0.91 (-1.95, 0.13)$ $-0.91 (-1.95, 0.13)$ $-0.46 (-1.30, 0.38)$ $), time of day (12 am-), time of day (1$	Q4 > 17.4 p trend $O1 < 6.4$ $Q2 (4 - 80)$ $Q3 (N = 78)$ $Q4 > 11.9$ p trend $(N = 80)$ $(N = 80)$ $(N = 70)$ $(N = 78)$ $(N = 78)$ $(N = 80)$ p trend 88 $3.32 (-3.57, 10.22)$ 0.28 Ref $2.85 (-3.68, 9.39)$ $6.79 (0.28, 13.30)$ $5.04 (-1.70, 11.78)$ 0.10 57 $6.51 (0.19, 12.82)$ 0.05 Ref $2.86 (-2.80, 8.92)$ $3.94 (-1.95, 9.83)$ $3.85 (-2.23, 9.93)$ 0.22 90 $0.69 (-0.17, 1.55)$ 0.18 Ref $-0.09 (-0.90, 0.73)$ $0.65 (-0.17, 1.46)$ $0.34 (-0.51, 1.19)$ 0.28 91 $0.90 (0.04, 1.75)$ 0.09 Ref $-0.14 (-0.95, 0.68)$ $0.43 (-0.39, 1.25)$ $0.34 (-0.51, 1.19)$ 0.28 91 $0.20 (-0.94, 1.75)$ 0.98 Ref $-0.09 (-1.64, 0.45)$ $-0.91 (-1.96, 0.08)$ $0.34 (-0.51, 1.19)$ 0.28 91 $0.20 (-0.94, 1.75)$ 0.98 Ref $-0.05 (-1.64, 0.45)$ $0.34 (-0.51, 1.19)$ 0.28 71 $-0.10 (-1.00, 0.79)$ 0.64 Ref $-0.56 (-1.64, 0.45)$ $0.34 (-0.51, 1.19)$ 0.28 71 $-0.10 (-1.00, 0.79)$ 0.64 Ref $-0.56 (-1.64, 0.45)$ $0.34 (-0.51, 1.19)$ 0.28 71 $-0.10 (-1.00, 0.79)$ 0.64 Ref $-0.56 (-1.64, 0.45)$ $0.34 (-0.51, 1.19)$ 0.28 71 $0.90 (0.04, 1.75)$ $0.94 (-1.20, 0.28)$ $-0.24 (-1.10, 0.64)$ 0.34 71 $0.00 (0.04, 1.75)$ $0.04 (-1.00, 0.78)$ $0.24 (-1.20, 0.76)$	<i>p</i> trend 0.10 0.22 0.25 0.28 0.28 0.81 am, 8:00 am, 8:00 + year), + year),
Percent density (%) Model 1 ^a Ref Model 2 ^b Ref Square-root dense area (Model 1 ^a Ref Model 2 ^b Ref Model 1 ^a Ref Model 2 ^b Ref	1.23 (-5.33, 7.78) 3.23 (-2.63, 9.10) (cm ²) 0.63 (-0.19, 1.45) 0.64 (-0.15, 1.44) rea (cm ²) 0.64 (-0.78, 1.31) -0.03 (-0.85, 0.80) ammography (continuous), cohort s in Model 1 and history ol 5 year, 1-2 children age at nonth, 1-18 months, 18+ 1 cohort s in Model 2 and BMI (cc	 5.38 (-1.22, 11.98) 4.60 (-1.37, 10.57) 4.60 (-1.37, 10.57) 0.56 (-0.27, 1.39) 0.56 (-0.59, 1.04) 0.23 (-0.59, 1.04) 1.04 (yes/no), family hi f bbd (yes/no), family hi onth of blood draw (i 	3.32 (-3.57 , 10.22) 6.51 (0.19, 12.82) 0.69 (-0.17 , 1.55) 0.90 (0.04, 1.75) 0.20 (-0.90 , 1.29) -0.10 (-1.00, 0.79) continuous), fasting istory of breast cance istory of breast cance istory of breast cance istory of breast cance of plasma prolactin	0.28 0.05 0.18 0.09 0.98 0.64 status (<8 h status (<8 h first birth ≥5 15, ≥15 g/d	Ref Ref Ref Ref Ref Ref Ref Ref ref ref ref , missing), an	2.85 (-3.68, 9.39) 3.06 (-2.80, 8.92) -0.09 (-0.90, 0.73) -0.14 (-0.95, 0.68) -0.59 (-1.64, 0.45) -0.76 (-1.60, 0.08) ≥8 h since last meal re (<12, 12, 13, 14+ hildren age at first bi d smoking status (nc	 6.79 (0.28, 13.30) 3.94 (-1.95, 9.83) 3.94 (-1.95, 9.83) 0.65 (-0.17, 1.46) 0.43 (-0.39, 1.25) 0.43 (-0.39, 1.25) -0.91 (-1.95, 0.13) -0.94 (-1.30, 0.38)), time of day (12 am- 0.4 (12 am- 0.5 (12 am- 0.4 (12 am- 0.5 (12 am- 0.4 (12 am- 0.5 (12 am-<th>5.04 (-1.70, 11.78) 3.85 (-2.23, 9.93) 0.34 (-0.51, 1.18) 0.34 (-0.51, 1.19) -0.46 (-1.54, 0.62) -0.23 (-1.10, 0.64) 5:59 am, 6:00 am-7:59 dren age at first birth 2 dren age at first birth 2 al women in the NHS a</th><th>0.10 0.22 0.25 0.28 0.39 0.81 am, 8:00 am, 8:00 + year), + year),</th>	5.04 (-1.70, 11.78) 3.85 (-2.23, 9.93) 0.34 (-0.51, 1.18) 0.34 (-0.51, 1.19) -0.46 (-1.54, 0.62) -0.23 (-1.10, 0.64) 5:59 am, 6:00 am-7:59 dren age at first birth 2 dren age at first birth 2 al women in the NHS a	0.10 0.22 0.25 0.28 0.39 0.81 am, 8:00 am, 8:00 + year), + year),
Model 1 ^a Ref Model 2 ^b Ref Square-root dense area ((Model 1 ^a Ref Model 2 ^b Ref Model 1 ^a Ref Model 2 ^b Ref	1.23 (-5.33, 7.78) 3.23 (-2.63, 9.10) (cm ²) 0.63 (-0.19, 1.45) 0.64 (-0.15, 1.44) rea (cm ²) 0.26 (-0.78, 1.31) -0.03 (-0.85, 0.80) ammography (continuous). cohort s in Model 1 and history of 5 year, 1-2 children age at 100th, 1-18 months, 18+1 s in Model 2 and BMI (ct	5.38 (-1.22, 11.98) 4.60 (-1.37, 10.57) 0.56 (-0.27, 1.39) 0.23 (-0.59, 1.04) -0.76 (-1.80, 0.29) -0.67 (-1.51, 0.17) , month of blood draw ((f bbd (yes/no), family hi f bbd (yes/no), family hi f f bbd (yes/no), family hi ontinuous) months), alcohol consul ontinuous)	3.32 (-3.57 , 10.22) 6.51 (0.19 , 12.82) 0.69 (-0.17 , 1.55) 0.90 (0.04 , 1.75) 0.20 (-0.90 , 1.29) -0.10 (-1.00, 0.79) continuous), fasting istory of breast cance istory of breast cance istory of breast cance istory of breast cance of plasma prolactin :	0.28 0.05 0.18 0.09 0.09 0.64 status (<8 h status (<8 h status (<8 h status (<8 h status (<8 h status (<8 h status (<8 h); a first birth ≥5 15, ≥15 g/d	Ref Ref Ref Ref Ref Ref Ref Ref (or unknown, , missing), an y and bioassar	2.85 (-3.68, 9.39) 3.06 (-2.80, 8.92) -0.09 (-0.90, 0.73) -0.14 (-0.95, 0.68) -0.76 (-1.64, 0.45) -0.76 (-1.60, 0.08) ≥8 h since last meal iddren age at first bi d smoking status (n¢ y levels (ng/mL) amc	 6.79 (0.28, 13.30) 3.94 (−1.95, 9.83) 0.65 (−0.17, 1.46) 0.43 (−0.39, 1.25) −0.91 (−1.95, 0.13) −0.91 (−1.95, 0.13) −0.94 (−1.30, 0.38)), time of day (12 am-), parity and age at firrith <25 year, 3+ chil ever, past, current) 	5.04 (-1.70, 11.78) 3.85 (-2.23, 9.93) 0.34 (-0.51, 1.18) 0.34 (-0.51, 1.19) -0.46 (-1.54, 0.62) -0.23 (-1.10, 0.64) 5.59 am, 6:00 am-7:59 dren age at first birth 2 dren age at first birth 2 al women in the NHS a	0.10 0.22 0.25 0.28 0.39 0.81 am, 8:00 am, 8:00 + year), + year),
Model 2 ^b Ref Square-root dense area ((Model 1 ^a Ref Model 2 ^b Ref Square-root non-dense at Model 1 ^a Ref Model 2 ^b Ref	2.2.63, 9.10) em ²) 0.63 (-0.19, 1.45) 0.64 (-0.15, 1.44) rea (cm ²) 0.26 (-0.78, 1.31) -0.03 (-0.85, 0.80) ammography (continuous), cohort s in Model 1 and history of 5 year, 1–2 children age at nonth, 1–18 months, 18+ 1 nonth, 1–18 months, 18+ 1 s in Model 2 and BMI (ct s in mammographic densit	4.60 (-1.37, 10.57) 0.56 (-0.27, 1.39) 0.23 (-0.59, 1.04) -0.76 (-1.80, 0.29) -0.67 (-1.51, 0.17) -0.67 (-1.51, 0.17) month of blood draw (i f bbd (yes/no), family hi f first birth 25-29 year, months), alcohol consur ontinuous) y measures by quartiles	 6.51 (0.19, 12.82) 0.69 (-0.17, 1.55) 0.90 (0.04, 1.75) 0.20 (-0.90, 1.29) -0.10 (-1.00, 0.79) continuous), fasting istory of breast cance istory of breast cance inption (0, <5, 5 ≤ mption (0, <5, 5 ≤ 	0.05 0.18 0.09 0.64 0.64 status (<8 h status (<8 h first birth ≥5 15, ≥15 g/d immunoassa	Ref Ref Ref Ref Ref or unknown, uge at menarch 30 year, 3+ cl 30 year, 3+ cl 30 year, 3+ cl 31 yand bioassar	3.06 (-2.80, 8.92) -0.09 (-0.90, 0.73) -0.14 (-0.95, 0.68) -0.59 (-1.64, 0.45) -0.76 (-1.60, 0.08) ≥8 h since last meal indern age at first bi d smoking status (n¢ y levels (ng/mL) amc	3.94 (−1.95, 9.83) 0.65 (−0.17, 1.46) 0.43 (−0.39, 1.25) −0.91 (−1.95, 0.13) −0.46 (−1.30, 0.38)), time of day (12 am-), parity and age at firr irth <25 year, 3+ chil ever, past, current) ang 234 postmenopau:	3.85 (-2.23, 9.93) 0.34 (-0.51, 1.18) 0.34 (-0.51, 1.19) -0.46 (-1.54, 0.62) -0.23 (-1.10, 0.64) 5.59 am, 6:00 am-7:59 dren age at first birth 2 dren age at first birth 2 al women in the NHS a	0.22 0.28 0.28 0.39 0.39 0.81 am, 8:00 am, 8:00 + year), + year),
Square-root dense area (c Model 1 ^a Ref Model 2 ^b Ref Square-root non-dense at Model 1 ^a Ref Model 2 ^b Ref	 cm²) 0.63 (-0.19, 1.45) 0.64 (-0.15, 1.44) rea (cm²) 0.26 (-0.78, 1.31) -0.03 (-0.85, 0.80) ammography (continuous), cohort s in Model 1 and history of 5 year, 1-2 children age at nonth, 1-18 months, 18+1 in Model 2 and BMI (ct is in mammographic densit 	0.56 (-0.27, 1.39) 0.23 (-0.59, 1.04) -0.76 (-1.80, 0.29) -0.67 (-1.51, 0.17) , month of blood draw (i f bbd (yes/no), family hi first birth 25-29 year, months), alcohol consur ontinuous) y measures by quartiles	0.69 (-0.17, 1.55) 0.90 (0.04, 1.75) 0.20 (-0.90, 1.29) -0.10 (-1.00, 0.79) continuous), fasting istory of breast cance 1-2 children age at t mption (0, <5, 5 \leq of plasma prolactin	0.18 0.09 0.98 0.64 status (<8 h er (yes/no), a first birth ≥5 15, ≥15 g/d immunoassa	Ref Ref Ref or unknown, or unknown, uge at menarch 30 year, 3+ cl 30 year, 3+ cl 30 year, 3+ cl 31 yand bioassar	-0.09 (-0.90, 0.73) -0.14 (-0.95, 0.68) -0.59 (-1.64, 0.45) -0.76 (-1.60, 0.08) ≥8 h since last meal inder age at first bi d smoking status (n¢ y levels (ng/mL) amc	0.65 (-0.17, 1.46) 0.43 (-0.39, 1.25) -0.91 (-1.95, 0.13) -0.46 (-1.30, 0.38)), time of day (12 am-), parity and age at fir irth <25 year, 3+ chil ever, past, current) ang 234 postmenopau:	0.34 (-0.51, 1.18) 0.34 (-0.51, 1.19) -0.46 (-1.54, 0.62) -0.23 (-1.10, 0.64) 5:59 am, 6:00 am-7:59 dren age at first birth 2 dren age at first birth 2 al women in the NHS a	0.25 0.28 0.39 0.39 am, 8:00 am, 8:00 + year), + year),
Model 1 ^a Ref Model 2 ^b Ref Square-root non-dense at Model 1 ^a Ref Model 2 ^b Ref	0.63 (-0.19, 1.45) 0.64 (-0.15, 1.44) rea (cm ²) 0.26 (-0.78, 1.31) -0.03 (-0.85, 0.80) ammography (continuous), cohort s in Model 1 and history ol 5 year, 1-2 children age at nonth, 1-18 months, 18+ 1 nonth, 1-18 months, 18+ 1 is in Model 2 and BMI (cc s in mammographic densit	0.56 (-0.27, 1.39) 0.23 (-0.59, 1.04) -0.76 (-1.80, 0.29) -0.67 (-1.51, 0.17) , month of blood draw ((fibd (yes/no), family hi first birth 2.5-29 year, months), alcohol consur ontinuous) y measures by quartiles	0.69 (-0.17, 1.55) 0.90 (0.04, 1.75) -0.00 (-0.04, 1.29) -0.10 (-1.00, 0.79) continuous), fasting istory of breast cance istory of breast cance inption (0, $<5, 5 \le$ of plasma prolactin	0.18 0.09 0.64 0.64 status (<8 h first birth ≥5 15, ≥15 g/d immunoassa	Ref Ref Ref Ref or unknown, or unknown, ige at menarch 30 year, 3+ cl 30 year, 3+ cl 30 year, 3+ cl 31 yand bioassar	 -0.09 (-0.90, 0.73) -0.14 (-0.95, 0.68) -0.59 (-1.64, 0.45) -0.76 (-1.60, 0.08) ≥8 h since last meal ≥8 h since last meal ie (<12, 12, 13, 14+ hildren age at first bi d smoking status (né d smoking status (né y levels (ng/mL) amc 	0.65 (-0.17, 1.46) 0.43 (-0.39, 1.25) 0.43 (-0.39, 1.25) -0.94 (-1.30, 0.38)), time of day (12 am-), parity and age at fir irth <25 year, 3+ chil ever, past, current) ong 234 postmenopau:	0.34 (-0.51, 1.18) 0.34 (-0.51, 1.19) -0.46 (-1.54, 0.62) -0.23 (-1.10, 0.64) 5:59 am, 6:00 am-7:59 dren age at first birth 2 dren age at first birth 2 al women in the NHS a	0.25 0.28 0.39 0.81 am, 8:00 children + year),
Model 2 ^b Ref Square-root non-dense ar Model 1 ^a Ref Model 2 ^b Ref	0.64 (-0.15, 1.44) rea (cm ²) 0.26 (-0.78, 1.31) -0.03 (-0.85, 0.80) ammography (continuous), cohort s in Model 1 and history of 5 year, 1-2 children age at nonth, 1-18 months, 18+ 1 onth, 1-18 months, 18+ 1 s in Model 2 and BMI (cc s in mammographic densit	023 (-0.59, 1.04) -0.76 (-1.80, 0.29) -0.67 (-1.51, 0.17) , month of blood draw ((f bbd (yes/no), family hi f bbd (yes/no), family hi f f bbd (yes/no), family hi f f bbd (yes/no), family hi f f bbd (yes/no), family hi ontinuous) ontinuous)	0.90 (0.04, 1.75) 0.20 (-0.90 , 1.29) -0.10 (-1.00, 0.79) continuous), fasting istory of breast cance 1-2 children age at 1 mption (0, <5 , $5 \le$ of plasma prolactin	0.09 0.98 0.64 status (<8 h er (yes/no), <i>z</i> first birth ≥5 15, ≥15 g/d immunoassa	Ref Ref Ref or unknown, oge at menarch 30 year, 3+ cl 30 year, 3+ cl 30 year, 3+ cl 31 yand bioassar	-0.14 (-0.95, 0.68) -0.59 (-1.64, 0.45) -0.76 (-1.60, 0.08) ≥8 h since last meal inder age at first bi d smoking status (n¢ y levels (ng/mL) amc	0.43 (-0.39, 1.25) -0.91 (-1.95, 0.13) -0.46 (-1.30, 0.38)), time of day (12 am-), parity and age at firr irth <25 year, 3+ chil ever, past, current) ang 234 postmenopau:	0.34 (-0.51, 1.19) -0.46 (-1.54, 0.62) -0.23 (-1.10, 0.64) 5:59 am, 6:00 am-7:59 dren age at first birth 2 dren age at first birth 2 al women in the NHS a	0.28 0.39 0.81 am, 8:00 children + year), d NHSII
Square-root non-dense ar Model 1 ^a Ref Model 2 ^b Ref	rea (cm ²) 0.26 (-0.78, 1.31) -0.03 (-0.85, 0.80) ammography (continuous), cohort s in Model 1 and history of 5 year, 1-2 children age at nonth, 1-18 months, 18+1 onth, 1-18 months, 18+1 s in Model 2 and BMI (cc s in mammographic densit	-0.76 (-1.80, 0.29) -0.67 (-1.51, 0.17) , month of blood draw (c f bbd (yes/no), family hi months), alcohol consur ontinuous) y measures by quartiles	$\begin{array}{l} 0.20\ (-0.90,\ 1.29)\\ -0.10\ (-1.00,\ 0.79)\\ \hline \end{array}$	0.98 0.64 status (<8 h er (yes/no), a first birth ≥5 15, ≥15 g/d immunoassa	Ref Ref or unknown, uge at menarch 30 year, 3+ cl 30 year, 3+ cl 31 year, 3+ cl 32 year, 3+ cl 33 year, 3+ cl 34 year, 3+ cl 35 year, 3+ cl 36 year, 3+ cl 37 year, 3+ cl 38 year, 3+ cl 39 year, 3+ cl 31 year, 3+ cl 31 year, 3+ cl 32 year, 3+ cl 33 year, 3+ cl 34 year, 3+ cl 35 year, 3+ cl 36 year, 3+ cl 37 year, 3+ cl 37 year, 3+ cl 38 year, 3+ cl 39 year, 3+ cl 30 year, 3+ cl 30 year, 3+ cl 31 year, 3+ cl	-0.59 (-1.64, 0.45) -0.76 (-1.60, 0.08) <u>></u> 8 h since last meal indren age at first bi d smoking status (ne y levels (ng/mL) amc	-0.91 (-1.95, 0.13) -0.46 (-1.30, 0.38)), time of day (12 am-), parity and age at firr irth <25 year, 3+ chil ever, past, current) ang 234 postmenopau:	-0.46 (-1.54, 0.62) -0.23 (-1.10, 0.64) 5:59 am, 6:00 am-7:59 dren age at first birth 2 dren age at first birth 2 al women in the NHS a	0.39 0.81 am, 8:00 children + year), d NHSII
Model 1 ^ª Ref Model 2 ^b Ref	0.26 (-0.78, 1.31) -0.03 (-0.85, 0.80) ammography (continuous), cohort s in Model 1 and history of 5 year, 1-2 children age at nonth, 1-18 months, 18+ 1 onth, 1-18 months, 18+ 1 s in Model 2 and BMI (cc	-0.76 (-1.80, 0.29) -0.67 (-1.51, 0.17) , month of blood draw (c f bbd (yes/no), family hi f first birth 2.5-29 year, months), alcohol consur ontinuous) y measures by quartiles	0.20 (-0.90 , 1.29) -0.10 (-1.00 , 0.79) continuous), fasting istory of breast cance 1–2 children age at 1 mption (0, <5 , $5 \le$	0.98 0.64 status (<8 h first birth \geq 3 15, \geq 15 g/d immunoassa	Ref Ref or unknown, uge at menarch 30 year, 3+ ch , missing), an y and bioassar	-0.59 (-1.64, 0.45) -0.76 (-1.60, 0.08) ≥8 h since last meal he (<12, 12, 13, 14+) idfren age at first bi d smoking status (n¢ y levels (ng/mL) amc	-0.91 (-1.95, 0.13) -0.46 (-1.30, 0.38)), time of day (12 am-), parity and age at fir ath <25 year, 3+ chil ever, past, current) ang 234 postmenopau:	-0.46 (-1.54, 0.62) -0.23 (-1.10, 0.64) 5:59 am, 6:00 am-7:59 dren age at first birth 2 dren age at first birth 2 al women in the NHS a	0.39 0.81 am, 8:00 children + year), d NHSII
Model 2 ^b Ref	-0.03 (-0.85, 0.80) ammography (continuous), cohort s in Model 1 and history of 5 year, 1-2 children age at nonth, 1-18 months, 18+ 1 onth, 1-18 months, 18+ 1 s in Model 2 and BMI (cc	-0.67 (-1.51, 0.17) , month of blood draw ((f bbd (yes/no), family hi f first birth 2.5–29 year, months), alcohol consur ontinuous) y measures by quartiles	-0.10(-1.00, 0.79) continuous), fasting istory of breast cance 1-2 children age at 1 mption $(0, <5, 5 \le$ of plasma prolactin	$\frac{0.64}{\text{status} (<8 \text{ h})}$ $\frac{\text{er (yes/no), a}}{15, \ge 15 \text{ g/d}}$ immunoassa	Ref or unknown, uge at menarch 30 year, 3+ ch , missing), an y and bioassar	$\frac{-0.76 (-1.60, 0.08)}{\geq 8 \text{ h since last meal}}$ $\frac{>}{8 \text{ h since last meal}}$ $\frac{(<12, 12, 13, 14+)}{\text{ uldren age at first bi}}$ $\frac{1}{6 \text{ smoking status (nc}}$ $\frac{1}{9 \text{ levels (ng/mL) amc}}$	-0.46 (-1.30, 0.38)), time of day (12 am-), parity and age at firrath <25 year, 3+ chillever, past, current) ever, past, current)	-0.23 (-1.10, 0.64) 5:59 am, 6:00 am-7:59 dren age at first birth 2 al women in the NHS a	0.81 am, 8:00 children + year), d NHSII
	ammography (continuous), cohort s in Model 1 and history of 5 year, 1–2 children age at nonth, 1–18 months, 18+ r s in Model 2 and BMI (cc s in mammographic densit	, month of blood draw (c f bbd (yes/no), family hi first birth 25–29 year, l months), alcohol consur ontinuous) y measures by quartiles	continuous), fasting (istory of breast cance 1-2 children age at 1 mption $(0, <5, 5 \le$ of plasma prolactin	status (<8 h er (yes/no), a first birth 23 15, 215 g/d.	or unknown, uge at menarch 30 year, 3+ cl , missing), an y and bioassar	≥8 h since last meal the (<12, 12, 13, 14+ ildren age at first bi d smoking status (ne y levels (ng/mL) amc), time of day (12 am-), parity and age at firs rth <25 year, 3+ chil ever, past, current) ong 234 postmenopaus	5:59 am, 6:00 am–7:59 at birth (nulliparous, 1–2 dren age at first birth 2 al women in the NHS a	am, 8:00 children + ycar), d NHSII
^a Model 1: age at mammog am-11:59 pm), and cohort	s in Model 1 and history of 5 year, 1–2 children age at 10nth, 1–18 months, 18+ 1 s in Model 2 and BMI (cc s in mammographic densit	f bbd (yes/no), family hi first birth 25–29 year, 1 months), alcohol consur antinuous) y measures by quartiles	story of breast cance 1-2 children age at f mption $(0, <5, 5 \le 1)$ of plasma prolactin	er (yes/no), a first birth ≥3 15, ≥15 g/d. immunoassa	ige at menarch 30 year, 3+ ch , missing), an y and bioassar	te (<12, 12, 13, 14+) nildren age at first bi d smoking status (ne y levels (ng/mL) amc), parity and age at firs rth <25 year, 3+ chil ver, past, current) ong 234 postmenopau:	it birth (nulliparous, 1–2 dren age at first birth 2 al women in the NHS a	children + ycar), d NHSII
^b Includes covariate: age at first birth <25 breastfeeding (<1 m	s in Model 2 and BMI (cc s in mammographic densit	ontinuous) y measures by quartiles	of plasma prolactin	immunoassa	y and bioassar	y levels (ng/mL) amc	ng 234 postmenopaus	al women in the NHS a	IISHN þ
Table 4 Differences									
Prolact	Prolactin Immunoassay (ng/ml) ($N = 234$)	(N = 234)			Prolactin Bio	Prolactin Bioassay (ng/ml) ($N =$	234)		
Q1 < 7.0 (N = 60)	7.0 $Q2$ 7.0–9.1 50) $(N = 57)$	$Q3 \ 9.1-12.5$ (N = 57)	$Q4 \ 12.5+$ (N = 60)	p trend	Q1 < 4.8 (N = 59)	Q2 4.8-6.6 (N = 58)	Q3 6.6-9.6 (N = 59)	$Q4 \ 9.6+$ (N = 58)	p trend
Percent density (%)									
Model 1 ^a Ref	4.45 (-2.53, 11.43)	4.41 (-2.57, 11.38)	2.21 (-5.16, 9.59)	0.73	Ref	0.23 (-6.67, 7.14)	6.22 (-0.78, 13.23)	8.92 (1.80, 16.05)	<0.0001
Model 2 ^b Ref	5.07 (-1.05, 11.20)	1.45 (-4.74, 7.64)	1.07 (-5.35, 7.48)	0.89	Ref	-1.35 (-7.68, 4.98)	3.60(-2.73, 9.94)	4.80 (-1.81, 11.42)	0.06
Square-root dense area (cm ²)	(cm^2)								
Model 1 ^a Ref	0.37 (-0.53, 1.26)	0.14 (-0.76, 1.03)	0.47 (-0.47, 1.42)	0.42	Ref	$0.01 \ (-0.87, \ 0.90)$	$0.21 \ (-0.68, \ 1.10)$	1.07 (0.16, 1.98)	0.01
Model 2 ^b Ref	0.40 (-0.47, 1.26)	-0.09 $(-0.96, 0.78)$	0.30 (-0.60, 1.20)	0.70	Ref	$0.02 \ (-0.84, \ 0.87)$	-0.22 $(-1.09, 0.64)$	$0.42 \ (-0.49, \ 1.33)$	0.38
Square-root non-dense area (cm ²)	rrea (cm ²)								
Model 1 ^a Ref	-0.15(-1.26, 0.95)	-0.77 $(-1.87, 0.34)$	0.06 (-1.11, 1.22)	0.96	Ref	0.36 (-0.72, 1.44)	-1.09 (-2.17, 0.00)	-1.44(-2.55, -0.34)	<0.0001
Model 2 ^b Ref	$0.04 \ (-0.79, \ 0.86)$	-0.15 (-0.99, 0.68)	$0.14 \ (-0.73, \ 1.00)$	0.79	Ref	$0.50 \ (-0.29, \ 1.30)$	-0.90 (-1.69, -0.11)	$-0.74 \ (-1.58, \ 0.10)$	0.01
^a Model 1: age at ma	^a Model 1: age at mammography(continuous), month of blood draw (continuous), fasting status (\ll h or unknown, \geq 8 h since last meal), time of day (12 am-5:59 am, 6:00 am-7:59 am, 8:00 am-11.50 am)	month of blood draw (c	continuous), fasting :	status (<8 h	or unknown,	≥8 h since last meal), time of day (12 am-	-5:59 am, 6:00 am–7:59	am, 8:00
^b Includes covariates	^b Includes covariates in Model 1 and history of hhd (yes no) family history of hreast cancer (yes no) age at menarche (<12–13–14+) narity and age at first hirth (millinarous 1–2 children	f hhd (ves no) family hi	ictory of breast cance	er (ves no) :	are at menarc	he (<12 12 13 14+	A marity and age at fire	# hirth (millingrous 1–)	children
age at first birth <25	and the state of the state of the set of th	first birth 25–29 year, 1	1-2 children age at 1	first birth >3	age at munate 30 vear, 3+ cl	ו דו יכו יבו יבו יבו ידו ודי vildren age at first bi	rth <25 year, 3+ chil	dren age at first birth 2.	+ year),
breastfeeding (<1 m	breastfeeding (<1 month, 1–18 months, 18+ months), alcohol	months), alcohol consur	mption $(0, <5, 5 \le$, missing), sn	oking status (never,	past, current), BMI (consumption (0, <5 , $5 \le 15$, ≥ 15 g/d, missing), smoking status (never, past, current), BMI (continuous), and past PMH use	1H use

 $\stackrel{{}_{\scriptstyle{\frown}}}{\underline{\bigcirc}}$ Springer

updated analysis, the association between prolactin immunoassay levels and percent density was similar (difference of 3.0), but statistically significant due to the increased sample size. These results are consistent with two studies that observed a positive association between prolactin immunoassay levels and percent mammographic density among postmenopausal women [4, 5]. However, two other large studies (N = 712 and 802) reported no association [6, 7]. Differences between studies may be in part be related to the use of different assays, different sample types (e.g., serum vs plasma), and inclusion of women on PMH at blood collection and/or mammogram in some prior studies.

To our knowledge, only one study has examined the association between prolactin levels and non-dense area among postmenopausal women. Consistent with our study, McCormack et al. observed that higher prolactin levels were significantly associated with lower non-dense area, but not with dense area [10]. These findings are contrary to our hypothesis that higher prolactin levels would be associated with an increase in dense area due to the proliferative effects of prolactin on epithelial cells. Further research is necessary to confirm the potential inverse association with non-dense area as well as to understand the mechanism by which prolactin may affect the amount of fat in the breast.

There was no consistent difference in the association with percent density between prolactin immunoassay and bioassay levels. In premenopausal women, the difference between extreme quartiles was similar between the immunoassay and the bioassay after we restricted to bioassay batches with CVs below 20 %. In postmenopausal women, the association with percent density was somewhat stronger for the bioassay compared to the immunoassay, especially after excluding bioassay levels from batches with high CVs. In two small breast cancer case-control studies, the difference in prolactin levels between cases and controls was greater for the bioassay than for the immunoassay [26, 27]. While these prior studies suggest that the Nb2 lymphoma cell bioassay may measure the more biologically relevant portion of circulating prolactin, we did not observe consistent differences between the immunoassay and the bioassay with mammographic density or with breast cancer risk in the full nested case-control study [16], highlighting the need for additional research.

Our study has several limitations. While the CVs for the prolactin immunoassay are low, there is likely some measurement error. This measurement error should be nondifferential as the laboratory is blinded to density measurements. Although the CVs for some bioassay batches were high, we conducted a sensitivity analysis excluding batches with higher or unknown CVs. We only have a single measurement of prolactin levels, which may not be representative of long-term levels. However, the 3-year intraclass correlation coefficient (ICC) for the average of prolactin levels for follicular and luteal samples for both the immunoassay and bioassay was 0.64 among premenopausal NHSII women. [16, 28] Among 79 postmenopausal women in the NHS, the 3-year ICC was 0.53 for prolactin immunoassay levels [29] and among 68 postmenopausal women the NHS the ICC was 0.63 for the bioassay over 3 years [16]. These data suggest that a single measurement of prolactin is representative of levels over at least a 3-year period. Mammographic density measurements are highly reproducible though there is the potential for some random error. Since the mammogram reader was blinded to prolactin levels any measurement error should be non-differential. The strengths of our study include the centralized collection and reading of mammograms, high quality prolactin assays, and detailed adjustment for correlates of mammographic density.

Conclusion

Overall, this study suggests that prolactin levels are associated with modestly higher percent mammographic density and lower non-dense area among postmenopausal women. Additional research into the association between prolactin and non-dense area of the breast may help elucidate the role of prolactin in breast carcinogenesis.

Conflict of interest None of the authors has a competing interest to declare.

Funding/support This study was supported by research grants R01 CA138580, CA49449, CA67262, CA50385, CA131332, CA124865, P01 CA87969, T32 CA09001, R25 CA098566, and the Breast Cancer Research Foundation. We would like to thank the participants of the Nurses' Health Study and Nurses' Health Study II for their continuing contributions. We thank the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY.

References

- Byrne C et al (1995) Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 87(21):1622–1629
- Boyd NF et al (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 87(9):670–675
- Tworoger SS, Hankinson SE (2008) Prolactin and breast cancer etiology: an epidemiologic perspective. J Mammary Gland Biol Neoplasia 13(1):41–53
- Boyd NF et al (2002) The association of breast mitogens with mammographic densities. Br J Cancer 87(8):876–882

- 5. Greendale GA et al (2007) Serum prolactin levels are positively associated with mammographic density in postmenopausal women. Breast Cancer Res Treat 105(3):337–346
- Bremnes Y et al (2007) Endogenous sex hormones, prolactin and mammographic density in postmenopausal Norwegian women. Int J Cancer 121(11):2506–2511
- Maskarinec G et al (2007) IGF-I and mammographic density in four geographic locations: a pooled analysis. Int J Cancer 121(8):1786–1792
- 8. Tamimi RM et al (2005) Endogenous sex hormone levels and mammographic density among postmenopausal women. Cancer Epidemiol Biomark Prev. 14(11 Pt 1):2641–2647
- 9. Walker K et al (2009) Premenopausal mammographic density in relation to cyclic variations in endogenous sex hormone levels, prolactin, and insulin-like growth factors. Cancer Res 69(16): 6490–6499
- McCormack VA et al (2009) Sex steroids, growth factors and mammographic density: a cross-sectional study of UK postmenopausal Caucasian and Afro-Caribbean women. Breast Cancer Res 11(3):R38
- 11. Pettersson A et al (2011) Nondense mammographic area and risk of breast cancer. Breast Cancer Res 13(5):R100
- Lokate M et al (2011) Mammographic density and breast cancer risk: the role of the fat surrounding the fibroglandular tissue. Breast Cancer Res 13(5):R103. doi:10.1186/bcr3044
- Hoffmann T, Penel C, Ronin C (1993) Glycosylation of human prolactin regulates hormone bioactivity and metabolic clearance. J Endocrinol Invest 16(10):807–816
- Sinha YN (1995) Structural variants of prolactin: occurrence and physiological significance. Endocr Rev 16(3):354–369
- Gout PW, Beer CT, Noble RL (1980) Prolactin-stimulated growth of cell cultures established from malignant Nb rat lymphomas. Cancer Res 40(7):2433–2436
- Tworoger, S.S., et al., (2014) Bioactive prolactin levels and risk of breast cancer: a nested case–control study. Cancer Epidemiol Biomark Prev
- Schernhammer ES et al (2005) Circulating levels of insulin-like growth factors, their binding proteins, and breast cancer risk. Cancer Epidemiol Biomark Prev 14(3):699–704

- Tworoger SS, Sluss P, Hankinson SE (2006) Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. Cancer Res 66(4):2476– 2482
- Schernhammer ES, Hankinson SE (2009) Urinary melatonin levels and postmenopausal breast cancer risk in the Nurses' Health Study cohort. Cancer Epidemiol Biomark Prev 18(1):74– 79
- Hankinson SE et al (1998) Circulating concentrations of insulinlike growth factor-I and risk of breast cancer. Lancet 351(9113): 1393–1396
- Schernhammer ES et al (2006) Insulin-like growth factor-I, its binding proteins (IGFBP-1 and IGFBP-3), and growth hormone and breast cancer risk in The Nurses Health Study II. Endocr Relat Cancer 13(2):583–592
- 22. Rosner B (1983) Percentage points for a generalized ESD manyoutlier procedure. Technometrics 25:165–172
- Clevenger CV et al (1995) Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/ paracrine loop. Am J Pathol 146(3):695–705
- Rosner B et al (2008) Determination of blood pressure percentiles in normal-weight children: some methodological issues. Am J Epidemiol 167(6):653–666
- 25. Tamimi RM et al (2005) Endogenous sex hormone levels and mammographic density among postmenopausal women. Cancer Epidemiol Biomark Prev 14(11):2641–2647
- Emerman JT et al (1985) Elevated growth hormone levels in sera from breast cancer patients. Horm Metab Res 17(8):421–424
- Maddox PR, Jones DL, Mansel RE (1992) Prolactin and total lactogenic hormone measured by microbioassay and immunoassay in breast cancer. Br J Cancer 65(3):456–460
- Missmer SA et al (2006) Reproducibility of plasma steroid hormones, prolactin, and insulin-like growth factor levels among premenopausal women over a 2- to 3-year period. Cancer Epidemiol Biomark Prev 15(5):972–978
- Hankinson SE et al (1995) Reproducibility of plasma hormone levels in postmenopausal women over a 2-3-year period. Cancer Epidemiol Biomark Prev 4(6):649–654