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Abstract Breast cancers are categorized into three sub-

types based on protein expression of estrogen receptor

(ER), progesterone receptor (PR), and human epidermal

growth factor receptor-2 (HER2/ERBB2). Patients enroll

onto experimental clinical trials based on ER, PR, and

HER2 status and, as receptor status is prognostic and

defines treatment regimens, central receptor confirmation is

critical for interpreting results from these trials. Patients

enrolling onto experimental clinical trials in the metastatic

setting often have limited available archival tissue that

might better be used for comprehensive molecular profiling

rather than slide-intensive reconfirmation of receptor sta-

tus. We developed a Random Forests-based algorithm

using a training set of 158 samples with centrally con-

firmed IHC status, and subsequently validated this algo-

rithm on multiple test sets with known, locally determined

IHC status. We observed a strong correlation between

target mRNA expression and IHC assays for HER2 and

ER, achieving an overall accuracy of 97 and 96 %,

respectively. For determining PR status, which had the

highest discordance between central and local IHC,

incorporation of expression of co-regulated genes in a

multivariate approach added predictive value, outper-

forming the single, target gene approach by a 10 % margin

in overall accuracy. Our results suggest that multiplexed

qRT-PCR profiling of ESR1, PGR, and ERBB2 mRNA,

along with several other subtype associated genes, can

effectively confirm breast cancer subtype, thereby con-

serving tumor sections and enabling additional biomarker

data to be obtained from patients enrolled onto experi-

mental clinical trials.
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Introduction

Breast cancer is a heterogeneous disease that is routinely

categorized by immunohistochemical (IHC) staining of

estrogen receptor (ER), progesterone receptor (PR), and the

human epidermal growth factor receptor-2 (HER2) [1].

Hormone receptor positive cancers stain positive for either

ER or PR and are generally treated with anti-hormone
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therapies such as tamoxifen and letrozole [2]. HER2 positive

breast cancers overexpress the HER2/neu oncogene and are

treated with HER2-directed therapies, such as trastuzumab,

lapatinib, pertuzumab, and trastuzumab emtansine, which

have improved outcomes and changed the natural history of

this previously poor prognostic patient subgroup [3]. Triple

negative breast cancers (TNBC) lack ER, PR, and HER2

staining and currently have no approved targeted therapies.

TNBC is generally treated with combinations of cytotoxic

agents such as anthracyclines and taxanes [4].

Over a decade ago, Perou and others provided evidence

that breast cancer could be divided molecularly into distinct

subgroups based on RNA microarray experiments [5–8].

Follow-up studies demonstrated that a 50-gene signature

(subsequently designated the PAM50) could recapitulate the

initial studies by Perou and colleagues [9]. Using this assay,

breast cancer can be stratified into luminal A and luminal B

subgroups that mostly comprise hormone receptor positive

breast cancers; basal-like subgroup that mostly comprises

triple negative breast cancers; HER2-enriched subgroup that

mostly comprises HER2? breast cancers, and a normal-like

subgroup that has been proposed to mostly comprise the

normal surrounding stroma [10]. PAM50 analysis has been

shown to provide independent prognostic information

compared to standard IHC classification. However, the

PAM50 intrinsic subtypes show imperfect agreement with

IHC classification, not surprisingly since they were designed

to provide additional orthogonal information [11], sug-

gesting that predictors that can recapitulate IHC status may

still have independent clinical utility in the context of cur-

rently approved therapies.

Specifically, despite the promise of molecular assays

such as PAM50 and other classifiers, patients are still

treated and routinely enrolled onto clinical trials of

experimental anti-cancer agents based on IHC determina-

tion of ER, PR, and HER2. Such testing requires at least

three tissue sections, and often more if staining needs to be

repeated. Moreover, if HER2 status is deemed equivocal

(i.e., 2?), additional testing is required using a fluores-

cence in situ hybridization (FISH) assay [12]. Moreover,

IHC is subject to variation in inter-pathologist interpreta-

tion, and as such, concordance between laboratories can

vary. In several studies, discordant results were noted

between IHC staining between local and central assess-

ment. In a study by Martinez and colleagues, ER showed a

concordance rate of 92 %, PR showed a concordance rate

of 78 %, and HER2 showed a concordance rate of 83 %

[13]. In a similar study, Orlando et al. demonstrated con-

cordance rates of 82 % for ER, 86 % for PR, and 73 % for

HER2 [14]. Based on these considerations, a facile method

of subtype assignment that uses minimal slides and shows

high concordance with central IHC testing would be highly

desirable from a clinical biomarker perspective.

Patients enrolled in experimental clinical trials are often

late line metastatic patients who may have undergone

multiple rounds of diagnostic testing and often have limited

tissue remaining. Comprehensive biomarker profiling of

study-enrolled patients is thus challenging and could ben-

efit from multiplexed technologies rather than more tradi-

tional individual slide-based assays. In this study, we

showed that ER, PR, and HER2 status could be accurately

confirmed using multiplexed RNA expression profiling,

thereby conserving tissue sections and maximizing the

value of limited tissue samples from clinical trial patients.

Results

Comparison of local and central IHC testing for ER,

PR, and HER2 status

As ER, PR, and HER2 status is typically determined by

different pathologists in various institutions (local testing)

and is subject to inter-observer variability, we re-analyzed

the expression of ER, PR, and HER2 using a single

pathologist (central testing) from 158 patients enrolled in

the United States Oncology (USO) phase III study 01062

(USO 01062), which tested the addition of capecitabine to

standard adjuvant therapy in high-risk breast cancer [15].

Receptor positivity, here and throughout the manuscript, is

defined as an IHC3? score for HER2 and an Allred cutoff

of 3 and above for ER and PR. In general, a strong con-

cordance was observed between local and central testing

for ER, PR, and HER2 status (Table 1: 92, 84 and 94 %

accuracy, respectively), which is similar to previously

published studies [13, 14]. However, when breaking down

concordances into positive predictive values (PPV) and

negative predictive values (NPV), discrepancies were high

for certain subgroups of patients. Specifically, a low PPV

of local testing was observed in the HER2? subgroup of

patients. Only 16 of 24 samples positive by local testing

were confirmed by central testing (PPV = 67 %), although

132 of 134 samples negative by local testing were negative

by central testing (NPV = 99 %). Similarly for PR testing,

a low NPV was observed for local testing of PR negative

patients (NPV = 68 %), with only 50 of the 73 negative

samples by local testing confirmed by central testing.

Generation of a training set to develop the predictive

algorithm for ER, PR, and HER2 status

Receptor status is critical for enrollment and stratification

of breast cancer patients onto clinical trials, therefore we

sought to determine whether a molecular classifier could

accurately predict molecular subtype with the benefit of

obtaining additional valuable biomarker data that ER, PR,
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and HER2 IHC assays would not capture. Using the 158

IHC centrally confirmed patient samples, we extracted

RNA and profiled the samples using a previously reported

96-gene BioMarkTM Fluidigm microfluidics quantitative

RT-PCR-based platform that was developed to capture

expression of breast cancer genes involved in proliferation

and various aspects of breast cancer signaling [16].

Several studies have shown that mRNA expression of

the three receptors correlates with IHC assays for the

corresponding protein expression [11, 17]. Similarly, we

observed a strong correlation between the centrally con-

firmed IHC status of ER, PR, and HER2 and their corre-

sponding target gene expression, ESR1, PGR, and ERBB2

(Fig. 1 and Supplemental Fig. 1, N = 158). Pearson cor-

relation coefficients of IHC and target gene expression

were 0.91, 0.80, and 0.60 for ER, PR, and HER2, respec-

tively. In a receiver operating characteristic (ROC) ana-

lysis, the area under the curve (AUC) for predicting HER2

IHC3? samples using ERBB2 expression was 0.998

(Fig. 1a). To confirm that ERBB2 qRT-PCR data could

accurately determine HER2 status, we developed a DNA-

based HER2 copy number assay that showed a high cor-

relation with ERBB2 gene expression that more accurately

captured the HER2 amplified cases based on central con-

firmation (Supplemental Fig. 2). Notably, three of the cases

that were HER2 IHC positive by local but not central

testing clustered with the IHC negatives when assessed

using this methodology.

For the determination of ER and PR status, we utilized

the Allred scoring criteria for positivity [18, 19] and

applied ROC analysis to examine the positive predictability

defined by different Allred score cutoffs using RNA

expression level. For ER and PR status, an AUC of 0.98

and 0.90, respectively, was observed at the FDA-recom-

mended Allred cutoff of 3 and above (Fig. 1b, c).

Performance of target gene prediction

Encouraged by the strong RNA IHC correlations observed

for the three target genes (Fig. 1) and to formally address

the question whether mRNA target expression can be used

to determine central IHC status reliably in a statistical

framework, we applied a two-component Gaussian mixture

model approach to the empirical distributions of ERBB2,

ESR1, and PGR expression, motivated by the bimodal

marginal distribution of these genes (Fig. 2). A cutoff point

between high and low expression was selected at the value

where the posterior probabilities for the two components

were equal. For the determination of HER2, ER, and PR

status, this target gene prediction (TGP) approach achieved

an overall accuracy of 97, 96, and 81 %, respectively

(Table 2). Although PR status determination remained

challenging by TGP, there was a pronounced improvement

in determining HER2 and ER status by TGP compared to

local IHC. The PPV of HER2, which was 67 % for local

testing was increased to 100 % for TGP. This high con-

cordance between TGP and central IHC status, especially

in the HER2 and ER groups, suggests that the PCR-based

assay is a reliable surrogate for central IHC to confirm

receptor status.

Performance of multivariate gene prediction

To investigate whether incorporating information from other

genes in addition to target genes in the BioMarkTM panel will

further improve the prediction performance, especially in

predicting the more challenging PR status, we applied and

contrasted several multivariate classifiers. These include

Random Forests (RF) [20], prediction analysis of micro-

arrays (PAM) [21], and a Random Forests and K-Nearest

Neighbors combination approach (RF-KNN), which utilizes

RF for variable selection and KNN for formalizing predic-

tion (see ‘‘Materials and methods’’ section and Table 3).

Both RF-based approaches performed better than PAM, and

achieved an overall cross-validated accuracy of 98, 95, and

91 % for HER2, ER, and PR status prediction. Variable

importance measures (VIM) produced by RF were elicited to

quantify the relative importance of genes in contributing to

prediction accuracy (Fig. 3). For HER2 status prediction, the

genes that predicted this group were ERBB2 and GRB7,

which is often co-amplified with ERBB2 [22], with a sensi-

tivity and specificity of 83 and 100 %, respectively

(Table 3). For ER status prediction, the gene with the highest

VIM and was most often selected by RF-KNN was ESR1,

Table 1 HER2, ER, and PR status by local and central IHC for 158 USO 01062 study Samples

HER2 Central IHC ER Central IHC PR Central IHC

- ? - ? - ?

Local IHC Local IHC Local IHC

- 132 2 NPV 99 % - 50 8 NPV 86 % - 50 23 NPV 68 %

? 8 16 PPV 67 % ? 4 96 PPV 96 % ? 3 82 PPV 96 %

Spec 94 % Sens 88 % Acc 94 % Spec 93 % Sens 92 % Acc 92 % Spec 94 % Sens 78 % Acc 84 %

Spec specificity, Sens sensitivity, PPV positive predictive value, NPV negative predictive value, Acc accuracy
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followed by known ER-regulated genes, such as GATA3,

PGR, SCUBE2, and FOXA1 [7, 23–25], with a sensitivity

and specificity of 93 and 98 %, respectively. For PR status

prediction, the most predictive gene was ESR1, followed by

PGR and several other ER-regulated genes, with a sensitivity

and specificity of 90 and 92 %, respectively. Notably, using a

cutoff of Allred score of 4 and above for PR positivity

showed a stronger correlation with the expression level of

PGR (Fig. 1c and Supplemental Fig. 3; AUC = 0.96,

95 % CI 0.93–0.99), compared to the FDA-recommended

cutoff of 3 and above (AUC = 0.9, 95 % CI 0.86–0.95).

This superior AUC for Allred score of 4 and above is sup-

ported by a significant increase in PGR expression between

Allred scores 3 and 4 (t-test P = 0.003), and conversely, a

lack of change in PGR expression between Allred scores 2

and 3 (t-test P = 0.12).
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Fig. 1 Target gene expression

of a ERBB2 b ESR1 c PGR by

central IHC status. Left panel:

boxplot of target gene

expression by central HER2

status. IHC positive group is

colored in gray. Right panel:

ROC analysis for predicting

IHC positivity defined by

different cutoffs using target

gene expression. Figure legend

indicates cutoffs and AUCs with

95 % confidence intervals in

parentheses
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As the target genes were often the most predictive genes

for the determination of ER, PR, or HER2 status, we

contrasted the performance of Random Forests-based pre-

diction (RFP; Table 3) with the target gene prediction

approach (TGP; Table 2). Both approaches showed similar

overall accuracy in predicting central IHC score for HER2

and ER. In the case of PR prediction, RFP outperformed

the TGP approach based on PGR expression by a 10 %

margin in overall accuracy (91 vs. 81 %, respectively).

Taken together, these results suggest that inclusion of

additional target or co-regulated PGR genes in a multi-

variate approach has a greater predictive power in deter-

mining PR status than TGP.

Application of the ER, PR, and HER2 predictive

algorithm to test sets

To determine how the predictive algorithm performs in

different cohorts of patients, we applied RFP to three

separate breast cancer sample sets. First, we applied RFP to

an additional 630 patients enrolled onto the USO 01062

study where local ER, PR, and HER2 status was available.

The overall concordance between RFP and local IHC

testing for determining HER2, ER, and PR status was 92,

92, and 82 %, respectively (Table 4 and Supplemental

Table 1). Figure 4 shows the distribution of target genes

ERBB2, ESR1, and PGR categorized by the predicted and

the local IHC subtypes for ER, PR, and HER2. Similar to

the training set, lower concordance was observed between

local HER IHC and RFP within the subset of HER2?

patients determined by local IHC (Table 4). Among the 83

HER2? patients determined by local IHC, only 41 were

predicted to be positive by RFP, with the rest exhibiting

very low target gene ERBB2 expression levels (Fig. 4). To

examine whether this discrepancy has clinical implication,

we correlated local IHC and RFP with disease-free survival

in the USO 01062 study (Fig. 5). We defined HER2?

patients as those being HER2 positive regardless of ER or

PR status, HR? patients as those being HER2 negative and

either ER or PR positive, and TNBC patients as those being

HER2, ER, and PR negative. Significant survival disad-

vantages was observed for HER2? patients compared to

the HR? or TNBC patients by RFP subtyping (log-rank

P = 0.02 vs. log-rank P = 0.40), but not by local IHC,
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Fig. 2 Target gene prediction. A bimodal, 2-component Gaussian

mixture distribution fit was superimposed to the actual data summa-

rized in the histogram. The two mixture distributions are depicted in

red and black lines. The dotted line indicates the cutoff between the

positive and negative groups

Table 2 HER2, ER, and PR status by central IHC and TGP for the training set

HER2 Central IHC ER Central IHC PR Central IHC

- ? - ? - ?

ERBB2 ESR1 PGR

- 139 4 NPV 97 % - 53 5 NPV 90 % - 39 16 NPV 71 %

? 0 14 PPV 100 % ? 1 99 PPV 99 % ? 14 89 PPV 86 %

Spec 100 % Sens 77 % Acc 97 % Spec 98 % Sens 95 % Acc 96 % Spec 74 % Sens 84 % Acc 81 %

Spec specificity, Sens sensitivity, PPV positive predictive value, NPV negative predictive value, Acc accuracy
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suggesting that some of the 83 HER2? patients by local

IHC were likely misclassified. Second, when the algorithm

was applied to a commercially procured sample set of 136

HR? breast cancers with locally determined ER status

[16], 129 were determined to be HR? with an overall

accuracy of 95 % (Supplemental Fig. 4 and Supplemental

Table 2). Among the seven samples that were predicted as

ER and PR negatives, two were a primary and metastatic

pair, exhibiting high ERBB2 expression. Finally, in a

commercially procured sample set of 37 locally assessed

triple negative breast cancers, 34 were determined to be

triple negative with an overall accuracy of 92 % (Supple-

mental Table 2). These results suggest that multiplexed

RNA assays can be leveraged to validate local IHC status,

obviating the need to centrally confirm IHC receptor status

for patients enrolled onto studies.

Discussion

In our current study, we demonstrated that multiplexed

PCR-based methods can accurately predict ER, PR, and

HER2 status in breast cancer patients when coupled with a

RF-based approach that takes into consideration multiple

genes that are associated with the unique biology of breast

cancer. Most notably, for predicting PR status, incorpora-

tion of PR target or co-regulated genes such as GATA3,

ESR1, and FOXA1 adds predictive benefit when compared

to PGR alone. In the USO 01062 training set that incor-

porated central IHC determination, the accuracy of

assigning breast cancer subtypes was much superior com-

pared to local testing. In our training set of 24 HER2?

samples locally assessed from the USO 01062 trial, 16

were positive by central staining. This large discordance,

Table 3 Performance of multivariate prediction methods for the training set

Accuracy Specificity Sensitivity Genes picked (number of times)

HER2

RF 0.98 1(140/140) 0.83(15/18)

RF-KNN 0.99 1(140/140) 0.94(17/18) ERBB2(10) GRB7(1)

PAM 0.94 1(140/140) 0.5(9/18)

ER

RF 0.95 0.98(53/54) 0.93(97/104)

RF-KNN 0.95 0.96(52/54) 0.94(98/104) ESR1(10) GATA3(8) TFF1(4) FOXA1(3)

SCUBE2(3) PGR(2) LYN(1) VAV3(1)

PAM 0.95 0.94(51/54) 0.95(99/104)

PR

RF 0.91 0.92(49/53) 0.90(95/105)

RF-KNN 0.91 0.91(48/53) 0.91(96/105) ESR1(10) GATA3(7) PGR(7) FOXA1(6) SCUBE2(6)

TFF1(6) IGF1R(3) BCL2(2) BUB1(2)

XBP1(2) CTSL2(1) ERBB3(1) IRS1(1)

PAM 0.91 0.91(48/53) 0.90(95/105)

Fig. 3 Multivariate variable importance measures (VIM) by RF for

HER2, ER, and PR prediction. Y axes are –log10 based P values of

the two group t-test between central IHC positive and negative

groups, and (Bonferroni) adjusted P value 0.05 is marked with gray

lines. Genes with two sample t-test adjusted P values B0.05 and fold

change C2 were marked with gene symbols

320 Breast Cancer Res Treat (2014) 148:315–325
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Table 4 HER2, ER and PR status by local IHC and RFP for test set 1, an additional set of USO 01062 study samples

HER2 Local IHC ER Local IHC PR Local IHC

- ? - ? - ?

RFP RFP RFP

- 538 42 NPV 93 % - 249 20 NPV 93 % - 246 21 NPV 92 %

? 7 41 PPV 85 % ? 28 337 PPV 92 % ? 94 273 PPV 74 %

Spec 99 % Sens 49 % Acc 92 % Spec 90 % Sens 94 % Acc 92 % Spec 72 % Sens 93 % Acc 82 %

Spec specificity, Sens sensitivity, PPV positive predictive value, NPV negative predictive value, Acc accuracy
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even utilizing similar methodologies, may perhaps explain

the lack of concordance between HER2 IHC local

determination and our HER2 RFP algorithm in the ana-

lysis of the larger test set. Similarly, a high degree of

discordance between HER2 status between local and

central/reference sites has been shown in independent

studies, ranging from 13 to 26.6 % [13, 14]. Of note, we

found significant survival differences in the HER2 posi-

tive group between those patients classified by IHC or

RFP, an observation that was not observed in the HR? or

TNBC groups. This poorer disease-free survival observed

with the HER2 RFP is more consistent with the literature

suggesting a negative prognostic impact of HER2 status

prior to the approval of trastuzumab-containing regimens,

with only approximately 30 % of the HER2 positive

patients receiving trastuzumab-based therapies following

completion of the experimental adjuvant therapy [6]. A

similar gene expression analysis was carried out by Prat

et al. in HER2 IHC positive breast cancer patients treated

with a trastuzumab-containing regimen, in which the

HER2-enriched group, as defined by PAM50, derived a

significant survival benefit compared to the group defined

as non-HER2-enriched [26].

Molecular subtyping using PAM50 is not an effective

surrogate for IHC status since it identifies distinct sub-

types (luminal A, luminal B, basal-like, and HER2-enri-

ched) with different prognostic implications [9]. In a

similar study assessing ESR1, PGR, and ERBB2 gene

expression using quantitative RT-PCR, Du, and col-

leagues determined that single gene expression had a

concordance rate of 87 % within the luminal subtype,

75 % within the HER2? subtype, and 48 % within the

triple negative subtype [17]. Of the 52 % discordant cases

in the triple negative subtype, 12 out of the 17 (71 %)

cases were determined to be luminal by RNA expression.

The authors demonstrate the prognostic differences

between the three IHC subtypes, with the luminal sub-

group being the more favorable group followed by the

triple negative and then HER2? group. Interestingly, by

RT-PCR subtyping, the HER2? and triple negative sub-

groups had reversed prognostic trend, although, this may

have been driven by the small HER2? patient population

in this sample set, comprising of only 9 cases. In a second

study, Haibe-Kains et al., suggested that the simplest

three gene classification model, SCMGENE, which com-

prised ESR1, PGR, and AURKA was largely concordant

with other more complex gene expression models in terms

of subtype prediction [27]. In addition, the authors show

that their SCMGENE model demonstrated similar prog-

nostic implications when compared to more established

models such as PAM50, MAMMAPRINT, and ONCO-

TYPE gene expression signatures, and may be adequate

for clinical management of patients. Comparing RT-PCR

methods to IHC, Bastien et al. demonstrated an AUC,

sensitivity, and specificity for ER to be 0.90, 0.96, and

0.74, respectively; PR to be 0.90, 0.84, and 0.85,

respectively; and HER2 to be 0.95, 0.94, and 0.85,

respectively [11]. When the authors compared the prog-

nostic differences between the different methodologies,

the ER?/ESR1? and ER-/ESR1? subgroups had similar

clinical outcomes, and performed better than patients who

were ER-/ESR1- or ER?/ESR1-, suggesting that RT-

PCR assignment of ESR1 status was more prognostic and

accurate than IHC for ER [11]. This observation may be

driven by the ability of RT-PCR technologies to accu-

rately detect low percentage ER? cells within the tumor

population. As such, tumors that have ER IHC expres-

sion 1–9 % have a worse prognosis compared to tumors

that have an ER IHC expression of 10 % or greater [28],

which may, in part, explain the results of Bastien and

colleagues. Interestingly, we observed notable differences

in the RFP for PR predicted genes based on the Allred

cutoff. Using an Allred cutoff of 3, ESR1 was the gene

that best predicted PR IHC status. However, with the

cutoff extended to 4, PGR became the most predictive

gene. These results suggest that extending the Allred

score to 4 for a positive PR result may more accurately

predict PR status, an observation that warrants further

clinical investigation.

In conclusion, central confirmation of breast cancer

receptor status is critical for the interpretation of clinical

data from experimental trials. Our study suggests that

local and central testing show substantial overall con-

cordance, but that a PCR-based classifier offers a rea-

sonable strategy to identify the set of samples that may

have been erroneously classified and subject them to

further testing. Such an approach has added valued in

that it conserves 3–5 slides that would be used for repeat

IHC testing, and also yields expression data on up to 90

breast cancer-related genes. As tissue can be limited in

patients who have gone through multiple lines of therapy

in the metastatic setting, multiplexed assays provide an

attractive method of obtaining valuable biomarker data

for association with clinical outcomes. We proposed two

RF-based approaches, RF and RF-KNN. While both

approaches performed similarly, the former classifier

requires the usage of the same 96 genes for test samples,

and the latter, through implementing a preliminary fea-

ture selection step, relies on a smaller set of genes for

prediction, providing flexibility in panel development. In

the current report, we demonstrate the utility of PCR-

based multiplexed assays to accurately confirm ER, PR,

and HER2 status and obviate the need for central IHC

confirmation of subtype, while obtaining additional bio-

marker data on a diverse set of breast cancer-related

genes.
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Materials and methods

Tissue collections

Formalin-fixed paraffin-embedded (FFPE) tumor samples

were obtained from (n = 158 ? 630) breast cancer

patients as part of a completed phase III study (‘‘A Ran-

domized, Open-Label, Multicenter, Phase Ill Trial Com-

paring Regimens of Adriamycin plus Cytoxan Followed by

Either Taxotere or Taxotere plus Xeloda as Adjuvant

Therapy for Female Patients with High-Risk Breast Can-

cer’’) (http://clinicaltrials.gov/show/NCT00089479). Tis-

sue samples were collected and analyzed following

approval by the US Oncology, Inc. Institutional Review

Board and appropriate confirmation of written informed

consent. ER, PR, and HER2 status was determined by local

testing.

Breast cancer tumor blocks were procured for 173

breast cancer tumors. Tissue samples were obtained from

Cureline, Inc (South San Francisco, CA) following

approval of the Ethics Committee of Saint Petersburg City

Clinical Oncology Hospital and appropriate confirmation

of written informed consent. Tissue samples were also

obtained from The MT Group (Van Nuys, CA) following

IRB approval (http://www.sterlingirb.com). The IRB

waived the need for written informed consent per FDA

guidelines, as this was a retrospective study with anony-

mized patient data. ER, PR, and HER2 status was deter-

mined by local testing.

Gene expression

Hematoxylin–eosin sections were prepared for all samples

and were reviewed by a pathologist to confirm diagnosis

and assess tumor content. RNA extraction and gene

expression analysis were performed as previously descri-

bed [16]. Briefly, FFPE sections were macrodissected to

enrich for neoplastic tissue followed by RNA extraction

using the High Pure FFPE RNA Micro Kit (Roche

Applied Sciences, Indianapolis, IN). RNA was then sub-

jected to a one-step cDNA synthesis/preamplification

reaction using the Invitrogen Platinum Taq/Reverse

Transcriptase enzyme mix and pooled TaqMan� Gene

Expression Assays (Life Technologies, Carlsbad, CA).

Quantitative PCR (qPCR) was then conducted on Flui-

digm 96.96 Dynamic Arrays using the BioMarkTM HD

system (Fluidigm Corporation, South San Francisco, CA).

Cycle threshold (Ct) values were normalized and con-

verted to relative expression values (negative delta Ct) by

subtracting the median gene expression estimated using

all 96 genes on the array.

Immunohistochemical staining

A total of 158 samples from the phase III trial (24 HER2? ,

43 ER-/PR-/HER2-, and 91 ER and/or PR?/HER2-

based on local testing) were chosen at random and centrally

confirmed for ER, PR, and HER2. Antibodies for ER

(SP1), PR (1E2), and HER2 (4B5) were obtained from

Ventana Medical Systems, Inc., (Tucson, AZ). IHC was

performed using the Discovery XT (ER, PR) or Bench-

Mark XT (HER2) systems (Ventana). All samples were

scored by a single pathologist (E.F.). Standard guidelines

for HER2 protein overexpression assessment were used;

samples were scored as 0, 1, 2, or 3, where a score of 0 and

1 are considered negative for HER2 protein overexpres-

sion, 2 is weakly positive and equivocal, and 3 is strongly

positive. For ER and PR assessment, the Allred score was

calculated by adding the proportion score (PS) with the

intensity score (IS). The PS scores are as follows: 0 = no

staining, 1 C 0–1 %, 2 C 1–10 %, 3 C 10–33 %,

4 C 33–67 %, 5 C 67–100 % cells stained. IS scores are

as follows: 0 = no intensity, 1 = weak, 2 = intermediate,

and 3 = strong. Interpretation is positive or negative based

on total score (PS ? IS) where total score of 0, 1 or 2 is

negative and a score of 3 or greater is positive.

Target gene prediction algorithm

A two-component Gaussian mixture model was applied to

the empirical ERBB2, ESR1, and PGR expression data, and

model fitting made recourse to the R library mclust [29].

Posterior conditional probabilities of the component mem-

bership for each sample were computed using the fitted

parameters, and a threshold of C0.5 was used to classify a

sample as having positive expression of the receptor.

Multivariate prediction algorithm

We applied and contrasted the following multivariate

classification algorithms to predict HER2, ER, and PR IHC

positivity separately. Both PAM and RF are often used for

high-dimensional data settings where the number of vari-

ables exceeds the number of observations.

PAM

The nearest shrunken centroid method (also called PAM

[21]) was applied to normalized gene expression of 158

samples from the USO 01062 trial with central IHC status.

Prediction performance was valuated using 10-fold cross

validation. The application of the PAM algorithm utilized

the R library pamr.
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Random Forests

The RF classification was performed using the random-

Forest library in R. Forests were created with 10,000 trees

and default settings. Advantages of the RF method include

its ability to handle a large number of variables, provide

variable importance measures (VIM), and produce accurate

and unbiased estimates of prediction performance without

the utilization of a separate test set. The VIM from RF we

used is the mean decrease in accuracy generated by this

predictor whenever it was selected for splitting, compared

to when the values for the predictor was permuted.

Random Forests ? KNN

The hybrid approach combining RF and KNN (K-nearest

neighbors, K = 3) utilizes RF for variable selection and

KNN for formalizing prediction based on RF-selected

variables. This procedure was carried out using 10-fold

cross validation. Briefly, (i) the whole dataset was ran-

domly subdivided into 10 subsets, 9 of which were used to

construct an RF predictor. (ii) Variables were ordered by

VIM and the N variables that were at least 1/10 of the

highest VIM were selected. (iii) To select the smallest

possible set of genes for minimal misclassification error

rate, out-of-bag error rates using the N RF classifiers

sequentially fitted using the top M (M = 1, …,N) variables

were obtained and contrasted. The set of variables

(assuming size is P (1 B P B N)) variables that had lowest

out-of-bag error rate were selected. (iv) A classifier was

then built using KNN (K = 3) and the P variables, and its

unbiased prediction error was obtained by predicting the

left-out subset from the whole dataset. (v) This process was

repeated for each left-out fold. The frequency of genes

picked within each fold was recorded.

ERBB2 copy number estimation by real-time

quantitative PCR

FFPE tumor DNA was prepared by QIAamp DNA FFPE

Tissue Kit from macrodissected tumor sections as previous

described [16]. Genomic FFPE DNA (200 ng) was then

subjected to 17 cycles of preamplification using pooled

gene specific primers at 50 nM each and TaqMan� Pre-

amplification Master Mix (Life Technologies) according to

the manufacture protocol. The preamplified samples were

diluted 5 fold and qPCR was performed using Fluidigm

96.96 Dynamic Arrays on the BioMarkTM system accord-

ing to the manufacture instruction. In brief, sample mix

contains DNA, TaqMan� Gene Expression Master Mix

(Life Technologies), DNA binding sample loading reagent

(Fluidigm) and EvaGreen dye (Biotium, Hayward, CA).

Assay mix contains gene specific primer pairs and sample

loading reagent (Fluidigm). The Ct determination and melt

curve analyses were carried out by Fluidigm Gene Analysis

Software. Relative gene copy numbers of ERBB2 were

calculated by the Delta Delta Ct method as described

previously [30]. Reference genes used for Delta Ct calcu-

lation were RPPH1, GPG15 and ZNF80 and median of

Delta Ct from each gene was used as a calibrator for Delta

Delta Ct calculation. Primers used were: ERBB2_1F 50-GC

AGTTACCAGTGCCAATATCC-30 and ERBB2_1R 50-AT

CAAAGCTCTCCGGCAGAA-30; ERBB2-_2F 50-CTG

GTCACCTACAACACAGACA-30 and ERBB2_2R 50-AG

CTGGCGCCGAATGTATA-30; RPPH1_1F 50-GCCAGCG

AAGTGAGTTCAA-30 and RPPH1_1R 50-GCGGAGGAG

AGTAGTCTGAA-30; RPPH1_2F 50-GCCAGC GAAGTG

AGTTCAA-30 and RPPH1_2R 50-GCGGAGGAGAGTAG

TCTGAA-30; GPR15_F 50-CCCTTTGTTGACAT TGTG

ACCTG-30 and GPR15_R 50-TGGTAATGGGCACACAG

CTTCCTT-30; ZNF80_F 50-CAGCTCATCCTCACTT GG

CATTGA-30 and ZNF80_R 50-GGCCTTCCCACATATC

TCATAGAGT-30.
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