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Abstract Cylindromatosis (CYLD) is a tumor suppressor

gene that is mutated in familial cylindromatosis, a rare

autosomal dominant disorder associated with numerous

benign skin adnexal tumors. CYLD is now known to reg-

ulate various signaling pathways, including transforming

growth factor-b signaling, Wnt/b-catenin signaling, and

NF-jB signaling by deubiquitinating upstream regulatory

factors. Downregulation of CYLD has been reported in

several malignancies; however, the clinical significance of

CYLD expression in many malignancies, including breast

cancer, remains to be elucidated. This study investigated

the clinical significance of CYLD in breast cancer and its

roles in tumor progression. We evaluated CYLD expres-

sion in matched normal breast tissue samples and tumor

breast tissue samples from 26 patients with breast cancer

and in a series of breast cancer cell lines. In addition, by

means of immunohistochemistry, we investigated CYLD

protein expression and its clinical significance in 244 breast

cancer cases. We also analyzed the effects of CYLD

repression or overexpression on breast cancer cell viability,

cell migration, and NF-jB activity with or without receptor

activator of NF-jB ligand (RANKL) stimulation. Breast

cancer tissues demonstrated significantly reduced CYLD

mRNA expression compared with normal breast tissues.

Downregulation of CYLD promoted cell survival and

migratory activities through NF-jB activation, whereas

CYLD overexpression inhibited those activities in MDA-

MB-231 cells. As an important finding, CYLD overex-

pression also inhibited RANKL-induced NF-jB activation.

Our immunohistochemical analysis revealed that reduced

CYLD protein expression was significantly correlated with

estrogen receptor negativity, high Ki-67 index, high

nuclear grade, decreased disease-free survival, and reduced

breast cancer-specific survival in primary breast cancer.

Moreover, reduced CYLD expression was an independent

factor for poor prognosis in breast cancer. CYLD down-

regulation may promote breast cancer metastasis via NF-

jB activation, including RANKL signaling.
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Abbreviations

CYLD Cylindromatosis

RANKL NF-jB ligand

HER2 Human epidermal growth factor receptor 2

ER Estrogen receptor

PgR Progesterone receptor

HMEC Human mammary epithelial cells

Introduction

The cylindromatosis gene (CYLD) was initially identified

as a mutated gene in familial cylindromatosis, a rare

autosomal dominant disorder associated with numerous

benign skin adnexal tumors [1]. CYLD encodes a protein

that possesses an ubiquitin C-terminal hydrolase domain,

which allows the protein to function as a deubiquitinating

enzyme [2]. CYLD is now known to regulate various sig-

naling pathways, including transforming growth factor-b
(TGF-b) signaling, Wnt/b-catenin signaling, and NF-jB

signaling [3–5]. In the NF-jB signaling cascade, CYLD

can negatively regulate various steps by deubiquitinating

TNF receptor-associated factors 2 and 6, NF-jB essential

modulator, receptor interacting protein 1, and TGF-b-

activated kinase 1, which allows it to have important roles

in inflammatory and immune reactions [2, 6–8]. Down-

regulation or mutation of CYLD has been reported in sev-

eral malignancies [1, 9, 10], and Cyld knockout mice were

shown to be highly susceptible to chemically induced skin

tumors [11]. However, the clinical significance of CYLD

expression in many malignancies, including breast cancer,

remains to be elucidated.

Breast cancer, one of the most common human cancers,

is a heterogeneous disease characterized by various

molecular subtypes, which have distinct molecular features

and clinical behaviors [12, 13]. Although some of these

molecular features have been identified as biomarkers and

drug targets, novel prognostic biomarkers and clarification

of molecular mechanisms underlying the development and

progression of breast cancer are still needed.

Constitutive activation of NF-jB is often observed in

breast cancer tissues across the current major breast cancer

subtypes (luminal, HER2, and triple negative) and cell lines

with the more aggressive phenotypes [14–17]. Accumulat-

ing evidence has shown that activation of NF-jB promoted

the development of breast cancer and resistance to conven-

tional therapies such as endocrine therapy, cytotoxic che-

motherapy, and radiotherapy [18–22]. Interestingly, recent

studies showed that NF-jB signaling contributed to expan-

sion of breast tumor stem cells and mammary tumorigenesis

through cell-autonomous and non-cell-autonomous mecha-

nisms [23–28]. In addition, receptor activator of NF-jB

ligand (RANKL) and its receptor RANK, which activate the

NF-jB pathway, have received much attention as key mol-

ecules in the promotion of breast cancer development and

progression. Today, a drug targeting RANKL, denosumab, is

registered to prevent skeletal-related events in advanced

breast cancer patients with bone metastases in breast cancer

treatment. However, no biomarker exists to identify tumors

that are sensitive to the drug or to detect NF-jB activation,

and the precise mechanisms underlying constitutive activa-

tion of NF-jB are not fully understood.

In this study, we investigated the clinical significance of

CYLD expression in breast cancer and the roles of CYLD

in breast cancer progression as related to NF-jB activation.

Materials and methods

Patients and tissues

Included in this study were paraffin-embedded breast

cancer specimens from 244 women with histologically

confirmed breast cancer (consecutive cases) who had

received treatment at Kumamoto University Hospital

between 2001 and 2008. Breast cancer oncologists chose

the systemic treatments used, such as hormonal therapy,

cytotoxic chemotherapy, and/or anti-HER2 therapy,

according to the clinical evidence on tumor biology and

clinical staging that was available at that time [29]. Our

mRNA dataset of clinical breast cancer cases included 26

matched cases whose tumor tissues and adjacent normal

breast tissues could both be evaluated. The ethics com-

mittee of Kumamoto University Graduate School of

Medical Sciences approved the study protocol. Informed

consent was obtained from all patients. In patients with

primary invasive breast cancer (stages I to III, n = 230),

89.1 % of patients received any systemic adjuvant treat-

ment (endocrine therapy 72.6 %; chemotherapy 37.4 %).

Among them, patients with luminal/HER2-negative breast

cancer (n = 162) received endocrine therapy (93.8 %) and/

or chemotherapy (25.9 %). Regarding triple-negative cases

(n = 32), 62.5 % of patients received chemotherapy, and

36.1 % of 36 patients with HER2-positive breast cancer

received adjuvant trastuzumab.

Immunohistochemistry

Expression of CYLD in breast cancer samples was ana-

lyzed by using immunohistochemical methods with anti-

CYLD antibody produced in rabbits (Sigma-Aldrich, St.
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Louis, MO). Expression of estrogen receptor (ER) a (SP1;

Ventana Japan, Tokyo, Japan), progesterone receptor (PgR;

1E2; Ventana Japan), HER2 (Dako Japan, Tokyo, Japan),

and Ki-67 (MIB-1; Dako Japan) was also examined

according to the manufacturers’ recommended protocols.

Experienced pathologists at our institution determined the

nuclear grade according to nuclear pleomorphism and

frequency of cell mitosis. The CYLD status was considered

positive when cytoplasmic staining was C10 %. ER or PgR

status was considered positive when nuclear staining was

C1 % [30]. HER2 positivity was indicated by immuno-

histochemical staining score of 3? (HercepTest, Dako) or

by fluorescent in situ hybridization with a threshold ratio of

more than 2.2 [31]. The Ki-67 index was scored according

to the percentage of cells with nuclear staining of all cancer

cells in the hot spots, at a 9400 high-power field, with at

least 500 tumor cells counted.

Cell culture

Human breast adenocarcinoma cell lines (MDA-MB-231,

MDA-MB-468, T47D, MCF7, ZR-75-30, MDA-MB-453,

SK-BR-3, and HCC1569) and human mammary epithelial

cells (HMEC) were purchased from American Type Cul-

ture Collection (Manassas, VA) and were passaged in our

laboratory for less than 6 months after receipt or resusci-

tation. Cells were grown in Dulbecco’s modified Eagle

medium (Gibco, Life Technologies Corporation, Carlsbad,

CA) (MDA-MB-231and MDA-MB-453) or RPMI 1640

(MDA-MB-468, T47D, MCF7, ZR-75-30 and HCC1569)

or McCoy’s 5a medium (SK-BR-3) supplemented with

10 % FBS (Gibco) under adherent conditions in 5 % CO2

at 37 �C. The details of these cell lines’ subtypes are as

follows: basal-like subtype, MDA-MB-231 and MDA-MB-

468; luminal subtype, MCF7 and T47D; luminal-HER2

subtype, ZR-75-30; and HER2 subtype, MDA-MB-453,

SK-BR-3, and HCC1569.

RNA extraction and real-time quantitative reverse

transcription-polymerase chain reaction (qRT-PCR)

Total RNA was isolated from cultured cells by using the

TRIzol Reagent (Life Technologies Corporation) and from

tissue specimens by means of the RNeasy Mini Kit (Qia-

gen, Germantown, MD) according to the manufacturers’

instructions. Total RNA was quantified via the NanoDrop

ND-1000 spectrophotometer (NanoDrop Technologies,

Wilmington, DE) and was reverse transcribed to cDNA by

using PrimeScript RT Master Mix (Takara Bio Inc., Shiga,

Japan) according to the manufacturer’s protocol. All qRT-

PCR reactions were performed with 2 lM cDNA and each

primer at 0.2 lM via the LightCycler System (Roche

Diagnostics, Tokyo, Japan) with SYBR Premix DimerE-

raser (Takara Bio Inc.).

Transfection with siRNA

Cell lines were transfected with CYLD-specific siRNA by

using Lipofectamine 2000 (Life Technologies Corporation)

according to the manufacturer’s protocol. Each analysis,

such as total RNA extraction, protein extraction, and

reporter assay, was performed after more than 48 h of

incubation. Silencer Negative Control siRNA (Applied

Biosystems, Life Technologies Corporation) was used as

the control. CYLD-specific siRNA was sense 50-GAU-

UGUUACUUCUAUCAAAtt-30 and antisense 50-UUU-

GAUAGAAGUAACAAUCtt-30 (Applied Biosystems, Life

Technologies Corporation).

Protein extraction and immunoblotting

Cells were washed once in ice-cold PBS (Gibco) and were

then lysed by adding CelLytic M Cell Lysis Reagent

(Sigma-Aldrich) containing a fresh Protease Inhibitor

Cocktail (Sigma-Aldrich), 50 mM NAF, and 1 mM

Na3VO4. After incubation for 15 min on a shaker on ice,

cell lysate was removed from the dishes and was centri-

fuged at 15,0009g for 10 min to remove insoluble mate-

rial. The protein concentration was determined by using the

BCA Protein Assay Kit (Thermo Fisher Scientific Inc.,

Rockford, IL) according to manufacturer’s instructions.

Equal amounts of protein were fractionated via SDS-PAGE

and fractions were transferred to nitrocellulose membranes

(Bio-Rad Laboratories, Hercules, CA). Primary antibodies

used for immunoblotting were as follows: rabbit anti-

CYLD antibody (Sigma-Aldrich), mouse anti-maspin

antibody (Santa Cruz Biotechnology Inc., TX), and mouse

anti-b-actin antibody (Sigma-Aldrich). Blots were visual-

ized by using ECL Prime Western Blotting Detection

Reagent (GE Healthcare Japan, Tokyo, Japan) according to

the manufacturer’s instructions.

Reporter assay

Cell lines transfected with siRNA (negative control or

CYLD) or plasmid (pcDNA or wild-type CYLD) were

sequentially cotransfected with NF-jB reporter plasmid

(pGL4b vector; Promega, Madison, WI) and control plas-

mid (phRG-TK vector; Promega). After a 24-h incubation

in serum-free medium, cells were treated with recombinant

human soluble RANKL (Peprotech, Rocky Hill, NJ) for

4 h or were untreated. Luciferase activities were deter-

mined with the Dual-Luciferase Reporter Assay System

(Promega).
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Cell viability, apoptosis, and migration assays

Cell viability was evaluated by means of the MTS assay

using the CellTiter 96 AQueous One Solution Cell Prolif-

eration Assay (Promega) or Luna automated cell counter

(Logos Biosystems, Annandale, VA). To evaluate apopto-

sis, we used the Annexin V-FITC Apoptosis Detection Kit

(BD Biosciences, Tokyo, Japan), according to the manu-

facturer’s protocol, and we performed the analysis with the

FACSCalibur Flow Cytometer (BD Biosciences). We used

the wound-healing assay to evaluate cell migration and

quantified the results with ImageJ software (National

Institutes of Health, Bethesda, MD).

Statistical analysis

We analyzed the data, presented as mean ± SD, by using

Student’s t test or ANOVA. The means and SD were gener-

ated from triplicates in one experiment and then we confirmed

the same results from two or three independent experiments.

We utilized the nonparametric Wilcoxon, Fisher’s exact, and

v2 tests for statistical analysis of the associations between

CYLD status and clinicopathological factors. Disease-free

survival (DFS) and breast cancer-specific survival (BCSS)

curves were calculated according to the Kaplan–Meier

method and were verified by means of the log-rank test.

Univariate and multivariate analyses of prognostic values

were performed with the Cox proportional hazards model.

Statistical significance was defined as two-sided P \ 0.05.

JMP software version 8.0 for Windows (SAS Institute Japan,

Tokyo, Japan) was used for all statistical analyses.

Results

CYLD expression in breast cancer

We first analyzed CYLD mRNA expression in matched

tumor tissues and adjacent normal breast tissues from 26

patients with breast cancer. Breast cancer lesions had sig-

nificantly lower expression of CYLD mRNA than did

normal lesions [cancer: median 1.25 (25th–75th percentile

0.17–3.05); normal: median 9.60 (25th–75th percentile

7.08–11.82), paired Student’s t test, P \ 0.0001] (Fig. 1a).

Our immunohistochemical analysis of breast cancer tissues

showed that CYLD expression occurred predominantly in

Fig. 1 CYLD expression in breast cancer. a CYLD mRNA expres-

sion in breast cancer tissue and the surrounding normal breast tissue

of the same patients (n = 26). b Representative tissue section of

breast cancer with CYLD downregulation. c CYLD mRNA

expression in breast cancer cell lines and non-malignant HMEC.

CYLD mRNA expression level was measured by means of qRT-PCR

*P \ 0.05 compared with HMEC in Student’s t test. Values are

mean ± SD of triplicate samples
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normal appearing mammary epithelial cells, and reduced

CYLD expression was found in cancer cells, as seen in a

representative tissue section (Fig. 1b). All breast cancer

cell lines also demonstrated significantly reduced CYLD

mRNA expression, independent of molecular subtypes,

compared with HMEC (Fig. 1c). These data indicate that

CYLD mRNA expression was repressed in breast cancer.

CYLD repression increased viability and migration

of breast cancer cells

To determine the involvement of CYLD repression in breast

cancer progression, we used siRNA to study the effects of

CYLD knockdown on cell viability and motility. CYLD

mRNA level was reduced by approximately 90 % 48 h after

transfection of CYLD-specific siRNA in MDA-MB-231

cells (Fig. 2a). With MDA-MB-231, we observed increased

cell viability (Fig. 2b), with decreased apoptosis in serum-

free conditions (Fig. 2c), after transfection with CYLD-

specific siRNA. No significant change in the cell cycle

occurred (Fig. 2d). In addition, CYLD knockdown in MDA-

MB-231 cells stimulated migration (Fig. 2e). The same

results were also obtained in MDA-MB-468 cells (data not

shown). In contrast, overexpression of wild-type CYLD

resulted in decreased cell viability, increased apoptosis in

serum-free condition and reduced migration (Fig. 2f–h).

Furthermore, we observed enhanced expression of various

genes encoding TNFa, interleukin-8, and granulocyte–

macrophage colony-stimulating factor, which are regulated

by NF-jB and associated with breast cancer progression,

after CYLD knockdown (Fig. 2i–K). We also found that

downregulation of CYLD led to reduced expression of

Fig. 2 Effects of CYLD expression on cell survival and migration in

MDA-MB-231 cells. a Knockdown efficiency of CYLD mRNA by

siRNA in MDA-MB-231 cells. b Cell viability in serum-free medium

was evaluated by MTS assay 72 h after transfection with siRNA.

c Anti-apoptotic property in serum-free condition was evaluated by

Annexin V assay 96 h after transfection with siRNA. d Cell cycle

distribution in serum-starved condition 72 h after siRNA transfection

was analyzed by flow cytometry following staining with propidium

iodide. e Cells were wounded at 72 h after siRNA transfection. After

incubation for 48 h in serum-free medium, cell migration was

analyzed. Effects of CYLD overexpression on cell viability (f) and

apoptosis (g) were assessed by MTS assay and Annexin V assay,

respectively, 96 h after transfection with wild-type CYLD plasmid.

h Cells were wounded at 96 h after transfection with wild-type CYLD

plasmid. After incubation for 24 h in serum-free medium, cell

migration was measured. i, j, and k Expression level of TNFa (i), IL-8

(j), or GM-CSF (k) mRNA was measured by means of qRT-PCR 72 h

after siRNA transfection. *P \ 0.05 in Student’s t test. Values are

mean ± SD of triplicate samples. l Maspin protein expression was

evaluated via western blotting 72 h after siRNA transfection
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maspin, which was reportedly a crucial suppressor of breast

cancer metastasis (Fig. 2l) [32, 33].

Negative regulation by CYLD of NF-jB activity

including RANKL-RANK signaling in breast cancer

To determine whether CYLD expression was associated

with NF-jB activity in breast cancer, we utilized the reporter

assay. CYLD knockdown in MDA-MB-231, MDA-MB-

468, and T47D cells stimulated NF-jB activity (Fig. 3a and

Supplementary Fig. S1), whereas overexpression of wild-

type CYLD suppressed it (Fig. 3b). In line with the above

finding, the increased cell viability and migratory activity

induced by CYLD knockdown were abolished by adding

MG132 as an inhibitor of NF-jB signaling (Fig. 3c, d).

Recent studies also showed that RANKL-NF-jB signal-

ing had crucial roles in the development and progression of

breast cancer other than bone events [34–38]. Thus, we next

investigated whether CYLD was involved in RANKL-

induced NF-jB activation in MDA-MB-231 cells. We found

that RANKL enhanced not only NF-jB activity (Fig. 3e) but

also migration of both control and CYLD knockdown cells

(Fig. 3f). An important finding was that RANKL-induced

NF-jB activation was inhibited by overexpression of wild-

Fig. 3 CYLD as a negative regulator of NF-jB signaling including

RANKL in MDA-MB-231 cells. a and b NF-jB activity was

evaluated by luciferase reporter assay 96 h after transfection with

siRNA or vectors in serum-free condition. *P \ 0.05 in Student’s

t test. c NF-jB inhibitor, MG132 (0.2 lM), was added to the cells at

48 h after siRNA transfection, followed by incubation for up to 48 h

in serum-free condition. Cell viability was evaluated by MTS assay.

d Cells were wounded at 72 h after siRNA transfection. After

incubation with 1 lM MG132 for 24 h, cell migration was analyzed.

*P \ 0.05 compared with control siRNA treated with DMSO, and

**P \ 0.05 compared with CYLD siRNA treated with DMSO in

Student’s t test. e Recombinant RANKL (500 ng/ml) was added to the

cells 96 h after siRNA transfection. After incubation for 4 h in serum-

free condition, NF-jB activity was evaluated by luciferase reporter

assay. f Cells were wounded at 96 h after siRNA transfection. After

incubation with recombinant RANKL (500 ng/ml) for 24 h, cell

migration was analyzed. *P \ 0.05 compared with control siRNA

and mock treatment, and **P \ 0.05 compared with CYLD siRNA

and mock treatment in Student’s t test. g Recombinant RANKL

(500 ng/ml) was added to the cells 96 h after transfection with wild-

type CYLD plasmid. After incubation for 4 h in serum-free condition,

NF-jB activity was evaluated by luciferase reporter assay. *P \ 0.05

compared with all the other conditions in Student’s t test
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type CYLD (Fig. 3g). These data indicate that CYLD was a

negative regulator of NF-jB activation, including RANKL

signaling, in breast cancer cells.

CYLD was an independent prognostic factor in primary

breast cancer

We also investigated correlations between CYLD protein

expression and clinicopathological factors and prognosis in

breast cancer. Our immunohistochemical analysis (n = 244)

indicated CYLD-negative results in 73 cases (29.9 %) and

CYLD-positive results in 171 cases (70.1 %) (Fig. 4a, b).

CYLD-negative status occurred more frequently in ER-

negative (Fisher’s exact test, P = 0.024), PgR-negative

(Fisher’s exact test, P = 0.008), or triple-negative (v2 test,

P = 0.032) breast cancer tissues [12] than did CYLD-posi-

tive status (Table 1). CYLD-negative status also correlated

with a high Ki-67 index (v2 test, P = 0.009) and a high

nuclear grade (v2 test, P \ 0.001).

Kaplan–Meier survival analysis (n = 230) revealed that,

with a median follow-up of 65.7 months, reduced CYLD

expression correlated strongly with poor DFS (log-rank

test, P = 0.0005, Fig. 4c) and poor BCSS (log-rank test,

P = 0.0009, Fig. 4d) in patients with primary invasive

breast cancer (stages I–III). The 5-year DFS and BCSS

rates were 74.9 and 82.6 % in patients with CYLD-nega-

tive tumors compared with 91.0 and 95.3 % in patients

with CYLD-positive tumors, respectively. Similar results

were obtained for each breast cancer subtype (luminal A,

luminal B, and triple negative) (Supplementary Fig. S2),

except HER2 subtype [12]. With regard to CYLD expres-

sion and DFS, we obtained the same results when we

evaluated CYLD mRNA expression (data not shown).

Furthermore, our multivariate analysis using the Cox pro-

portional hazards model revealed that CYLD expression

was an independent prognostic factor for DFS (CYLD-

negative status, hazard ratio HR 2.43; 95 % confidence

interval CI 1.16–5.26, P = 0.019) (Table 2). Multivariate

analysis also showed a tendency for a strong relationship

between CYLD expression and BCSS (Cox proportional

hazards model, P = 0.057, Supplementary Table S1).

Discussion

In this study, we demonstrated for the first time that

reduced CYLD expression was an independent factor for

poor prognosis in breast cancer. Loss of CYLD stimulated

Fig. 4 Relationship between CYLD expression and prognosis in

primary invasive breast cancer. CYLD protein expression in primary

invasive breast cancer tissues (n = 244) was analyzed by immuno-

histochemistry. a and b Representative examples of CYLD-positive

breast cancer tissue (a) and CYLD-negative tissue (b). Note that

normal mammary epithelial cells or breast cancer cells mainly

expressed CYLD. c and d Kaplan–Meier plots for disease-free

survival (DFS) (c) and breast cancer-specific survival (BCSS)

(d) according to CYLD status (negative, N = 70; positive,

N = 160) were constructed in invasive primary breast cancer cases

(n = 230) except in situ and metastatic cases. Statistical significances

were evaluated using log-rank test
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breast cancer cell viability and migration by means of NF-

jB activation. In addition, CYLD negatively regulated

RANKL-induced NF-jB activation and migration. Our

findings thus suggest that CYLD downregulation promotes

breast cancer metastasis via activation of the NF-jB

pathway including RANKL signaling.

Despite recent data showing that CYLD regulated

diverse signaling pathways including the NF-jB pathway,

the clinical significance of CYLD expression in malig-

nancies has remained largely unknown. This report is the

first to provide analyses of CYLD expression in breast

cancer, with reduced CYLD expression being associated

with poor prognosis. These findings are consistent with

data from a public database of gene expression arrays

(Supplementary Fig. S3A) [39]. Our data and the database

finding that CYLD had a more significant prognostic value

in patients who had had systemic treatment of any kind

compared with those who had not had such treatment

(Supplementary Fig. S3B and C). Further investigation

focused on association between CYLD and drug resistance

for chemotherapy or endocrine therapy may provide ben-

eficial information about breast cancer treatment.

Reduced CYLD expression was significantly associated

with more aggressive clinicopathological parameters such

as ER-negative status, high Ki-67 index, and high nuclear

grade, which indicates the tumor-suppressive effects of

CYLD. Our multivariate analysis demonstrated that

reduced CYLD expression was an independent prognostic

factor for DFS. These findings suggest that downregulation

of CYLD commonly has tumor-promoting effects in breast

cancer, in a manner similar to that of activated NF-jB [14–

17]. Previous clinical studies showed that NF-jB activation

in breast cancer occurred more frequently in ER-negative

cases or high-risk ER-positive cases, although the mecha-

nisms of the NF-jB activation remain unknown [15, 16].

Additional studies to evaluate NF-jB activity in breast

cancer tissues in relation to CYLD expression may clarify

the relevance of the NF-jB pathway in breast cancer pro-

gression. Although the mechanisms of CYLD downregu-

lation remain to be elucidated, our clinical findings suggest

that CYLD is a useful prognostic factor and a potent tumor

suppressor in breast cancer.

Our clinical results are supported by in vitro data

showing that downregulation of CYLD expression led to

acquisition of more aggressive features of breast cancer,

including increased survival and migration of breast cancer

cells. Consistent with previous studies [2, 7, 8, 11, 40], our

analysis indicated that CYLD negatively regulated NF-jB

activity. Our data thus suggest that CYLD downregulation

promotes metastasis and/or recurrence of breast cancer

through induction of NF-jB activation.

Various cytokines and growth factors activate NF-jB

[18]. Certain studies showed that RANKL-RANK signal-

ing had crucial roles in development and progression of

breast cancer. The RANKL-RANK system was originally

shown to be essential for osteoclastogenesis and physio-

logical bone remodeling and to promote bone metastasis in

Table 1 Correlations between CYLD expression and clinicopatho-

logical factors in breast cancer

Factor No. of patients (%) P

CYLD negative

(n = 73)

CYLD positive

(n = 171)

Age (y)

Median 58 60 0.813

Range 30–86 27–93

Menopausal status

Pre/peri 18 (25) 43 (25) 1.000

Post 55 (75) 128 (75)

Tumor size

\30 mm 54 (77) 136 (81) 0.595

C30 mm 16 (23) 32 (19)

Lymph node metastasis

Positive 30 (41) 52 (30) 0.139

Negative 43 (59) 119 (70)

ERa

Positive 47 (64) 135 (79) 0.024

Negative 26 (36) 36 (21)

PgRb

Positive 38 (52) 120 (70) 0.008

Negative 35 (48) 51 (30)

HER2

Positive 14 (19) 25 (15) 0.446

Negative 59 (81) 146 (85)

Ki-67 indexc

High 45 (62) 69 (40) 0.009

Low 27 (37) 99 (58)

Unknown 1 (1) 3 (2)

Nuclear grade

1 26 (36) 105 (61) \0.001

2 16 (22) 33 (19)

3 31 (42) 33 (19)

Subtyped

Luminal A 10 (14) 45 (26) 0.032

Luminal B 37 (51) 90 (53)

HER2 10 (14) 18 (11)

Triple negative 16 (22) 18 (11)

ER estrogen receptor, PgR progesterone receptor, HER2 human epi-

dermal growth factor receptor 2
a Positive C1 %
b Positive C1 %
c Cutoff value [31 % (median)
d With reference to St. Gallen International Expert Consensus 2011

[12]
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malignancies including breast cancer [41, 42]. Recently, in

advanced breast cancer, anti-RANKL antibody, denosu-

mab, is approved in prevention of skeletal-related events in

patients with bone metastases from solid tumors. However,

more recent studies revealed that RANKL signaling in

breast epithelial cells themselves promoted breast carci-

nogenesis and metastasis to sites other than bone in vivo

[35–37] and induced stemness and epithelial-mesenchymal

transition [34–38], which suggests broader than expected

effects of denosumab on breast cancer progression [43].

Biomarkers that predict a dependence on RANKL signal-

ing should hold promise for treatment, but the clinical

significance of RANKL-RANK expression in breast cancer

is still controversial [44, 45]. As an important result in our

study, CYLD inhibited RANKL-induced NF-jB activation

even in breast cancer cells, a finding that is consistent with

another result reported for osteoclasts [46]. In addition,

downregulation of CYLD enhanced RANKL-induced

migration of breast cancer cells. Additional studies to

clarify the exact roles of CYLD in breast cancer, especially

in RANKL-induced malignant phenotypes, may contribute

to our understanding of the molecular mechanisms under-

lying this disease, including dysregulated NF-jB activa-

tion, and the development of improved anti-RANKL

therapy.

In conclusion, reduced expression of CYLD was an

independent factor for poor prognosis in breast cancer.

CYLD downregulation may contribute to breast cancer

metastasis through activation of NF-jB including RANKL

signaling. Elucidation of CYLD functions in malignant

tumors is therefore warranted.
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