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Abstract Histological special types of breast cancer have

distinctive morphological features and account for up to

25 % of all invasive breast cancers. We sought to deter-

mine whether at the genomic level, histological special

types of breast cancer are distinct from grade- and estrogen

receptor (ER)-matched invasive carcinomas of no special

type (IC-NSTs), and to define genes whose expression

correlates with gene copy number in histological special

types of breast cancer. We characterized 59 breast cancers

of ten histological special types using array-based com-

parative genomic hybridization (aCGH). Hierarchical

clustering revealed that the patterns of gene copy number

aberrations segregated with ER-status and histological

grade, and that samples from each of the breast cancer

histological special types preferentially clustered together.

We confirmed the patterns of gene copy number aberra-

tions previously reported for lobular, micropapillary,

metaplastic, and mucinous carcinomas. On the other hand,

metaplastic and medullary carcinomas were found to have

genomic profiles similar to those of grade- and ER-mat-

ched IC-NSTs. The genomic aberrations observed in

invasive carcinomas with osteoclast-like stromal giant cells

support its classification as IC-NST variant. Integrative

aCGH and gene expression analysis led to the identification

of 145 transcripts that were significantly overexpressed

when amplified in histological special types of breast

cancer. Our results illustrate that together with histological

grade and ER-status, histological type is also associated

with the patterns and complexity of gene copy number

aberrations in breast cancer, with adenoid cystic and

mucinous carcinomas being examples of ER-negative and

ER-positive breast cancers with distinctive repertoires of

gene copy number aberrations.

Keywords Breast cancer � Histological special

types � Microarrays � Comparative genomic

hybridization � Gene expression

Introduction

Invasive breast cancer is a heterogeneous disease, encom-

passing multiple entities with distinct biological and clinical

features. The latest edition of the World Health Organization

(WHO) classification recognizes the existence of at least 21
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histological types of invasive breast carcinoma [1]. The

most common type is invasive carcinoma of no special type

(IC-NST; formerly known as invasive ductal carcinoma),

which accounts for 50–80 % of all breast cancers [2, 3]. The

remaining tumor types are referred to as histological

‘‘special types’’ of breast cancer, which collectively

account for approximately 25 % of invasive breast carci-

nomas [1–4].

Previous studies have provided evidence that some

histological special types of breast cancer, including

mucinous, neuroendocrine, and invasive lobular carcino-

mas (ILCs), may constitute entities distinct from histo-

logical grade- and/or estrogen receptor (ER)-matched IC-

NSTs at the transcriptomic level [5–8], whereas tubular and

medullary carcinomas harbored gene expression profiles

similar to those of molecular subtype-matched IC-NSTs [9,

10]. Conflicting results on the molecular features of

metaplastic cancers have been reported, as transcriptomic

profiles were found to be similar to those of basal-like IC-

NSTs [11], as well as to be distinct and related to those of

claudin-low breast cancers [12, 13].

From a genetic standpoint, there is also evidence that

some histological special types of breast cancer are un-

derpinned by distinct repertoires of genetic aberrations. For

instance, secretory carcinomas and adenoid cystic carci-

nomas have been shown to harbor the recurrent fusion

genes ETV6–NTRK3 [14] and MYB–NFIB [15, 16],

respectively. At the genomic level, secretory, mucinous,

metaplastic, micropapillary, lobular, and adenoid cystic,

but not papillary breast carcinomas have been shown to be

distinct from IC-NSTs [3, 12, 16–21]. It remains to be

investigated whether the remaining histological special

types would constitute genomically distinct entities from

grade- and ER-matched IC-NSTs. In addition, it is

unknown whether the specific transcriptomic profiles of

special type breast cancers are underpinned by distinct

patterns of genetic aberrations.

The aims of this study were (i) to characterize the

constellation of gene copy number aberrations in histo-

logical special types of breast cancer, (ii) to determine

whether these special types of breast cancer are distinct

from ER- and grade-matched IC-NSTs at the genomic

level, and (iii) to define in each histological special type

those genes whose expression correlates with gene copy

number. We therefore investigated the pattern and type of

gene copy number aberrations in 59 breast cancers of ten

histological special types and in a cohort of grade- and

ER-matched IC-NSTs using microarray-based compara-

tive genomic hybridization (aCGH). In addition, we per-

formed an integrative analysis of the aCGH and the

microarray-based gene expression profiles of the 59 his-

tological special types of breast cancer included in this

study.

Materials and methods

Cases

Histological special types

One-hundred-and-thirteen invasive breast carcinomas from

eleven histological special types with a tumor cell content

of C50 % were selected from the frozen tissue bank of the

Netherlands Cancer Institute/Antoni van Leeuwenhoek

hospital (NKI/AVL) and subjected to gene expression

profiling as previously described [8]. Of these 113 cases,

those with C70 % neoplastic cells were selected for DNA

extraction, and DNA of sufficient yield and quality to

perform aCGH was obtained from 59 samples from ten

special types (Supplementary Table 1). Cases were

reviewed centrally by two pathologists (FCG and JSR-F)

and were typed according to the World Health Organiza-

tion criteria [1]. Immunohistochemistry results for ER,

progesterone receptor (PR), and HER2 are described else-

where [8]. Histological grade was determined by two

pathologists (FCG and JSR-F) using the modified Scarff–

Bloom–Richardson system [22]. Ethical approval was

obtained from local ethical committees.

Control group (grade- and ER-matched IC-NSTs)

To compare, the genomic profiles obtained by aCGH of

histological special types with those of IC-NSTs, special

types with C5 cases were matched 1:2 with IC-NSTs,

retrieved from the frozen tissue bank of the NKI/AVL and

centrally reviewed and graded by two pathologists (FCG

and JSR-F), according to histological grade and ER-status.

The matching between histological special types and IC-

NST was performed on this basis given the evidence to

demonstrate that in breast cancer, histological grade and

ER are strongly associated with the pattern of genomic

changes [23–27].

DNA extraction

DNA was extracted from frozen tumor sections, using a

standard proteinase K digestion, followed by phenol/chlo-

roform extraction as previously described [28]. DNA

concentration was measured using Picogreen (Invitrogen,

Paisley, UK) according to the manufacturer’s instructions

[29].

Microarray-based comparative genomic hybridization

(aCGH)

aCGH was performed using a previously described 32 K

bacterial artificial chromosome (BAC) array platform [21,
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30] which has been shown to be as robust as, and to have

comparable resolution with, high-density oligonucleotide

arrays [31–33]. DNA labeling, array hybridization and

image acquisition, and hierarchical clustering analysis were

performed as previously described [20, 21, 30, 34] (Sup-

plementary Information). aCGH data, analysis history,

script, and code are available at http://rock.icr.ac.uk/

collaborations/Mackay/Archetypes.

Integration aCGH and gene expression analysis

Detailed information on the gene expression microarray

platform, RNA extraction, amplification, labeling, hybrid-

ization, and analysis, and the gene expression profiles are

described elsewhere (ArrayExpress; E-NCMF-3) [8, 10].

The methods for the identification of genes whose

expression levels correlate with copy number changes are

essentially as previously described [35–37] (Supplemen-

tary Information). p values were corrected using the Ben-

jamini and Hochberg adjustment to minimize type I or

alpha errors, and adjusted p values \0.05 were considered

significant.

Results

Genomic profiling of breast cancer histological special

types

Of the 59 breast cancers from ten histological special types

included in this study, 27 had a triple-negative phenotype

(i.e., ER-, progesterone receptor (PR)-, HER2-negative), 31

were ER-positive/HER2-negative, and one case was ER-

negative/HER2-positive as determined by centrally per-

formed immunohistochemistry. In addition, 13, 20, and 26

were of histological grades 1, 2, and 3, respectively (Sup-

plementary Table 1).

As a group, the entire cohort of histological special

types profiled here displayed an overall pattern of copy

number aberrations (Supplementary Table 2) similar to

that previously reported for IC-NSTs [23, 26, 38]. Using

the definition of Hicks et al. [39], 20 cases (33.9 %)

showed a complex firestorm genomic architectural pattern,

16 (27.1 %) a complex sawtooth, and 23 a simplex pattern

(39 %; Table 1; Supplementary Table 1).

The analysis of each histological special type separately

revealed that while the proportion of the genome with copy

number changes varied widely among the entire cohort

(0.8–76.9 %), samples of the same histological special type

tended to display similar levels of gene copy number

changes. Adenoid cystic (4.4 ± 5.6 %), mucinous

(8.2 ± 19.6 %), and carcinomas with neuroendocrine fea-

tures (10.7 ± 10.4 %) showed the lowest levels of gene

copy number aberrations, whereas ILCs (22.7 ± 9.2 %),

carcinomas with osteoclast-like stromal giant cells

(25.5 ± 4.2 %), carcinomas with apocrine differentiation

(30.0 ± 18.4 %), invasive micropapillary (32.3 ± 18.3 %),

medullary (43.9 ± 8.4 %), and metaplastic carcinomas

(48.7 ± 19.1 %) showed higher proportions of aberrations

(Fig. 1a). Of note, a correlation between histological grade

and levels of genetic instability was observed, given that

special types typically of low histological grade, such as

adenoid cystic, tubular, and mucinous carcinomas displayed

low levels of genetic instability, whereas, metaplastic and

medullary carcinomas that are typically of high histological

grade displayed the highest levels of genetic instability

(grade I: 8.8 ± 12.1 %; grade II: 18.0 ± 18.8 %; grade III:

40.1 % ± 14.9 %; heteroscedastic t test, grade I vs II,

p = 0.0192, grade I vs III, p \ 0.001, grade II vs III

p = 0.003; Fig. 1a). Consistent with these observations, a

correlation between histological special types and genomic

architectural patterns was found. The majority of adenoid

cystic, mucinous, tubular, and carcinomas with neuroen-

docrine features analyzed here displayed genomic profiles

of simplex architecture, whereas invasive micropapillary,

carcinomas with medullary features, and metaplastic carci-

nomas displayed complex (either firestorm or sawtooth)

profiles (Table 1). Analysis of the genome-wide patterns of

Table 1 Genomic architectural

pattern of 59 histological special

type breast cancers

According to the definition by

Hicks et al. [39]

Histological special type Firestorm

n (%)

Sawtooth

n (%)

Simplex

n (%)

Adenoid cystic carcinoma (n = 4) 0 (0 %) 0 (%) 4 (100 %)

Carcinoma with apocrine differentiation (n = 4) 2 (50 %) 0 (0 %) 2 (50 %)

Carcinoma with osteoclast-like stromal giant cells (n = 4) 1 (25 %) 1 (25 %) 2 (50 %)

Invasive lobular carcinoma (n = 7) 3 (42.9 %) 1 (14.3 %) 3 (42.9 %)

Carcinoma with medullary features (n = 10) 4 (40 %) 6 (60 %) 0 (0 %)

Metaplastic carcinoma (n = 11) 5 (45.5 %) 5 (45.5 %) 1 (9.1 %)

Invasive micropapillary carcinoma (n = 6) 4 (66.7 %) 2 (33.3 %) 0 (0 %)

Mucinous carcinoma (n = 9) 1 (11.1 %) 1 (11.1 %) 7 (77.8 %)

Carcinoma with neuroendocrine features (n = 3) 0 (0 %) 0 (0 %) 3 (100 %)

Tubular carcinoma (n = 1) 0 (0 %) 0 (0 %) 1 (100 %)

Breast Cancer Res Treat (2013) 142:257–269 259

123

http://rock.icr.ac.uk/collaborations/Mackay/Archetypes
http://rock.icr.ac.uk/collaborations/Mackay/Archetypes


amplification/high level gains revealed that 1q (15 %) and

8q (22 %) amplifications/high level gains were relatively

frequent across the entire cohort (Fig. 1).

In agreement with our previous observations [8], unsu-

pervised hierarchical clustering using the gene expression

data, the 59 special type tumors clustered mainly according

to ER-status, and samples of the same histological type

tended to cluster together in the same branches (Supple-

mentary Fig. 1). By contrast, unsupervised hierarchical

clustering using DNA copy number states (i.e., gains,

amplifications, losses) revealed two major clusters (Fig. 2).

Cluster 1 was significantly enriched for low histological

grade special type tumors (Fisher’s exact test two-tailed,

p \ 0.0001) and simplex genomic architectural patterns

(p \ 0.0001), including mucinous and adenoid cystic car-

cinomas. Cluster 2 was significantly enriched for high-

grade special type tumors with a complex firestorm or

sawtooth pattern (Fig. 2). Within cluster 2, two secondary

clusters were identified: one enriched for ER-positive

tumors (Fisher’s exact test two-tailed, p \ 0.0001),

including invasive micropapillary carcinomas, and the other

composed of mainly ER-negative tumors including med-

ullary and metaplastic carcinomas. Although samples from

each of the histological special types preferentially clus-

tered together, the overall pattern of low level gains and

losses varied notably by subtype. Taken together, these

observations suggest that different histological types of

breast cancer have distinct levels and/or types of gene copy

number aberrations. Our findings demonstrate that although

the patterns of gene copy number aberrations segregate with

ER-status and histological grade, they are also associated

with the histological type of breast cancers. Finally, we also

confirm previous observations that, at variance with IC-

NSTs of ER-negative and basal-like subtype [40], adenoid

cystic carcinomas, which are of ER-negative and basal-like

subtype but have an indolent clinical behavior, have low

levels of copy number aberrations [16] and cluster together

with ER-positive breast cancer special types.

Fig. 1 Gene copy number aberrations in histological special types of

breast cancer. a Frequency plots of copy number gains and losses or

b amplifications in tubular carcinoma (n = 1), carcinoma with

neuroendocrine features (n = 3), mucinous carcinoma (n = 9),

invasive micropapillary carcinoma (n = 6), metaplastic carcinoma

(n = 11), carcinoma with medullary features (n = 10), ILCs (n = 7),

carcinoma with osteoclast-like stromal giant cells (n = 4), carcinoma

with apocrine differentiation (n = 4) and adenoid cystic breast

carcinomas (n = 4). The proportion of tumors in which each bacterial

artificial chromosome (BAC) clone is gained (green bars) or lost (red

bars) (a) or amplified (green bars) (b) is plotted (Y axis) for each

BAC clone according to its genomic position (X axis). ILC invasive

lobular carcinoma, osteoclast carcinoma with osteoclast-like stromal

giant cells
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Comparison of genomic profiles between histological

special types and grade- and ER-matched IC-NSTs

Metaplastic and medullary breast carcinomas are consis-

tently of triple-negative phenotype (i.e., ER-, PR-, HER2-

negative) and associated with distinct prognosis [2, 3]. In

the comparison of the genomic profiles of metaplastic

carcinomas with those of carcinomas with medullary fea-

tures (Fig. 3a), metaplastic breast cancers with those of

grade- and ER-matched IC-NSTs (Fig. 3b) and medullary

carcinomas and those of grade- and ER-matched IC-NSTs

(Fig. 3c) (Supplementary Table 3), no significant differ-

ences were observed other than the regions affecting

8q24.12–q24.3 and 3p13 and 3q11.2, 16q12.1 and Xp22.2,

respectively. It should be noted, however, that these loci

map to regions of frequent germline copy number poly-

morphisms (http://projects.tcag.ca), and should be inter-

preted with caution. These results indicate that metaplastic,

medullary, and IC-NST matched according to grade and

ER-status display similar patterns of gene copy number

aberrations.

We next focused on preferentially ER-positive histo-

logical subtypes. The comparison between the genomic

profiles of invasive micropapillary carcinomas and histo-

logical grade- and ER-matched IC-NSTs revealed that both

had similar levels of gene copy number aberrations (Fig. 4a;

Fig. 2 Hierarchical clustering

of the genomic profiles of

histological special type tumors.

Hierarchical cluster analysis

performed with microarray

genomic hybridization (aCGH)

categorical states (i.e. gains,

losses, and amplifications) using

Euclidean distance metric and

the Wards algorithm. Special

type breast cancers of low

histological grade with a

simplex genomic architectural

pattern cluster distinct from

high-grade tumors with a

firestorm or sawtooth genomic

architectural pattern as defined

by Hicks et al. [39]. ER estrogen

receptor, ILC invasive lobular

carcinoma, osteoclast

carcinoma with osteoclast-like

stromal giant cells, PR

progesterone receptor
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32.3 ± 18.3 %, micropapillary vs 35.5 ± 16.7 %, IC-

NSTs), and only focal regions of the genome were differ-

entially altered (8q21.2, 19p13.2; Fig. 4a, Supplementary

Table 3). When compared to histological grade- and ER-

matched IC-NSTs, ILCs harbored similar levels of copy

number changes (22.7 ± 9.2 %, ILCs vs 27.7 ± 17.0 %,

IC-NSTs). Fisher’s exact test analysis revealed that ILCs

displayed higher frequency of gains and losses in focal

regions than IC-NSTs of the same grade and ER-status,

including 1p32.3, 5p14.3, and Xp21.1–21.3 [17, 19]

(Fig. 4b, Supplementary Table 3). In agreement with our

previous findings [20], mucinous carcinomas displayed

fewer copy number changes than grade- and ER-matched

IC-NSTs (8.2 ± 19.6 %, mucinous vs 21.8 ± 15.9 %, IC-

NSTs). Notably, mucinous carcinomas significantly less

frequently displayed gains of 16p and losses of 16q than

grade- and ER-matched IC-NSTs (Fig. 4c, Supplementary

Table 3) [41]. In fact, only one of the mucinous carcinomas

harbored gain of 1q and loss of 16q (11 %), which were

present in 63 % of grade- and ER-matched IC-NSTs ana-

lyzed in this study (Fisher’s exact test, p \ 0.05).

Genes whose expression is associated with gene copy

number

By overlaying the aCGH and gene expression data of the

59 histological special type tumors, we identified 4,536

transcripts (3,797 unique gene symbols) whose mRNA

expression levels significantly correlated with copy number

(Pearson’s correlation adjusted p \ 0.05, Supplementary

Table 4). Of these, 2,352 and 600 unique gene symbols

have been found previously to have mRNA expression

levels significantly correlated with gene copy numbers in

48 grade 3 IC-NSTs [36] and 101 primary breast cancers

[42], respectively, including PPM1D, STARD3, ERBB2,

GRB7, FAD, CTTN, CCND1, and NME1. In this study, we

restricted these integrative analyses to individual histo-

logical special types with C5 cases. ILCs harbored three

genes whose mRNA expression levels significantly corre-

lated with copy number, including the transcription factor

SP1 (Supplementary Table 5). Mucinous carcinomas dis-

played one gene, the transcriptional repressor BCL6, and

medullary carcinomas 40 genes whose expression signifi-

cantly correlated with copy number (Supplementary

Table 5). The latter included the member RAS oncogene

family RAB7A, the histone demethylase KDM5A, and the

ubiquitin protein ligase UBE3C. In the other two histo-

logical types with C5 cases, the metaplastic and invasive

micropapillary breast carcinomas, no genes, whose

expression is driven by gene copy number, were found

after correction for multiple testing.

Next, we sought to identify potential amplicon drivers

and interrogated the genes significantly overexpressed

when amplified. The analysis of all 59 special type cancers

Fig. 3 Metaplastic breast carcinomas, carcinomas with medullary

features and histological grade- and ER-matched IC-NSTs have

similar patterns of gene copy number aberrations. Frequency plots of

copy number gains and losses (top) or amplifications (bottom) in

a medullary and metaplastic breast cancers, b metaplastic breast

cancers and matched IC-NSTs, and c medullary breast cancers and

matched IC-NSTs. The proportion of tumors in which each bacterial

artificial chromosome (BAC) clone is gained/amplified (green bars)

or lost (red bars) is plotted (Y axis) for each BAC clone according to

its genomic position (X axis). Inverse log 10 values of the Fisher’s

exact p values are plotted according to genomic location (X axis) at

the bottom of each graph. Only few significant differences were

identified between the genomic profiles of these three histological

types of breast cancer. IC-NST invasive carcinoma of no special type
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revealed 115 unique genes (145 transcripts; Mann–Whit-

ney U adjusted p \ 0.05) with significant overexpression–

amplification correlation (Supplementary Table 6). This

approach identified known amplicon drivers including

ERBB2, STARD3, and GRB7 on 17q12 (Fig. 5a), genes

whose expression has been shown to be required for the

proliferation and/or survival of cancer cells harboring

amplification of this locus [43, 44]. Genes identified to be

significantly overexpressed when amplified included

FADD, CCND1, RAD21, STK3, and ADAM9 among others

(Fig. 5b–d; Supplementary Table 6).

Analysis of each histological subtype with C5 cases

revealed 23 transcripts (21 unique genes) significantly

overexpressed when amplified in medullary breast cancers,

and 30 transcripts (24 unique genes) in metaplastic carci-

nomas (Mann–Whitney U test p \ 0.05; Fig. 6; Supple-

mentary Table 7). Of note, in metaplastic breast cancers,

the 12p13.33–13.32 amplicon contains several overex-

pressed when amplified genes, including FOXM1, FGF6,

RAD51AP1, and TULP3 (Fig. 6a). In addition, HEY1,

mapping to 8q21.11–21.13, was found to be overexpressed

when amplified in this triple-negative breast cancer special

type (Fig. 6b). Due to the small sample size, when cor-

rected for multiple testing, however, these genes failed to

reach statistical significance (Supplementary Table 7).

Likewise, in invasive micropapillary carcinomas, mucinous

carcinomas, and ILCs, the other histological types with C5

cases, no genes significantly overexpressed when amplified

could be found (data not shown), probably due to the

limited sample size.

Discussion

Here we demonstrated that together with histological grade

and ER-status, histological type is also associated with the

patterns, type, and complexity of gene copy number aber-

rations in breast cancer. In fact, unsupervised analysis of

the ten histological special types of breast cancer based on

the categorical aCGH states revealed that in general sam-

ples from each of the histological special types of breast

cancer preferentially segregated to one dendrogram branch

(e.g., all adenoid cystic carcinomas were allocated to the

same cluster, all carcinomas with medullary features

mapped to the same cluster, all but one micropapillary

carcinoma were also allocated to the same cluster; Fig. 2).

It should be noted, however, that the correlations between

gene copy number aberrations and ER-status and histo-

logical grade in histological special types of breast cancer

were not as strong as those observed between the gene

expression profiles and ER-status and histological grade of

these cancers (Supplementary Fig. 1) [8]. In fact, the

Fig. 4 Comparison of genomic profiles of ER-positive histological

special types and histological grade- and ER-matched IC-NSTs.

Frequency plots of copy number gains and losses (top) or amplifi-

cations (bottom) in a invasive micropapillary breast carcinomas,

b ILCs, and c mucinous breast carcinomas, each compared to

matched IC-NSTs. The proportion of tumors in which each bacterial

artificial chromosome (BAC) clone is gained/amplified (green bars),

or lost (red bars) is plotted (Y axis) for each BAC clone according to

its genomic position (X axis). Inverse log 10 values of the Fisher’s

exact p values are plotted according to genomic location (X axis) at

the bottom of each graph. Several significant differences were

identified between the genomic profiles of these three ER-positive

histological special type breast cancers and matched IC-NSTs. IC-

NST invasive carcinoma of no special type, ILC invasive lobular

carcinoma
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aCGH analysis performed here revealed a substantial

degree of intertumor genetic heterogeneity within the

subgroups of ER-positive and ER-negative disease, and in

particular, metaplastic breast carcinomas appear to com-

prise a diverse group of tumors in terms of their repertoire

of gene copy number alterations.

This study provides molecular evidence to demonstrate

that the information offered by histological typing should

not be disregarded [2, 3]. Our findings corroborate and

further expand on those of previous studies [12, 16, 17, 20,

21, 34, 45] by demonstrating that the constellation of gene

copy number aberrations found in ER-positive breast can-

cers appear to differ according to histological subtype, given

that all but one mucinous carcinomas and carcinomas with

neuroendocrine features lacked the hallmark chromosomal

aberrations reported in grade 1 and 2 ER-positive IC-NSTs

and ILCs (i.e., gains of 1q and losses of 16q) [41], at vari-

ance with IC-NSTs of similar histological grade and ER-

status. These observations are consistent with the recent

findings that mucinous carcinomas of the breast also lack

PIK3CA mutations [46], which are found in approximately

40 % of IC-NSTs [23]. Moreover, our findings demonstrate

that some of the molecular heterogeneity documented in

ER-negative/HER2-negative breast cancers stems from the

differences in the repertoire of genetic aberrations according

to histological type. While medullary and all but one

metaplastic carcinoma displayed complex genomes, ade-

noid cystic carcinomas, which have an indolent clinical

behavior and have been shown to be driven by a t(6;9) MYB–

NFIB fusion gene [15, 16], consistently displayed rather

simple patterns of gene copy number aberrations. Without

histological subtyping, these tumors would be classified as

of ER-negative/HER2-negative subtype, despite the

important differences in the repertoire of molecular aber-

rations and clinical behavior. We were unable, however, to

validate the reported higher prevalence of gains of 10p, 9p

and 16q, loss of 4p, and amplifications of 1q, 8p, 10p, and

12p in medullary carcinomas than in basal-like IC-NSTs

[45]. In fact, in the present study, no significant differences

in the prevalence of gene copy number aberrations were

detected between medullary carcinomas and grade- and ER-

matched IC-NSTs or metaplastic breast carcinomas. In

agreement with the results of previous studies [12, 47], here

we demonstrate that metaplastic breast cancers display a

complex pattern of gene copy number aberrations, however,

at variance with the results by Hennessy et al. [12], our study

Fig. 5 Matched heatmaps of gene expression and gene copy number

aberrations of genes significantly overexpressed when amplified in

histological special types of breast cancer. Amplifications on a 17q12,

b 8p11.23, c 8q21.2–22.2, and d 11q13.3 are shown. Expression and

aCGH values are depicted in two matching heatmaps, aCGH states on

the left and expression values on the right, in which the genes are

ordered according to their chromosomal position. Bar plots on the

right show the results of a Mann–Whitney U test for expression as a

continuous variable and gene amplification as the grouping variable.

Bars in red show adjusted p values\0.05. aCGH: green copy number

loss, black no copy number change, dark red copy number gain,

bright red amplification. Gene expression: green downregulation, red

upregulation. aCGH array-based comparative genomic hybridization,

AMP amplified, MWU Mann–Whitney U test
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did not reveal significant differences in the prevalence of

specific gene copy number aberrations between metaplastic

breast cancers and grade- and ER-matched IC-NSTs. In fact,

our findings suggest that metaplastic breast carcinomas

constitute a heterogeneous group of tumors in terms of their

gene copy number aberrations and transcriptomic profiles.

Fig. 6 Matched heatmaps of gene expression and gene copy number

aberrations within regions of recurrent amplification in metaplastic

breast cancers. Amplifications on a 12p13.33–12p13.32 and

b 8q21.11–q21.13 are shown. For each amplicon, genes within the

amplified region are recovered, and median aCGH values and states

are assigned. Expression and aCGH values are depicted in two

matching heatmaps, aCGH states on the left and expression values on

the right, in which the genes are ordered according to their

chromosomal position. Bar plots on the right show the results of a

Mann–Whitney U test for expression as a continuous variable and

gene amplification as the grouping variable. Bars in red show p values

\0.05. aCGH: green copy number loss, black no copy number

change, dark red copy number gain, bright red amplification. Gene

expression: green downregulation, red upregulation. aCGH array-

based comparative genomic hybridization, AMP amplified, MWU

Mann–Whitney U test
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Invasive breast carcinomas with osteoclast-like stromal

giant cells are considered to be a variant of IC-NSTs

according to the WHO classification [1]. These cancers are

defined by the presence of osteoclast-like giant cells in an

often hypervascular stroma; their carcinomatous component

is most frequently a grade 1 or grade 2 ER-positive IC-NST.

In the present study, all cases of invasive breast carcinomas

with osteoclast-like stromal giant cells were preferentially

of histological grade 2 (i.e., three out of four cases), ER-

positive and HER2-negative. Here we provide the first

genomic characterization of invasive breast carcinomas

with osteoclast-like stromal giant cells and demonstrate that

the constellation of gene copy number aberrations found in

these cancers was consistent with that expected in grade 2

ER-positive IC-NSTs, including gains of 1q and losses of

16q, gains of 8q, and 11q13 amplifications coupled with 11q

deletions. Therefore, our findings provide a molecular basis

for the classification of invasive breast carcinomas with

osteoclast-like giant stromal cells as variants of IC-NSTs.

Our integrative aCGH and gene expression analysis led to

the identification of 4,536 transcripts whose expression

correlates with copy number and 145 transcripts that are

significantly overexpressed when amplified in special type

breast cancers, which recapitulated those found in IC-NSTs

[36, 42]. Although no gene was shown to be significantly

overexpressed when amplified in each special histological

type of breast cancer after correction for multiple testing,

some observations are noteworthy. The recurrent amplifi-

cation of 12p13.33–13.32 found in two metaplastic carci-

nomas (Fig. 6a) resulted in overexpression of the

transcriptional activator FOXM1, which is involved in pro-

liferation, cancer initiation, and progression [48], FGF6,

which has high homology with FGF4 and is overexpressed in

prostate carcinomas [49], RAD51AP1, which has been

shown to play a role in cell proliferation and DNA repair

[50], and the TULP3 gene, which is a critical repressor of the

sonic hedgehog pathway and may be involved in tissue dif-

ferentiation and morphogenesis [51]. FOXM1, RAD51AP1,

and TULP3 were found to be amplified in 1.45 % of 482

invasive breast cancers included in The Cancer Genome

Atlas and to be overexpressed when amplified [23, 52]

(Supplementary Table 7). Furthermore, amplification of

8q21.11–q21.13 in two metaplastic carcinomas (Fig. 6b)

resulted in overexpression of HEY1, ZFHX4, and UBE2W;

although limited information is available about potential

roles of the latter two genes in breast cancer, HEY1 is

downstream effector of Notch signaling and a partner of a

recently identified fusion gene in mesenchymal chondro-

sarcoma (i.e., HEY1–NCOA2) [53]. Further studies investi-

gating the potential roles of the overexpressed when

amplified genes in metaplastic breast cancers are warranted.

This study has important limitations. First, given the

rarity of some of the histological special types of breast

cancer and the requirement of fresh/frozen tissue for gene

expression profiling, the sample sizes for each special type

were limited. Hence, the statistical power of the analyses

performed is limited, and this study should be interpreted

as exploratory and hypothesis-generating. Second, previous

studies [7, 8, 10] have demonstrated that some of the

transcriptomic differences between histological special

types of breast cancer are related to the characteristics of

their stroma. As we have included samples with up to 50 %

of stromal cells in the gene expression analysis, it is pos-

sible that the integrative analysis of aCGH and gene

expression data may not have identified all copy number

regulated genes, given the contribution of stromal cells.

In conclusion, here we demonstrate that in a way akin to

IC-NSTs, the patterns of gene copy number changes in

histological special types of breast cancer are significantly

associated with ER-status. Importantly, however, the pat-

terns of genomic changes found in ER-positive and ER-

negative breast cancers correlate with histological type

(e.g., adenoid cystic and mucinous carcinomas have pat-

terns of genomic aberrations distinct from those of other

grade- and ER-matched breast cancers, respectively). Fur-

thermore, our findings also demonstrate that ER-positive

breast cancers are characterized by varying levels of

genetic instability, whereas the majority of ER-negative

cancers display high levels of genetic instability and rather

complex genomic profiles, with the exception of adenoid

cystic carcinomas. Given that (i) mucinous and neuroen-

docrine carcinomas, albeit of grades 1 and 2 and ER-

positive, lack deletions of 16q and gains of 1q, the hallmark

gene copy number aberrations of low-grade ER-positive

IC-NSTs, (ii) adenoid cystic carcinomas, contrary to IC-

NSTs of triple-negative phenotype, have remarkably sim-

ple genomes and an indolent clinical course, and (iii) as a

group, tumors from each of the histological special types

display less molecular heterogeneity than IC-NSTs [2, 3,

8], our results highlight the importance of histological

subtyping in studies aiming to characterize the genetic

underpinning and the molecular drivers of breast cancer.
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