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Abstract Diffuse reflectance spectroscopy (DRS) is a

promising new technique for breast cancer diagnosis.

However, inter-patient variation due to breast tissue het-

erogeneity may interfere with the accuracy of this tech-

nique. To tackle this issue, we aim to determine the

diagnostic accuracy of DRS in individual patients. With

this approach, DRS measurements of normal breast tissue

in every individual patient are directly compared with

measurements of the suspected malignant tissue. Breast

tissue from 47 female patients was analysed ex vivo by

DRS. A total of 1,073 optical spectra were collected. These

spectra were analyzed for each patient individually as well

as for all patients collectively and results were compared to

the pathology analyses. Collective patient data analysis for

discrimination between normal and malignant breast tissue

resulted in a sensitivity of 90 %, a specificity of 88 %, and

an overall accuracy of 89 %. In the individual analyses all

measurements per patient were categorized as either benign

or malignant. The discriminative accuracy of these

individual analyses was nearly 100 %. The diagnosis was

classified as uncertain in only one patient. Based on the

results presented in this study, we conclude that the anal-

ysis of optical characteristics of different tissue classes

within the breast of a single patient is superior to an

analysis using the results of a cohort data analysis. When

integrated into a biopsy device, our results demonstrate that

DRS may have the potential to improve the diagnostic

workflow in breast cancer.

Keywords Breast cancer � Diffuse reflectance

spectroscopy � Diagnosis � Individual analysis

Introduction

In the last decade, new optical guidance techniques have

been implemented for the diagnosis and treatment of can-

cer [1, 2]. One of these new optical techniques is diffuse

reflectance spectroscopy (DRS) [3–5]. DRS can identify

tissue characteristics by measuring their intrinsic light

absorption and scattering properties at different wave-

lengths. By illuminating tissue with a selected light spec-

trum, an ‘optical fingerprint’ of the tissue is obtained which

represents specific quantitative biochemical en morpho-

logical information. The characteristics of the observed

DRS spectrum depend on metabolic rate, vascularity, intra-

vascular oxygenation and tissue morphology. Hence, DRS

can provide detailed information on the underlying bio-

logical composition of tissue and as such has the potential

to differentiate tumour tissue from normal tissue. In this

way, DRS may be able to improve cancer diagnostics and

therapy monitoring. For example, DRS could be incorpo-

rated into a biopsy needle, thus constructing an optically

guided biopsy tool. Such a tool could reduce the number of
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indeterminate breast biopsies, which presently still ranges

from 5 to 30 % [6–9].

However, breast tissue has arguably been considered

one of the most challenging human tissue types for DRS

analysis due to its morphologic inhomogeneity [10]. Breast

tumours show a large diversity in histology, whereas the

composition of normal breast tissue varies according to age

and hormonal status. Despite this diversity and inter-patient

variation, several groups have focussed on breast tissue

discrimination with DRS [5, 11–17]. In these studies, the

accuracy of DRS differentiation between normal and

malignant breast tissue varies from 65 to 90 %. All studies

so far have in common that a collective analysis of the DRS

data is performed, resulting in an overall discriminative

accuracy of DRS for the whole study population.

Although the results reported are promising, discrimi-

native accuracy of DRS may be improved by limiting the

effects of inter-patient variation. This could be accom-

plished by means of individual patient analyses in which

normal tissue is directly compared to tumour tissue for

every patient individually. Moreover, such an approach

also complies with clinical practice by providing an indi-

vidual diagnosis to every individual patient.

It is the aim of this present study to determine the

diagnostic accuracy of DRS in individual breast cancer

patients. When positive, such an approach would be an

important step towards the development of intelligent

medical tools such as optical biopsy needles.

Materials and methods

Clinical study design

This study was conducted at The Netherlands Cancer

Institute (NKI-AVL) under approval of the Internal Review

Board Committee. Breast tissue was obtained from 47

female patients who had undergone either a local excision

or total mastectomy of the breast due to the presence of a

fibroadenoma or (pre)-malignant disease. Shortly after

surgical resection, tissue was transported to the Pathology

Department for optical spectroscopy analysis. After gross

inspection by the pathologist, the spectroscopy measure-

ments were performed on freshly excised tissue within 2 h

after resection. The optical spectra were collected from

macroscopically normal fat, glandular tissue and fibroad-

enoma lesions as well as from (pre)-malignant tissue. On

average, five optical measurements were performed at each

measurement location. A biopsy was taken from each

location for histological comparison. Tissue samples were

fixated in formalin, paraffin-embedded, cut in 2- to 3-lm-

thick sections and stained with standard hematoxylin &

eosin staining. An experienced pathologist, who was

blinded for the outcome of the spectroscopy analysis,

examined the histological slides. For each measurement

location, the percentages of adipose, glandular and fi-

broadenomatous tissue as well as ductal carcinoma in situ

(DCIS) and invasive carcinoma were scored. Adipose and

glandular tissue specimens were histologically classified

according to the most predominant tissue type within the

biopsy specimen. The tissue specimen at a measurement

location should at least contain 20 % of fibroadenomatous

tissue, DCIS or invasive carcinoma to be classified as such.

Samples with mixtures of fibroadenomatous, DCIS or

invasive carcinoma at one measurement location were

excluded from the study because they could not be grouped

in one single tissue class.

Instrumentation

The instrumentation and calibration procedure of our

optical spectroscopy system has been described in recent

papers [18–20].

The system consists of a console comprising a Tungsten/

Halogen broadband light source, two spectrometers and an

optical probe with three optical fibres. The two spectrom-

eters resolve light in the visible wavelength range between

400 nm and 1,100 nm (Andor Technology, DU420A-

BRDD) and in the near infrared wavelength range from

800 up to 1,700 nm (Andor Technology, DU492A-1.7),

respectively. The optical probe contains three optical

fibres: one fibre is connected to the light source, while the

other two fibres are connected to the spectrometers to

capture the light diffusely scattered from the tissue (Fig. 1).

The average tissue volume that is illuminated is roughly

5 mm3. The acquisition time of each spectrum was on

average 0.2 s.

Spectral data processing

The light delivered by the illuminating optical fibre is

subject to optical absorption and scattering. Each biological

substance in the probed tissue has its own intrinsic optical

absorption property as a function of wavelength. These

specific optical absorption spectra are well-determined and

available from the literature. Given this knowledge, an

analytical model was used to extract the chromophore

composition and the scattering properties of the tissue

samples from the measured spectra over the wavelength

range from 500 to 1,600 nm [12, 18, 20–22]. This model

was first described by Farrell et al. [23]. The measurements

were fitted into the analytical model by applying a nonlinear

Levenberg–Marquardt inversion algorithm.

In particular the parameters total haemoglobin concen-

tration (is the sum of oxygenated and deoxygenated hae-

moglobin; THC), water, lipid, collagen volume fractions
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and b-carotene were determined. We also determined the

optical scattering. Optical scattering depends on the size

and the density of cellular and subcellular structures and

was defined by a reduced scattering amplitude at an arbi-

trarily given wavelength (e.g. at 800 nm). Accurate water,

lipid and collagen volume fraction could be derived due to

the inclusion of the near-infrared part of the spectrum

(wavelength range 1,000–1,600 nm) [20]. Spectral char-

acteristics analysis was performed with a Matlab software

package (MathWorks Inc., Natick, MA). The distribution

of the quantified values of each tissue parameter was dis-

played in boxplots.

Spectral data processing allowed to classify five differ-

ent breast tissue classes: adipose tissue, glandular tissue,

fibroadenoma, DCIS and invasive carcinoma. In addition,

we distinguished normal breast tissue (all tissue locations

of adipose, glandular and fibroadenomatous tissue) from

malignant breast tissue (DCIS and invasive carcinoma).

Tissue classification analysis

A classification and regression tree (CART) algorithm was

used to automatically classify each collected tissue into one

of the defined breast tissue types based on the chromophore

concentrations and scattering parameter values derived

from the measurements [24]. With the CART algorithm, a

decision tree was created based on absolute thresholds

calculated from those tissue parameters displaying the most

significant differences between the defined tissue classes.

Each spectrum was then separately classified based on the

calculated thresholds in the decision tree using a leave-one-

out (LOO) cross validation method and compared to the

histology analysis [20]. Previously, the CART analysis

with LOO cross validation scheme was studied by Nachabé

et al. [20] and compared to other generally used spectral

classification algorithms. The main advantage of the CART

method is that the results can easily be interpreted and

correlated to clinical details, since the input parameters are

thresholds of the calculated values of the main tissue

parameters. The CART analysis was performed for all

acquired data collectively and also for each included

patient individually with both normal breast tissue and

(pre)malignant tissue being measured. Classification as

either normal breast tissue or malignant breast tissue in the

collective analysis was performed by randomly taking as

many samples of all tissue classes as the lowest sample size

of any tissue class within both groups. This was done to

avoid overestimation of the discrimination accuracy due to

the higher representation of one of the tissue classes over

the other within either the normal or malignant tissue

group. Within the normal breast tissue group, 160 tissue

measurements of both adipose and glandular tissue were

randomly selected and added to the corresponding number

of fibroadenomatous tissue measurements. For the malig-

nant tissue measurements, 120 invasive carcinoma tissue

measurements were randomly selected. For the individual

patient analysis, all measurements in each defined tissue

class were analyzed and compared to the corresponding

histological diagnosis. In this individual patient classifica-

tion analyses only the fat content, collagen content and the

scattering parameters were taking into account to avoid

overfitting of the data. For this comparison we chose an

arbitrary threshold of 90 % agreement of all DRS mea-

surements at a marked tissue site with the histopathological

diagnosis to either determine the DRS measurements as

correct (C90 %) or define the measurements as ‘uncertain’

(\90 %).

Statistical analysis

The DRS-estimated quantification of each parameter in the

breast tissue classes cannot be described by a parametric

distribution such as the Gaussian distribution. The statis-

tical differences of each parameter in the defined tissue

classes were therefore determined using the non-parametric

Fig. 1 Schematic overview of

diffuse reflectance spectroscopy

system. Centre to centre

distance between the emitting

and collecting fibres distal end

is 2.48 mm. VIS visual; NIR
near infra-red
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Kruskal–Wallis test [25]. P values smaller than 0.05 were

considered statistically significant.

Results

Tissue specimens

A total of 47 breast tissue specimens from female patients

were included into this study. The mean age at time of

operation was 52 years (range 20–74 years). Within the 47

resected tissue specimens, 160 measurements were per-

formed in 32 locations of fibroadenomatous lesions, 121

measurements in 24 areas of DCIS and 314 measurements

in 35 invasive carcinoma lesions. Five of these lesions were

lobular carcinomas and 30 were ductal carcinomas. In

addition, 294 measurements were taken in 79 areas of

adipose tissue of the breast specimen and 184 measure-

ments in 37 areas of glandular tissue, giving a total of 1073

DRS measurements (Table 1).

Cohort data analysis

For each tissue measurement, the chromophore volume

fractions and scattering coefficients were calculated. The

distributions of each of the six most significantly different

tissue parameters for all five distinguished tissue classes

are depicted in Fig. 2. Adipose tissue is best distinguished

from the other tissue classes by fat, water and b-carotene

content, as well as by the scattering coefficient at 800 nm.

Also fibroadenomatous tissue can clearly be discriminated

from the other five tissue classes based on fat and b-car-

otene content. For the other tissue classes such as glandular

tissue, invasive carcinoma and DCIS there is a notable

overlap in the parameters measured and further analysis

was performed using the CART algorithm.

Based on the results of the tissue parameters depicted in

Fig. 2, each measurement was diagnosed by the CART

algorithm and assigned to one of the five defined tissue

classes. In addition, measurements were classified as either

normal breast tissue or malignant breast tissue. The results

of the classification by the CART algorithm are displayed

in Table 1. A high specificity (C90 %) for all tissue classes

was noted. The result of discrimination between normal

and malignant breast tissue samples is displayed in

Table 2. When compared to the pathology DRS yielded a

sensitivity of 90 % and a specificity of 88 %. Overall

accuracy was 89 %.

Tissue heterogeneity

The microscopic heterogeneity of the various tissue sam-

ples is illustrated in Fig. 3. Three examples of invasive

carcinoma are displayed with different percentages of

malignant tissue within the specimen, respectively 20, 50

and[90 % invasive carcinoma as determined by pathology

analysis. The corresponding spectrum measured for each

sample displays notable differences. To further investigate

how such differences may affect discriminative accuracy in

distinguishing glandular tissue from invasive carcinoma,

all of the 314 measurements of invasive carcinoma were

divided into \50 % or [50 % malignant cells within the

tissue specimen. Next, the quantification of tissue param-

eters in both groups was compared to all the measurements

in glandular tissue (Table 3). Both malignant groups can be

discriminated from glandular tissue based on the parame-

ters total haemoglobin count and fat. No significant dif-

ferences between malignant and glandular tissue are

identified for the parameters scattering at 800 nm, b-car-

otene and collagen, when the percentage of invasive car-

cinoma within the tissue specimen is \50 %. These

parameters do however illustrate significant discriminative

accuracy when ratios of invasive carcinoma are [50 %.

In one of the 47 tissue specimens, all five defined tissue

classes were present and could be examined. The histology

Table 1 Diagnosis for each tissue measurement generated by the DRS analysis compared to the histology diagnosis of the measurement location

with the calculated sensitivity and specificity of all the measurements in each tissue class

Pathology DRS

Malignant breast tissue Normal breast tissue

Invasive carcinoma DCIS FA Glandular tissue Adipose tissue Sens. (%) Spec. (%)

Invasive carcinoma (N = 314) 268 17 6 23 0 85 90

DCIS (N = 121) 22 86 1 12 0 71 95

FA (N = 160) 13 5 132 10 0 83 98

Glandular tissue (N = 184) 24 12 7 141 0 77 93

Adipose tissue (N = 294) 9 6 0 10 269 91 100

DRS diffuse reflectance spectroscopy, DCIS ductal carcinoma in situ; FA fibroadenoma; Sens. sensitivity; Spec. specificity

158 Breast Cancer Res Treat (2013) 137:155–165
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of the five tissue classes and the corresponding spectral

analysis are displayed in Fig. 4. For each tissue sample, a

marked heterogeneity of the histology is notable. At each

tissue location an average of 5 optical measurements was

performed. In general only small variations within the

consecutive measurements were observed indicating high

reproducibility within a specific tissue location. The small

variations within a tissue location are displayed in Fig. 4f.

To discriminate the five tissue classes, the scattering

coefficient at 800 nm wavelength was plotted versus the fat

concentration. Using these two parameters the five tissue

classes within this individual patient could clearly be dis-

criminated (Fig. 4f).

Individual data analysis

Since the number of tissue classes measured per patient

was limited, we only focused on the ability of DRS to

differentiate normal breast tissue (adipose, glandular and

fibroadematous) from malignant breast tissue (invasive

carcinoma and DCIS) in the individual analysis. Results of

the DRS analysis in all individual patients are displayed in

Table 4. In all patients, except two, the specificity was

100 %. In these two patients only 1 out of 10 and 1 out of

17 DRS measurements in benign tissue was led to a false

positive DRS diagnosis of malignancy. In only 3 of the 36

patients, the sensitivity for the DRS diagnosis malignancy
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was not 100 %. The percentage of false negative mea-

surements varied from 5 to 37 % in these 3 patients. When

90 % agreement between all DRS measurements and the

pathology analysis is considered as an arbitrary threshold

to confirm the diagnosis of breast cancer, DRS measure-

ments were ‘uncertain’ in only one out of 36 patients

(patient 6).

Discussion

Optical technologies, such as DRS, are increasingly being

explored for their merits in supporting the diagnostic

workflow in breast cancer. Heterogeneity in normal breast

tissue and tumour tissue may, however, interfere with its

diagnostic accuracy. We too observed a wide heterogeneity

in the histology of breast cancer in the present study. To

reduce this inter-patient variability we hypothesized that an

individual patient analysis would provide superior dis-

criminative accuracy of DRS measurements as compared to

the generally performed analysis on patient cohorts.

To challenge this hypothesis we performed a cohort

analysis as well as an individual analysis for the various

DRS measurements. In addition, spectra were acquired in

the wide wavelength range of 500–1,600 nm, in contrast to

the wavelengths 500–1,000 nm commonly used by other

research groups [18, 19].

For the cohort analysis all measurements were grouped

as either benign or malignant. Sensitivity and specificity

were 90 and 88 %, respectively, yielding an overall accu-

racy of 89 %. During individual analysis all measurements

per patient were again categorized as either benign or

malignant. The discriminative accuracy of these individual

a.u. - arbitrary units;  nm - nanometer

(A) Invasive carcinoma ≈ 20% (B) Invasive carcinoma ≈ 5-% (C) Invasive carcinoma >90%

Fig. 3 Example of the pathological heterogeneity within several tissue samples defined as invasive carcinoma

Table 2 Classification of tissue measurements defined as normal or

as malignant breast tissue

Pathology DRS

Malignant

tissue

Normal breast

tissue

Malignant tissue (N = 241) 217 24

Normal breast tissue

(N = 480)

58 422

For normal breast tissue, 160 measurements of randomly chosen

adipose and glandular tissue measurements are included to all fibro-

adenoma measurements. For malignant tissue, 120 measurements of

invasive carcinoma were randomly selected and included with all

DCIS measurements. A comparison to the pathology analysis yielded

a sensitivity of 90 %, a specificity of 88 % and an accuracy of 89 %.

DRS diffuse reflectance spectroscopy

160 Breast Cancer Res Treat (2013) 137:155–165
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analyses was nearly 100 %. Only in one patient the diag-

nosis was uncertain.

Several previous studies have used DRS for analysis on

breast tissue [5, 12, 13, 15–17, 26–28]. These studies use

collective data from all included patients to discriminate

normal breast tissue from malignant breast tissue. The

resulting sensitivity ranged from 67 to 87 %, specificity

from 76 to 96 %. The results from the collective analysis of

normal versus malignant tissue in the present study display

comparable results [5, 13, 15, 16, 26, 27]. Yet, a fair

comparison between studies remains difficult due to the

many different data analysis techniques used.

In contrast to most others papers, we distinguished five

different tissue classes. For this purpose, DRS was per-

formed in a wider wavelength range than usual. Recent

findings by Taroni et al. showed that collagen is an

important absorber to include in the model for fitting the

measured spectra as it has distinct absorption features

above 900 nm [29–31]. Therefore, we measured the

absorption coefficient of collagen up to 1,600 nm and

included it in our model. Moreover, measurements on the

wavelengths above 1,000 nm allow better quantification of

the lipid and water fraction of the tissue. The boxplots

clearly displayed a notable distribution range of the optical

parameters within the different tissue classes. Adipose

tissue and fibroadenoma could be well differentiated from

the other three tissue classes, yet the discrimination of

glandular tissue from DCIS and invasive carcinoma was

not straightforward due to overlap in the quantification of

the tissue parameters. This has also been reported by Vo-

lynskaya et al. [12], who did not observe any significant

differences in collagen and b-carotene in these tissue

classes as well as by Zhu et al. [5] who reported similar

concentrations in b-carotene and THC. We observed sig-

nificant variations within all the tissue classes in THC as

displayed in Fig. 2. The pressure applied to the tissue

during the measurements with possible relocation of blood,

as well as the damaged blood vessel system due to the

excision, could cause this variation. Therefore, caution

should be taken drawing conclusions in an ex vivo setting

using THC.

To allow further classification several classification

algorithms have been described. Volynskaya et al. [12] and

Zhu et al. [5] respectively used logistic regression analysis

and linear support vector machine. In the present study,

further classification of tissue classes was performed using

a Classification and Regression Tree (CART) algorithm.

As previously demonstrated by Nachabé et al. [20], CART

analysis with LOO cross validation scheme proved to be a

favourable classification scheme when compared to other

generally used algorithms. We observed an overall dis-

crimination accuracy of DRS of 84 % when distinguishing

the 5 tissue classes. Sensitivity was lowest for glandular

tissue (77 %) and DCIS (71 %). Specificity for all tissue

classes was 90 % or higher.

The difficulty in discriminating between the three tissue

classes glandular tissue, DCIS and invasive carcinoma can

be explained when taking into mind that primary malignant

degeneration in the breast is generally a gradual evolution

of glandular tissue to carcinoma in situ to an invasive

carcinoma. Moreover, the large differences in composition

between various cancerous lesions, as displayed in Fig. 3,

cause significant variations in collected spectra. Depending

on the proportion of malignant cells within the measured

specimen the different tissue parameters will be more or

less significantly different from normal glandular tissue as

is demonstrated in Table 3.

This differences in tumour composition as well as

sampling variation and the resultant effect on the differ-

ences in quantification of the tissue parameters in relation

to normal glandular tissue prompted us to investigate a

more individualized analysis of the DRS measurements.

Indeed, with a discriminative overall accuracy of nearly

100 % the individual analyses were superior to the results

of the cohort analysis.

When we translate these results on individual analysis to

the clinical practice of tissue biopsy, it is important to note

that the acquisition of data is fast and can be performed real

time. This means that accurate positioning of an optical

guided biopsy needle within the target lesion becomes

possible. The breast tissue analysis for each individual

patient resulted in a correct clinical diagnosis of all normal

breast tissue measurements and in all but one malignant

tissue measurement. We therefore argue that smart biopsy

tools that incorporating DRS into biopsy needles could

prevent indeterminate breast biopsies.

Table 3 Significant differences of the quantification of the most

notable tissue parameters of all invasive carcinoma measurements

with either \50 % or [50 % malignant cells within each tissue

specimen compared to the glandular tissue measurements

Parameter Invasive carcinoma

0–50 %

Invasive carcinoma

50–100 %

THC (lM) :: ::

Fat % ;; ;;

B-carotene % * ;

Collagen % * ::

Scattering

(800 nm)

* ::

THC total haemoglobin content; lM micromolar; nm nanometre;*
tissue parameter not significantly different for glandular tissue com-

pared to invasive carcinoma; :/; tissue parameter respectively higher

of lower in the invasive carcinoma compared to glandular tissue with

a P value \ 0.05; ::/;; tissue parameter respectively higher of lower

in the invasive carcinoma compared to glandular tissue with a

P value \ 0.0005
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Although our data are promising, specific improvements

should be noted for future studies. First, the results of this

study are based on ex vivo analysis. Before clinical use of a

DRS system can be considered, the presented results must

be confirmed in an in vivo analysis. In addition, the dis-

criminative accuracy for glandular tissue could still be

improved. As shown in Table 1 discrimination of glandular

tissue is still less reliable than that of adipose tissue. This

may be due to the general histological inhomogeneity in

the area of glandular breast tissue.

In conclusion, the results presented in this article dem-

onstrate that the analysis of optical characteristics of dif-

ferent tissue classes within the breast of a single patient is

superior to an analysis using the results of a cohort data

(A) (B) (C)

  Adipose tissue Mix of Adipose  & Fibroadenomatous tissue

Glandular tissue  

(D) (E) (F)

50% DCIS  with a mix of  75% Invasive carcinoma 

  Adipose & Glandular  tissue with Adipose & Glandular 

tissue

Fig. 4 H&E staining of the five different tissue classes within one of

the included patient specimen. A adipose tissue; B glandular tissue; C
fibroadenomatous tissue; D DCIS; E invasive carcinoma. The

percentages of the main tissue components as defined by the

pathologist. The DRS spectrum for each tissue sample is depicted.

In F the distribution of all the measurements for each defined tissue

class based on the quantification of scattering at 800 nm and Fat

content from each tissue spectrum is illustrated. DCIS -ductal

carcinoma in-situ; a.u. -arbitrary units; nm -namometer; 1/cm –

reciprocal centimeter
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Table 4 Illustration of all measurements for each defined tissue class for each patient individually

Patient Adipose

tissue

Glandular

tissue

FA Clinical diagnosis DRS

‘normal breast tissue’

Spec.

(%)

DCIS Invasive

carcinoma

Clinical diagnosis DRS

‘malignant breast tissue’

Sens.

(%)

1 10 – – 10/10 100 5 – 5/5 100

2 – – 10 – – – – – –

3 5 4 – 9/9 100 10 10 20/20 100

4 5 – 20 – – – – – –

5 5 9 – 14/14 100 – 9 9/9 100

6 – 10 – 9/10 90 8 – 5/8 63

7 – 4 – 4/4 100 – 20 20/20 100

8 – 10 – 10/10 100 – 5 5/5 100

9 5 4 – 9/9 100 – 10 10/10 100

10 5 – – 5/5 100 – 10 10/10 100

11 – – 28 – – – – – –

12 8 – 25 – – – – – –

13 5 – – 5/5 100 21 – 21/21 100

14 4 – – 4/4 100 – 20 20/20 100

15 5 – – 5/5 100 – 10 10/10 100

16 8 5 – 13/13 100 – 19 19/19 100

17 10 – – 10/10 100 – 7 7/7 100

18 5 9 – 14/14 100 – 10 10/10 100

19 10 – – 10/10 100 – 10 10/10 100

20 9 – 10 – – – – – –

21 – – 24 – – – – – –

22 10 – – 10/10 100 14 – 14/14 100

23 5 – – 5/5 100 – 10 10/10 100

24 9 9 – 18/18 100 – 19 19/19 100

25 10 5 – 15/15 100 14 – 14/14 100

26 10 – – 10/10 100 4 10 14/14 100

27 10 10 – 19/20 100 20 – 19/20 95

28 10 10 – 20/20 100 – 10 10/10 100

29 10 – – 10/10 100 – 10 10/10 100

30 4 – 10 – – – – – –

31 5 – – 5/5 100 – 15 15/15 100

32 10 10 – 20/20 100 – 10 10/10 100

33 5 10 – 15/15 100 – 5 5/5 100

34 6 5 5 16/16 100 5 5 10/10 100

35 4 10 – 14/14 100 – 5 5/5 100

36 10 10 – 20/20 100 10 10 20/20 100

37 5 5 – – – – – – –

38 5 – – 5/5 100 10 10 20/20 100

39 5 4 8 – – – – – –

40 5 – 5 – – – – – –

41 5 5 – 10/10 100 – 5 5/5 100

42 5 5 – 10/10 100 – 5 5/5 100

43 10 – – 10/10 100 – 10 10/10 100

44 5 5 – 10/10 100 – 10 10/10 100

45 10 7 – 16/17 94 – 10 9/10 90

46 8 9 – 17/17 100 – 15 15/15 100

47 14 10 15 – – – – – –

Total 294 184 160 – – 121 314 – –

The results of the discriminative accuracy between all normal and malignant tissue measurements for each patient in which these both groups were present

(N = 36). For 11 patients only measurements in normal or benign breast tissue were acquired. FA fibroadenoma; DCIS ductal carcinoma in situ; DRS diffuse

reflectance spectroscopy; sens. sensitivity; spec. specificity

Breast Cancer Res Treat (2013) 137:155–165 163

123



analysis. We argue that for future application of DRS into

clinical practice, such as breast tissue biopsy, emphasis

should be put on individual tissue data analysis. A pro-

spective in vivo analysis of breast tissue is underway to

confirm the presented results as a next step towards the

clinical application of smart biopsy tools and surgical

instruments.
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guided surgery—where do we stand? Mol Imaging Biol 13(2):

199–207

3. Brown J, Vishwanath K, Palmer G, Ramanujam N (2009)

Advances in quantitative UV-visible spectroscopy for clinical and

pre-clinical application in cancer. Curr Opin Biotechnol 20(1):

119–131
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18. Nachabé R, Hendriks B, van der Voort M, Desjardins A,

Sterenborg H (2010) Estimation of biological chromophores

using diffuse optical spectroscopy: benefit of extending the UV–

VIS wavelength range to include 1000 to 1600 nm. Biomed

Optics Express 18(24):1432–1442
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