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Abstract Paclitaxel is one of the most frequently used

chemotherapeutic agents for the treatment of breast cancer

patients. Using a candidate gene approach, we hypothesized

that polymorphisms in genes relevant to the metabolism and

transport of paclitaxel are associated with treatment efficacy

and toxicity. Patient and tumor characteristics and treatment

outcomes were collected prospectively for breast cancer

patients treated with paclitaxel-containing regimens in the

neoadjuvant setting. Treatment response was measured

before and after each phase of treatment by clinical tumor

measurement and categorized according to RECIST criteria,

while toxicity data were collected from physician notes. The

primary endpoint was achievement of clinical complete

response (cCR) and secondary endpoints included clinical

response rate (complete response ? partial response) and

grade 3? peripheral neuropathy. The genotypes and haplo-

types assessed were CYP1B1*3, CYP2C8*3, CYP3A4*1B/

CYP3A5*3C, and ABCB1*2. A total of 111 patients were

included in this study. Overall, cCR was 30.1 % to the pac-

litaxel component. CYP2C8*3 carriers (23/111, 20.7 %) had

higher rates of cCR (55 % vs. 23 %; OR = 3.92 [95 % CI:

1.46–10.48], corrected p = 0.046). In the secondary toxic-

ity analysis, we observed a trend toward greater risk of

severe neuropathy (22 % vs. 8 %; OR = 3.13 [95 % CI:

0.89–11.01], uncorrected p = 0.075) in subjects carrying the

CYP2C8*3 variant. Other polymorphisms interrogated were

not significantly associated with response or toxicity.

Patients carrying CYP2C8*3 are more likely to achieve

clinical complete response from neoadjuvant paclitaxel

This study was presented in part at the 33rd Annual San Antonio

Breast Cancer Symposium, December 8–10, 2010, San Antonio,

Texas.
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treatment, but may also be at increased risk of experiencing

severe peripheral neurotoxicity.

Keywords Paclitaxel � CYP2C8*3 � Pharmacogenetics �
Neoadjuvant breast cancer therapy � Clinical complete

response

Introduction

Interpatient variability in toxicity and response are

important problems in the use of cancer chemotherapy. For

example, paclitaxel, one of the most commonly used

therapies for breast cancer and other cancers, has interpa-

tient variability of 19–26 % in (unbound) drug clearance

[1], causes grade 3 or higher neuropathy and neutropenia in

5–8 % and 2–4 % of patients, respectively [2] and a

response rate as first line, single-agent treatment in meta-

static breast cancer of 20–30 % [3]. Studying host factors

responsible for the variability in chemotherapeutic out-

comes and developing strategies to individualize therapy to

maximize response and minimize toxicity are active areas

of research. Pharmacogenomics, study of the interplay of

genetics and drug therapy outcomes, is one promising

approach to achieving individualized therapy [4]. Genetic

variation can influence therapy by a number of mecha-

nisms. Variants in genes relevant to drug disposition or

metabolism can modulate the patient’s exposure to the

drug, whereas variation in genes that are involved in drug

action can influence the patient’s sensitivity. For example,

germline genetic polymorphisms have been discovered that

increase the likelihood of a patient experiencing severe

toxicity to irinotecan [5, 6] or modulate the optimal dose of

a patient’s warfarin therapy [7].

A number of putative pharmacogenetic markers for

paclitaxel outcomes, in breast cancer and in other solid

tumors, have been evaluated [8–17]. Most of these studies

focused on known mutations in biologically relevant can-

didate genes, such as CYP2C8, CYP3A4, and ABCB1,

which code for the enzymes involved in paclitaxel

metabolism and the transporters that influence paclitaxel

disposition. More recent genome-wide association studies

used an unbiased approach to examine the entire genome to

address this question, and have reported intriguing candi-

date SNPs in genes not previously investigated [14, 15].

The clinical phenotypes most often studied were severe

toxicities, such as neuropathy, or measures of survival.

Some of these retrospective pharmacogenetic studies sug-

gest that genetic variability may be associated with clinical

outcome to paclitaxel therapy, and others do not. However,

the toxicity endpoints are often confounded by prior or

combination therapy, whereas the survival endpoint is

confounded by a multitude of factors including ER status

or tumor subtype [18] and stage at diagnosis [19]. To our

knowledge, no published pharmacogenomic study has

exclusively utilized a neoadjuvantly treated population, in

which toxicity and tumor response to paclitaxel therapy can

be assessed in the absence of these confounding factors.

In this study, we genotyped a cohort of patients treated

with neoadjuvant paclitaxel for polymorphisms that have

previously demonstrated significant associations with effi-

cacy or toxicity. These subjects are uniquely informative

because tumor response and toxicity data were collected

exclusively for the taxane treatment phase. We hypothe-

sized that polymorphisms in genes relevant to paclitaxel

metabolism (CYP2C8 & CYP3A4/3A5), transport

(ABCB1), or mechanism (CYP1B1) would influence the

likelihood that a patient would respond to, or experience

severe toxicity from, paclitaxel therapy.

Materials and methods

Patients and treatments

Relevant candidate SNPs were evaluated in a cohort of

patients treated between 2005 and 2009 and derived from

the University of North Carolina Lineberger Comprehen-

sive Cancer Center (UNC LCCC) Breast Cancer Neoadju-

vant Database, which includes prospective annotation of

clinical data, treatment details, toxicity, and outcome. Eli-

gible women received neoadjuvant paclitaxel-containing

regimens and enrolled in both the UNC neoadjuvant data-

base and a concurrent IRB approved clinical trial that col-

lected genomic DNA from all newly diagnosed patients. All

patients received paclitaxel (T) treatment guided by stan-

dard neoadjuvant protocols that had a defined and conven-

tional treatment dose, schedule, and duration. In most cases,

patients received neoadjuvant doxorubicin and cyclophos-

phamide (AC) either before or after the paclitaxel; however,

the tumors were measured before and after each phase of

therapy so that clinical response to the anthracycline com-

ponent and the taxane component could be separately

identified. Some patients with HER2 overexpressing tumors

received trastuzumab concurrent with the paclitaxel. Tumor

size was clinically measured by the patient’s medical

oncologist, and percent change in tumor size was calculated

from these measurements. Clinical response was defined as

complete response (cCR; 100 % reduction in tumor size),

partial response (cPR; 30–99 % reduction), stable disease

(cSD; 29 % reduction–20 % enlargement of tumor), or

progressive disease (cPD; [20 % enlargement) according

to RECIST criteria [20]. Patients who achieved complete

response to AC before the start of taxane therapy were
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excluded from the efficacy analysis because they were not

evaluable for response to taxane treatment. Pathological

response, which could not be evaluated between treatment

regimens, was not used as an endpoint in this study because

of the inability to separate the confounding effects of other

chemotherapy treatments. Toxicities were evaluated during

paclitaxel treatment, recorded prospectively, and coded by

NCI CTC AE V4.0 based on the physician’s description

[21]. Patients who were treated at outside institutions did

not have toxicity data and were excluded from that part of

the analysis. All patients signed informed consent to par-

ticipate and agreed to allow DNA to be collected for addi-

tional pharmacogenetic studies. The study protocol was

approved by the UNC Institutional Review Board.

SNP genotyping

A 30 mL blood sample was collected from each patient at

the time of study enrollment. DNA used for genotyping was

extracted by the UNC Biospecimen Processing Facility and

plated at 5 ng/uL. Target gene region amplification was

carried out by PCR in a 20 lL reaction including 2 lL

genomic DNA and polymorphisms were genotyped on a

Pyromark Pyrosequencer Q96 MD as previously described

[22, 23]. The polymorphisms genotyped were as

follows: CYP1B1*3 (rs1056836, 4326C[G), CYP2C8*3

(rs11572080, 416G[A and rs10509681, 1196A[G),

CYP3A4*1B (rs2740574, -392A[G), CYP3A5*3C

(rs776746, 6986A[G), and ABCB1*2 (rs1045642,

3435C[T, rs2032582, 2677G[T/A, and rs1128503,

1236C[T). Genotyping was carried out blinded to clinical

data with negative controls included in each, run and at least

5 % of samples were repeated for quality control to ensure

accuracy of assay results. Any assay with call rate or con-

cordance with repeated samples\95 % was excluded from

analysis. Additional details for gene variants including PCR

and pyrosequencing primers are included in Supplementary

Table 1.

CYP3A4*1B/CYP3A5*3C and ABCB1 1236C [ T,

2677G [ T/A, and 3435C [ T were included in haplotype

analyses. Haplotypes were inferred using PHASE Version 2

[24, 25] for polymorphisms with LD [ 0.7. Any subject with

missing genotype information at any locus of the haplotype

was considered to have an unknown haplotype and excluded

from analysis. CYP3A4/3A5 haplotypes were grouped

according to Baker et al. (*1: CYP3A4*1A/CYP3A5*3C,

*2: CYP3A4*1B/CYP3A5*1A, *3: CYP3A4*1A/CYP

3A5*1A, and *4: CYP3A4*1B/CYP3A5*3C) [26]. After

ABCB1 haplotype inference (wild-type: C-G-C, Variant:

T–T(A)-T, mixed: other), each patient was assigned a dipl-

otype number (1–5) in order of increasing genetic variation

as described in Sissung et al. [27].

Statistical analysis

Genotype calls were assessed for concordance with Hardy–

Weinberg Equilibrium (HWE) using a Pearson’s chi-square

test with df = 1. Assays with HWE p value \ 0.05 in the

cohort were then tested in the Caucasian subcohort as

population admixture violates key assumptions of HWE

[28]. Each genotype or haplotype was individually tested

for an association with efficacy or toxicity using logistic

regression modeling. In the haplotype analysis, the ‘‘vari-

ant’’ group was defined by grouping diplotypes. For

CYP3A4/3A5, any individual carrying the *2 haplotype

(CYP3A4*1B/CYP3A5*1A) was considered a variant car-

rier. For ABCB1, any individual with diplotype 4 or 5 was

considered a variant carrier and was compared with non-

carrier diplotypes 1–3. For the genotype analyses, variant

carriers were compared with homozygotic wild-type indi-

viduals (dominant genetic model). The primary efficacy

endpoint was clinical complete response (cCR) to taxane

therapy (yes vs. no). The primary toxicity endpoint was any

grade 3 or higher adverse event during taxane therapy (yes

vs. no). Secondary endpoints of efficacy and toxicity were

clinical response rate (cRR; cCR ? cPR = cRR) and grade

3 or higher neuropathy during paclitaxel therapy, respec-

tively. Following univariate testing, additional covariates

for efficacy (estrogen receptor (ER) status, tumor grade,

concurrent trastuzumab treatment, whether paclitaxel

treatment was preceded by other chemotherapy phase) were

included in a multivariable model to adjust for their prog-

nostic importance. Backward selection was used to elimi-

nate covariates that did not significantly contribute to the

model using AIC as a selection criterion. Self-reported race

was used as stratification factor for significant associations

to account for racial heterogeneity in the cohort. To correct

the primary efficacy analysis for multiple comparisons, the

p values were multiplied by 7, the number of independent

statistical associations performed (a Bonferroni correction

for multiple comparisons) so that the p value to be com-

pared with the standard significance threshold of a = 0.05

is valid. P values of all secondary and sub-analyses are

uncorrected as these are exploratory in nature and should be

interpreted as such. All statistical analyses were performed

in R Statistical Software, version 2.13.0 (R Development

Core Team, Vienna, Austria).

Results

Patient population

A total of 111 patients neoadjuvantly treated with paclit-

axel-containing regimens were eligible for analysis. After

excluding subjects missing efficacy or toxicity data, 103
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subjects were included in the efficacy and 109 subjects in

the toxicity analysis. Demographic data including patient,

treatment, and tumor characteristics for the whole popu-

lation are presented in Table 1.

Allele frequencies

The two highly linked SNPs in CYP2C8*3 (rs11572080,

416G[A and rs10509681, 1196A[G) were completely

concordant in this population. CYP3A4 and CYP3A5 were

out of HWE before accounting for race, as expected given

the large difference in allele frequencies among Caucasian

and African-American individuals [29], but no significant

deviations were seen in stratified samples. Allele frequen-

cies in Caucasian subjects for all variants were consistent

with those reported in The International HapMap Project

[30] or the NCBI EntrezSNP database [31] and replicated

samples were 100 % concordant with the original genotype

calls; thus, no assays were excluded from analysis (Sup-

plementary Table 2). As expected, significant LD was seen

between CYP3A4*1B and CYP3A5*3C (r = 0.93) and the

three polymorphisms in ABCB1 (r [ 0.7), which were

then grouped into haplotypes as planned (Supplementary

Table 3).

Response by genotype

Clinical complete response to paclitaxel for the efficacy

cohort was 30.1 % and the mean change in tumor size was

a 49 % reduction (Table 2). Response by genotype is

presented in Table 3, demonstrating significance only for

CYP2C8; the odds ratio for an individual carrying

CYP2C8*3 to achieve clinical complete response was 3.92

with a 95 % confidence interval of 1.46–10.48 (corrected

p = 0.046) (Fig. 1). Of the 22 subjects carrying the

CYP2C8*3 variant, 12 achieved clinical complete response

(55 %) as compared with only 19 out of the 81 wild-type

subjects (23 %). To ascertain whether this association was

independent of other prognostic factors, a multivariable

model that included tumor grade, ER status, concomitant

trastuzumab, and whether paclitaxel was preceded by

another phase of chemotherapy was tested. After backward

elimination of covariates that were not significant, the final

model included tumor grade and whether paclitaxel was

preceded by another phase of chemotherapy. After con-

trolling for these prognostic factors, the association of

CYP2C8*3 status remained significant in the final model

(uncorrected p = 0.003, corrected p = 0.022), while the

other covariates were not significantly associated with

achievement of clinical complete response (Table 4). Next,

the association of CYP2C8*3 and clinical complete

response was stratified by race to ensure that racial

Table 1 Patient characteristics (N = 111)

Demographic data of patients

Self-reported race

Caucasian 79 (71 %)

African-American 27 (24 %)

Other 5 (5 %)

Age (years)

Median 50 (11.2)

Range 27–78

Menopausal status

Pre-menopausal 57 (51 %)

Post-menopausal 54 (49 %)

Grade at diagnosis

1 7 (6 %)

2 29 (26 %)

3 60 (54 %)

Unknown 15 (14 %)

Receptor status

ER? 56 (50 %)

ER or PR? 63 (57 %)

HER2? 31 (28 %)

Stage at diagnosis

IIA–IIB 42 (38 %)

IIIA–IIIC 59 (53 %)

IV 10 (9 %)

Taxane regimena

T 16 (14 %)

TC 2 (2 %)

TCH 1 (1 %)

TH 1 (1 %)

AC-T 73 (66 %)

AC-TH 18 (16 %)

Taxane schedule and dose

Weekly (80–90 mg/m2) 36 (32 %)

Q2 Weeks (175 mg/m2) 52 (47 %)

Q3 Weeks (175 mg/m2) 22 (20 %)

Q2.5 Weeks (175 mg/m2) 1 (1 %)

Early paclitaxel discontinuation

Toxicity 11 (10 %)

Disease progression 1 (1 %)

Total weeks of Taxane

Median 9.0 (2.9)

Range 1–23

Counts and percentages (in parentheses) are presented for categorical

data. Medians and standard deviations (in parentheses) are presented

for quantitative data

A doxorubicin (Adriamycin), C cyclophosphamide (Cytoxan), T pac-

litaxel (Taxol), H trastuzumab (Herceptin)
a Regimen includes all drugs taken before or during paclit-

axel treatment but not after. ‘‘–’’ indicates these are sequential

treatments
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heterogeneity was not falsely inflating our results. In the

self-reported Caucasian subjects, the magnitude of effect

was marginally greater and the significance similar to that

seen in the entire efficacy cohort (OR = 5.31, 95 % CI:

1.59–17.67, corrected p = 0.049). Only two non-Cauca-

sians carried the *3 variant in our cohort so the association

in non-Caucasians was not analyzed.

To evaluate the robustness of our finding, a secondary

efficacy analysis was carried out with clinical response rate

(cRR = cCR ? cPR). The clinical response rate in the

cohort was 63 % (65/103). In the CYP2C8*3 carriers,

the response rate was 82 % (18/22) versus 58 % (47/81) in

the CYP2C8 wild-type subjects. In the univariate logistic

regression model, this association showed a strong trend in

the same direction with an odds ratio of 3.16 (95 % CI:

0.98-10.19, uncorrected p = 0.054), supporting our pri-

mary findings.

To examine whether, as hypothesized, this finding was

specific to paclitaxel, we then tested the association

between CYP2C8*3 status and clinical complete response

Table 2 Response to paclitaxel therapy in efficacy cohort (n = 103)

Therapy response Data

Percentage change in tumor size

Mean -49 %

Median -43 %

Maximum decrease 100 %

Maximum increase 29 %

Clinical response

Clinical complete response 31 (30.1 %)

Clinical partial response 34 (33.0 %)

Clinical stable disease 36 (35.0 %)

Clinical progressive disease 2 (1.9 %)

Excluded (unevaluable) 8

Counts and percentages (in parentheses) are presented for categorical

data

Table 3 Clinical complete response to treatment in efficacy cohort

(n = 103) by genotype or haplotype, comparing variant carriers with

wild-type homozygous patients

Gene variant Odds ratio

(95 % CI)

Uncorrected

p value

Bonferroni

corrected

p value

CYP1B1*3 0.53 (0.21–1.33) 0.1761 1.0000

CYP2C8*3 3.92 (1.46–10.48) 0.0066 0.0459

CYP3A4*1B 0.88 (0.32–2.37) 0.7929 1.0000

CYP3A4/3A5

haplotype

1.16 (0.42–3.21) 0.7798 1.0000

ABCB1 3435 1.23 (0.50–3.01) 0.6548 1.0000

ABCB1 2677 1.98 (0.83–4.73) 0.1245 0.8716

ABCB1

haplotype

0.49 (0.15–1.61) 0.2389 1.0000

Fig. 1 Percentage of patients carrying CYP2C8*3 vs. CYP2C8*1

wild-type homozygotes achieving clinical complete response (a: left)
or experiencing severe peripheral neuropathy (b: right). Patients

carrying CYP2C8*3 were more likely to achieve clinical complete

response (OR = 3.92, 95 % CI: 1.46–10.48, corrected p = 0.046).

There was a trend toward greater risk of severe neuropathy in patients

carrying the *3 variant, though it did not achieve statistical

significance (OR = 3.13, 95 % CI: 0.89–11.01, uncorrected

p = 0.075)

Table 4 Final multivariable model of clinical complete response in

efficacy cohort (n = 103) including CYP2C8*3 and relevant covari-

ates selected by backward elimination

Odds

ratio

95 %

Confidence

interval

Uncorrected

p value

CYP2C8 5.11 1.73–15.12 0.003

Tumor grade 1.08 0.50–2.35 0.840

Preceded by another phase

of chemotherapy

0.59 0.19–1.79 0.350
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to the doxorubicin–cyclophosphamide (AC) phase of ther-

apy in patients who received the combination. Out of 100

subjects who received the AC combination who had evalu-

able response, the rate of clinical complete response was not

significantly different between *3 carriers (2/22 = 9.0 %)

and wild-type homozygotes (8/78 = 10.3 %) (OR = 1.14,

95 % CI: 0.62–15.96, uncorrected p = 0.872).

Toxicity by genotype

Of the 109 subjects included in the toxicity analysis, 34

experienced at least one grade 3 or higher toxicity (31.2 %)

(Table 5); however, none of the genetic markers were

associated with this cumulative endpoint (data not shown).

Analysis of the secondary toxicity endpoint, grade 3 or

higher peripheral neuropathy, revealed a trend toward

increased neuropathy in subjects carrying the CYP2C8*3

variant (5/23 = 22 %) versus wild-type individuals (7/86 =

8 %) (OR = 3.13, 95 % CI: 0.89–11.01, p = 0.075)

(Fig. 1, Supplementary Table 4).

Discussion

This study investigated pharmacogenetic predictors of

breast cancer treatment outcomes following neoadjuvant

paclitaxel. By measuring the tumor before and after each

phase of sequential chemotherapy, and collecting toxicity

during each phase separately, we were able to isolate the

taxane-specific outcomes from the sequential therapy. We

employed a candidate polymorphism replicate strategy

based on reported associations with clinical outcomes in

previous pharmacogenetic studies in taxane-treated cancer

patients. These candidate genes covered the major meta-

bolic pathways of paclitaxel, CYP3A4/3A5 and CYP2C8,

the efflux transporter ABCB1, and CYP1B1 that has been

shown to influence taxane treatment efficacy.

Our results indicate that patients carrying the

CYP2C8*3 polymorphism are more likely to achieve

clinical complete response than patients homozygous for

the wild-type isozyme. This finding is supported by the

strong trend in the same direction for clinical response rate.

The association with tumor response remained significant

after adjustment for covariates and stratification by self-

reported race. There was no association between CYP2C8

genotype and clinical complete response to the AC phase

of sequential therapy, dismissing the possibility that

patients carrying CYP2C8*3 had more chemosensitive

tumors. Thus, there seems to be a true pharmacogenetic

association between the CYP2C8*3 polymorphism and

clinical response to neoadjuvant paclitaxel therapy.

Clinical response, instead of the more accepted patho-

logical response, which has prognostic implications for

future survival [32–34], was selected because of the col-

lection of tumor size data between phases of sequential

therapy, which enables us to isolate the response to the

paclitaxel phase of treatment from that of the other

administered therapy. Although clinical measurement is

not a component of RECIST classification, that method-

ology was designed with radiographic measurements in the

metastatic setting in mind. Conversely, pathologic

response, a more conventional endpoint for neoadjuvant

studies, cannot differentiate among drugs given preopera-

tively so would have introduced considerable noise from

the inclusion of anthracycline and antimetabolite effect in

the efficacy estimates. Furthermore, the ability to use

response to the AC component of therapy as an internal

control for the specificity of the findings for paclitaxel

would have been lost. There is a documented relationship

between clinical measurement and pathologic response

[35] supporting the use of easily obtained serial clinical

measurements in the palpable lesions relevant in this set-

ting. The reported relationship between clinical and path-

ological response indicates that our finding may have an

important influence on survival; however, it is essential that

these findings are confirmed with pathological or radio-

graphic tumor measurements before and after taxane ther-

apy in independent patient cohorts.

Two previous groups have reported that patients carry-

ing CYP2C8*3 are at a higher risk of paclitaxel-induced

peripheral neuropathy [10, 11], but this finding was not

observed in other studies [16, 36, 37]. All of these studies

primarily included patients who were on combination

therapy or who had been previously treated with chemo-

therapy. Our results, in previously untreated patients not

receiving combination therapy with other neurotoxins, are

consistent with those of Leskela et al. [11] and Green et al.

[10] and suggest that there may be a true association

Table 5 Severe toxicities

(C grade 3) during paclitaxel

treatment in toxicity cohort

(n = 109)

Counts and percentages (in

parentheses) are presented

Toxicities Data

Any toxicity

Any 34 (31 %)

None 75 (69 %)

Excluded 2

Specific toxicities

Neuropathy 12 (11 %)

Neutropenia 10 (9 %)

Myalgia 9 (8 %)

Hypersensitivity 7 (6 %)

Fatigue 4 (4 %)

Gastrointestinal 3 (3 %)

Anemia 2 (2 %)

Other 4 (4 %)
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between CYP2C8*3 and risk of peripheral neuropathy. The

difference between our study and that of Leskela et al. [11]

is the event rate. Their study included grade 2? neuro-

toxicity, a substantially more common phenotype than our

grade 3? endpoint, but one that does not require a change

in therapy, unlike higher grades of neuropathy as were

measured in this study. Additionally, they used a cumula-

tive dose-to-event analysis, which is consistent with the

cumulative nature of neurotoxicity. This was not feasible in

our study given the relatively small number of patients (12)

who experienced grade 3 or higher neuropathy. In fact, it is

important to note that a general limitation of the current

study is the modest sample size.

The paclitaxel parent compound, not its metabolites, is

thought to be responsible for the drug’s efficacy and tox-

icity [38]. Paclitaxel clinical outcomes are related to the

amount of time the total drug concentration remains above

a threshold level [39, 40] and the cumulative exposure may

determine the extent of neuropathy development [10, 41].

The CYP2C8*3 variant has diminished in vitro metabolic

activity for paclitaxel [42–45] and carriers of this variant

have decreased clearance of free paclitaxel, and a corre-

sponding increase in drug exposure [46]. These findings

provide a rational mechanism for the increased paclitaxel

treatment response and toxicity seen in CYP2C8*3 carriers

in this study.

It is not possible to distinguish the influence of each of

the two non-synonymous polymorphisms in CYP2C8*3 in

this population because of the complete concordance, and

it will be difficult to do this in any clinical study based on

their high linkage disequilibrium. However, in vitro data

suggest that the causative SNP is the K399R variant

(rs10509681) that, unlike the R139K variant, has dimin-

ished paclitaxel metabolic activity when each is tested in

isolation [42, 47]. If this were true, then it would be

important for future researchers to focus their analyses

specifically on the K399R variant that is sometimes present

in patients without the R139K variant [48].

These patients were treated according to standard neo-

adjuvant protocols, which specify an appropriate treatment

dose, schedule, and duration. Recent data demonstrate that

the 3-weekly regimen received by 20 % of these patients is

inferior to the weekly or every 2-week regimen [49]. In

follow-up analyses, multivariable models that included

treatment schedule were analyzed to see if schedule had a

significant influence on the achievement of clinical complete

response, which it did not (uncorrected p = 0.100, data not

shown). The predefined treatment duration also ensures that

the assessment of response and neuropathy is not con-

founded by dramatic differences in cumulative paclitaxel

received. Only 12 patients discontinued paclitaxel before

receiving the full course of therapy, 11 for toxicity, and 1

because of disease progression during treatment. Indeed,

carriers of the CYP2C8*3 variant received a similar number

of cycles (median = 4) and weeks of therapy (mean = 9.99

vs. 9.60) compared with wild-type patients so it is unlikely

that differences in response or neurotoxicity are attributable

to differences in cumulative paclitaxel administered.

Numerous groups have investigated polymorphisms in

other genes relevant to paclitaxel exposure or mechanism.

The polymorphisms in CYP3A4 and CYP3A5 have been

independently interrogated and typically do not show asso-

ciations with outcome [13, 36, 50], though associations have

been reported [51]. However, recent data suggest that look-

ing at the CYP3A4*1B/3A5*1A variants as a high metabolic

activity haplotype may be a superior strategy [26]. We were

unable to identify a statistically significant association with

paclitaxel treatment outcomes for either the CYP3A4*1B

variant alone or the two variants in combination.

The ABCB1 variants have also been the focus of a

number of retrospective pharmacogenetic studies, with

inconsistent results. Variants at the 3435 position have

been associated with shorter overall survival and worse

progression free survival in paclitaxel-treated cancer

patients [8, 9]. Variants at the 3435 and 2677 position have

been implicated in higher risk of paclitaxel-induced neu-

tropenia [17] and docetaxel treatment outcomes [27]. In our

study, the variants of ABCB1 tested individually or in

haplotypes did not have a statistically significant effect on

paclitaxel treatment outcome.

CYP1B1 is not involved in taxane metabolism [52], yet

an association between taxane efficacy and the CYP1B1*3

variant has been repeatedly demonstrated [13, 53–55].

In vitro studies by Sissung et al. [27] reveal that

CYP1B1*3 enhances estrogen metabolism to compounds

that antagonize the mechanism of action of docetaxel and

paclitaxel, and covalently bind docetaxel, providing two

plausible mechanisms for the decreased efficacy seen in

patients with this genotype [53]. We found no evidence of

a link between CYP1B1 genotype and paclitaxel efficacy.

In conclusion, we report evidence that CYP2C8*3 car-

riers are more likely to achieve complete clinical response

to neoadjuvant paclitaxel. This association was indepen-

dent of other important clinical covariates. The odds of an

individual who carried the *3 variant achieving clinical

complete response were nearly four times higher than those

for an individual carrying two wild-type alleles. Addi-

tionally, our results support the previously reported possi-

bility that individuals carrying this variant are at increased

risk of experiencing paclitaxel related neuropathy. Our data

suggest a potential biomarker for identifying patients

before treatment who are more likely to benefit from

therapy, but may be at an increased risk of experiencing

certain adverse events. The results of this small study

warrant further investigation of this association in larger

neoadjuvantly treated patient cohorts, and if confirmed,
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may prompt studies of dose individualization based on host

genotype.
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