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Abstract Ductal carcinoma in situ (DCIS) is a precursor

lesion that can gives rise to invasive breast cancer (IBC). It

has been proposed that both the nature of the lesion and the

tumor microenvironment play key roles in progression to

IBC. Here, laser capture microdissected tissue from pure

DCIS and pure IBC were employed to define key gene

expression profiles in either the epithelial or stromal

compartment associated with disease progression. Each

tissue had distinct gene expression profiles, and a DCIS/

IBC classifier accurately distinguished DCIS versus IBC in

multiple independent data sets. However, contrary to other

studies that profiled DCIS associated with invasive disease,

we found that the most significant alterations in gene

expression were observed in the epithelial compartment

rather than in the stroma. In particular, genes associated

with epithelial-to-mesenchymal transition and myoepithe-

lial cell-specific genes were enriched in invasive cancer

relative to pure DCIS. Such alterations in transcript levels

were associated with all subtypes of breast cancer, but were

particularly indicative of poor outcome in ER-negative

breast cancer. Together, these studies indicate that lesion-

specific differences in gene expression associated with

invasive phenotype are particularly relevant in the pro-

gression of DCIS to invasive breast cancer.
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Introduction

Breast cancer is a clinically heterogeneous and complex

disease, encompassing a wide variety of pathological

entities with variable clinical behavior. It is now widely

acknowledged that accumulation of genetic anomalies

contributes to the acquisition of an increasingly aggressive,

invasive, or therapy-resistant tumor phenotype. In contrast

to invasive breast cancer (IBC), the heterogeneity of the

breast cancer precursor lesion ductal carcinoma in situ

(DCIS) is not well investigated.

Due to enhanced screening methodologies, an increasing

number of women are diagnosed with DCIS, a non-obligate

precursor to IBC [1]. Left untreated, up to 53% of DCIS

cases will progress to IBC [2]. Traditionally, estimating the

risk of DCIS recurrence or progression to IBC and sub-

sequent clinical management decisions have been based

on evaluation of standard clinical–pathological features.
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Nuclear grade, the presence of necrosis, and size of the

lesion have all been linked to increased risk of DCIS

recurrence [3, 4]. In addition, numerous biomarkers have

been investigated for better risk stratification of patients

with DCIS. Elevated Ki-67 levels, p53 mutations, and

HER2 amplification are known to be associated with a

higher nuclear grade and necrosis [5, 6]. Although, such

indicators provide some valuable information about clini-

cal course, they are often not able to accurately predict the

prognosis for the individual patient and guide proper and

effective treatment. As a result, many DCIS patients are

over-treated, while others progress to invasive carcinoma

despite treatment. Therefore, there is currently significant

interest in identifying molecular events driving invasive

progression, not only for use in determining at which point

the lesion is most likely to progress to malignancy, but also

in hopes of identifying new molecular targets that could

halt progression at these early stages.

The development of new technologies has offered the

opportunity to explore the molecular complexity of human

cancer. Multiple studies have investigated various clinical

and biological aspects of the disease, including tumor

classification, prediction of prognosis, and response to

different treatments. For example, whole gene expression

profiling of IBC lead to identification of molecularly dis-

tinct subtypes with different prognosis, driving oncogenic

changes, and treatment modalities [7, 8]. While initially

used largely for academic purposes, genome-wide analysis

technologies are becoming more reliable and have been

shown to be powerful diagnostic tools. In this context,

several multi-gene assays (e.g., MammaPrint, 21-gene

recurrence score, HOXB13/IL17BR ratio) have been

developed for diagnostic purposes and are now commer-

cially available [9–11].

In contrast to IBC, the molecular complexity and

diversity of DCIS is much less well characterized. A few

studies have investigated genetic, epigenetic, and gene

expression changes in breast tissue from early stages of

breast cancer progression including atypical ductal hyper-

plasia (ADH) and DCIS [12–14]. The majority of these

studies reported that most dramatic changes occur at the

transition from normal breast tissue to ADH, and relatively

minor differences are observed between DCIS and IBCs.

Surprisingly, in those studies, when transcriptional profiles

of neoplastic epithelial cells and stromal cells were com-

pared between DCIS and IBC, more robust changes in gene

expression were observed in the stroma. When DCIS and

IBC coexist in the same lesion, their gene expression

profiles are very similar but the transcriptome of pure DCIS

is largely uncharacterized. This is due to the difficulty in

obtaining fresh DCIS tissue for research studies. Most

DCIS do not form mass lesions allowing for straightfor-

ward tissue collection, and the entire DCIS lesion has to be

microscopically evaluated to exclude the presence of

invasive breast carcinoma. The objective of this study was

to compare gene expression profiles of microdissected

epithelial and stromal components of pure DCIS and IBC,

and to determine the significance of alterations in gene

expression related to the clinical behavior of breast cancer.

Materials and methods

Study population

DCIS and IBC cases were obtained from the tumor bank at

Thomas Jefferson University. DCIS was classified as low,

intermediate, and high nuclear grade [15]. Nottingham

classification was used to determine histological grade of

IBC [16]. Estrogen, progesterone receptors, and HER2

expressions were determined by immunohistochemistry

using CAP guidelines for stain interpretation [17]. The

nuclear grade and hormone receptor status of the lesions

are depicted in Table 1. DCIS patients were treated by

excision of the lesion with a negative margin and did not

receive adjuvant hormonal or radiation therapy. DCIS and

IBC were matched for estrogen receptor, progesterone

Table 1 Morphology, steroid receptor, and HER2 status of the study

cases

Case

#

Cancer

type

Nuclear

grade

ER PR Her2

1 DCIS IG ? ? -

2 DCIS IG ? ? -

3 DCIS HG - - ?

4 DCIS LG ? ? -

5 DCIS IG ? ? -

6 DCIS HG - - ?

7 DCIS IG ? ? -

8 DCIS HG - - ?

9 DCIS HG - - -

10 IBC IG ? ? -

11 IBC HG ? ? ?

12 IBC IG ? - -

13 IBC HG NK NK NK

14 IBC HG - - ?

15 IBC IG ? ? -

16 IBC IG ? ? -

17 IBC IG ? ? ?

18 IBC HG ? ? -

19 IBC HG - - -

LG low nuclear grade, IG intermediate nuclear grade, HG high

nuclear grade, ER estrogen receptor, PR progesterone receptor, NK not

known
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receptor, and HER2 status. The study was approved by the

Thomas Jefferson University Institutional Review Board.

LCM and RNA isolation and amplification

Neoplastic epithelial cells and tumor stroma were laser

capture microdissected as previously described using Leica

LCM system (Leica Microsystems, Germany) [18]. Total

RNA was extracted using the Qiagen microRNA kit.

Quality of RNA was assessed using the Agilent 2100

Bioanalyzer. Total RNA was amplified using the NuGEN
TM

WT-Ovation
TM

FFPE RNA Amplification System V2. First-

strand synthesis of cDNA was performed using a unique

first-strand DNA/RNA chimeric primer mix, resulting in

cDNA/mRNA hybrid molecules. Following fragmentation

of the mRNA component of the cDNA/mRNA molecules,

second-strand synthesis was performed and double-stran-

ded cDNA was formed with a unique DNA/RNA hetero-

duplex at one end. In the final amplification step, RNA

within the heteroduplex was degraded using RNaseH, and

replication of the resultant single-stranded cDNA was

achieved through DNA/RNA chimeric primer binding and

DNA polymerase enzymatic activity. The amplified single-

stranded cDNA was purified for accurate quantitation of

the cDNA and to ensure optimal performance during the

fragmentation and labeling process. The single-stranded

cDNA was assessed using spectrophotometric methods in

combination with the Agilent Bioanalyzer. The appropriate

amount of amplified single-stranded cDNA was frag-

mented and labeled using the Encore
TM

cDNA Biotin

Module. The enzymatically and chemically fragmented

product (50–100 nt) was labeled via the attachment of

biotinylated nucleotides onto the 30-end of the fragmented

cDNA.

Microarray hybridization

The resultant fragmented and labeled cDNA was added to

the hybridization cocktail in accordance with the NuGEN
TM

guidelines for hybridization onto Affymetrix GeneChip�

arrays. Following the hybridization for 16–18 h at 45�C in

an Affymetrix GeneChip� Hybridization Oven 640, the

array was washed and stained on the GeneChip� Fluidics

Station 450 using the appropriate fluidics script, before

being inserted into the Affymetrix autoloader carousel and

scanned using the GeneChip� Scanner 3000.

Microarray data pre-processing

Raw intensity files from the Affymetrix Human Exon 1.0

ST GeneChip arrays were processed using Affymetrix

Expression Console version 1.1. Gene-level expression

measurements were computed using the iterPLIER

algorithm on the ‘‘core’’ probesets and exported with

annotation release 32, dated June 23, 2011. Additional

array preprocessing was performed in Matlab version

7.11.0 (R2010b), where expression values were converted

to iterPLIER ? 16 by adding 16, and then transformed to

log2 scale. Before analysis, data was filtered to exclude

probesets with no gene annotation, and genes with multiple

probesets were handled by averaging their rows together

and scaling by the probeset with the largest standard

deviation. All subsequent analysis was performed in Mat-

lab unless otherwise noted. Data are deposited at GEO as

data set GSE33692.

Unsupervised learning

Genes with variance in the top 25th percentile were used

for both principal component analysis and hierarchical

clustering, to observe patterns in the microarray data.

Principal component analysis was performed across sam-

ples and the second, third, and fourth components were

plotted as a function of the first component to observe

natural separations that may be associated with sample

tissue characteristics. Hierarchical clustering was per-

formed on both genes and samples, using Pearson’s cor-

relation distance metric and average linkage.

Differential expression analysis

Differential gene expression analysis was performed on

paired epithelial versus stromal samples within IBC and

DCIS cases separately, using a paired t test. Differential

gene expression analysis for IBC versus DCIS samples

was performed within the epithelial samples and stromal

samples, to identify genes associated with progression

within each of these compartments, using a two-sample

t test with unequal variance. 10,000 sample permutations

were performed to obtain better P value estimations for

the two-sample t tests. To account for multiple testing,

P values were adjusted based on the estimated false dis-

covery rate (FDR), using the procedure introduced by

Storey [19]. The FDR employed and rationales are con-

sistent with prior studies and analyses [20–23]. For

increased statistical power, genes with variance below the

50th percentile or expressed below the 25th percentile in

over 90% of the samples being compared were assigned

an adjusted P value of 1 and filtered out prior to FDR

estimation [24]. After this filtering step was performed, an

alternative method for differential gene expression anal-

ysis, statistical analysis of microarrays (SAM) [25], was

applied and used to obtain an improved assessment of the

FDR, estimated by randomly permuting samples in the

dataset.
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Comparisons among independent datasets

The set of genes differentially expressed in the epithelium

(Storey FDR \ 40%) and the set of genes differentially

expressed in the stroma (Storey FDR \ 40%) were used to

evaluate gene expression profiles in independent micro-

array datasets. Series matrix files and annotation for gene

expression datasets GSE3893, GSE14548, and GSE26304

were downloaded from the Gene Expression Omnibus.

Datasets were imported into Matlab and the epithelial and

stromal differential expression lists were mapped to each

dataset based on gene symbol. Genes with multiple

probesets were handled by averaging their rows together

and scaling by the probeset with the largest standard

deviation. For the epithelial and stromal differential gene

sets, psuedo-expression signatures in each GEO dataset

were defined by median-centering gene expression profiles,

multiplying the median-centered profiles for downregu-

lated genes by -1, and taking the average over all genes.

These psuedo-expression signatures were used to rank

breast tissue samples from low-to-high expression and

observe phenotypic trends as a function of expression

gradient. The distribution of IBC samples along the

expression gradient was assessed for significance using the

Kolmogorov–Smirnov test.

Gene set enrichment analysis

A gene set database was compiled from previous studies,

including epithelial-to-mesenchymal transition (EMT)

genes reported in Table S1 in Taube et al. [26]; myoepi-

thelial-specific genes reported in Table 3A in Grigoriadis

et al. [27]; invasion-associated genes in Table 1 in Kim

et al. [28]; progression-specific genes in Schuetz et al. [29],

DCIS/invasive discriminating genes in Table 2 in Hann-

eman et al. [30]; and DCIS/invasive transition genes from

Table 1 in Ma et al. [12]. The gene set enrichment analysis

(GSEA) software tool [31] was used to identify similarities

between expression profiles in our microarray dataset and

the previously reported disease progression/invasion gene

sets. In addition, functional enrichment analysis of the

topmost differentially expressed genes in the epithelial

compartment (FDR \ 40% and FDR \ 10%) was per-

formed using the database for annotation, visualization and

integrated discovery (DAVID) [32].

Retrospective meta-analysis of clinical outcome

in breast cancer patients

A microarray dataset that was previously compiled from

the public repositories Gene Expression Omnibus (http://

www.ncbi.nlm.nih.gov/geo/) [33] and ArrayExpress (http://

www.ebi.ac.uk/arrayexpress/) [34] was used to evaluate the

epithelial IBC versus DCIS expression signature, along

with myoepithelial and EMT-specific subsets, in the context

of clinical samples [35]. This dataset includes 2,254 breast

cancer cases, of which 1,740 were identified as ER-positive

and 514 were identified as ER-negative, based on ESR1

mRNA expression [35]. Samples were analyzed in separate

groups based on ER status. Differential expression of the

averaged gene signature magnitude among these sample

groups was evaluated using two-tailed t test. Kaplan–Meier

analysis was used to evaluate survival trends within sample

groups, including 936 with relapse free survival time (790

ER-pos., 146 ER-neg.), and 488 with overall survival time

(358 ER-pos., 130 ER-neg.). The log-rank test was used to

evaluate differences in survival curves for high versus low

signature-expressing populations.

Results

Preparation of microdissected tissue

To directly investigate the epithelial and stromal com-

partments, clinical specimens of DCIS and IBC were used

(Table 1). All DCIS lesions evaluated did not progress on

to IBC over the follow up period (minimum 8 years). A

total of three normal tissues, nine DCIS, and ten IBC

cases were subjected to laser capture microdissection

(LCM). LCM was preformed on 14-lm thick sections of

frozen material stained with hematoxylin and eosin.

Representative images of the tissues and the dissected

region are provided in Fig. 1A. RNA was isolated from

each tissue and subjected to hybridization on Affymetrix

gene chips. Initially, normalized RNA expression data

was used to evaluate the relatively purity of the epithelial

and stromal compartments (Fig. 1B). These data demon-

strated the expected enrichment of epithelial-specific

markers (e.g., E-cadherin and epithelial cell adhesion

molecule) in the DCIS and IBC epithelial microdissected

compartments relative to the stromal specimens and

confirms that all tissues were enriched via the

microdissection.

DCIS and IBC and associated stroma exhibit distinct

gene expression profiles

To determine in an unbiased fashion whether the gene

expression observed in the DCIS, IBC, and associated

stromal compartments were distinct, principle component

analysis was performed on the top 25% variably expressed

genes. The resulting first principle component of the gene

expression data clearly differentiated the epithelial and

stromal components in DCIS and IBC (Fig. 2a). The fourth

principle component differentiated the DCIS from IBC
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(Fig. 2a). Thus, gene expression patterns in each of the four

tissues analyzed are distinct. In addition, the fourth prin-

cipal component associated with DCIS to IBC transition

demonstrated a stronger separation between samples in the

epithelial compartment. To further evaluate relational dif-

ferences in gene expression, the top 25% of variably

expressed genes were used to perform hierarchical

clustering (Supplementary Table 1). As shown in Fig. 2b,

the epithelial and stromal compartments were partitioned

into two highly distinct clusters. In addition, within both

the epithelial and stromal tissue compartments, DCIS, IBC,

and normal breast tissue formed disease state-specific

clusters. Importantly, this categorization of the tissue of

origin was present irrespective of commonly employed
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Fig. 1 LCM and validation. A Representative images demonstrating

the LCM of DCIS (a–c), DCIS stroma (d–f), IBC (g–i), and IBC

stroma (j–l). B Transcript expression of established epithelial-specific

genes CDH1, ESRP1, and EPCAM demonstrate enrichment in the

epithelial compartment (P \ 0.001)
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clinical–pathological features such as grade, ER, and Her2

status.

To quantify the predominant gene expression changes

within epithelial and stromal compartment of DCIS versus

IBC, statistical tests for differential expression were

applied. Using an ad-hoc cutoff of [1.5 absolute fold

change and P \ 0.01, there were 223 distinct genes in the

epithelial compartment as compared to 151 in the stromal

compartment (Fig. 3a, Supplementary Table 2). After

correcting for multiple hypothesis testing by limiting the

Storey FDR to 40%, the majority of genes in the DCIS

versus IBC compartment remained significant, while only

22 stromal genes were retained (Fig. 3b, Supplementary

Table 3), similar results were observed using the signifi-

cance analysis of microarrays with a 10% FDR (Supple-

mentary Fig. 1). Use of the more stringent criteria of a

Storey FDR of \10% resulted in the retention of differ-

entially expressed genes only in the epithelial compartment

(Supplementary Fig. 2). Combined, these analyses showed

that a majority of significant changes in mRNA expression

occur in the epithelial compartment, as opposed to the

tumor-associated stroma. Functional enrichment analysis

of gene ontology biological process terms revealed that the

genes up regulated with FDR \ 40% in IBC were involved

in biological processes such us adhesion (P = 1.2E-18),

extracellular matrix organization (P = 2.5E-11), collagen

A
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Fig. 2 Intrinsic differences in

gene expression between DCIS

and IBC. a Principal component

analysis demonstrates that

epithelial and stromal tumor

compartments are distinct

between both DCIS and IBC.

b Clustering analyses of the top

25% of variably expressed

genes further demonstrated that

the gene expression profiles

differentiate DCIS and IBC

irrespective of tumor grade, ER/

PR, and HER2 status
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fibril organization (P = 2.5E-10), skeletal system devel-

opment (P = 2.2E-9), extracellular structure organization

(P = 7.1E-9), blood vessel development (P = 5.3E-6),

vasculature development (P = 6.7E-6), skin development

(P = 8.4E-6) and immune response (P = 4.4E-5).

Importantly, these same processes were similarly enriched

when using the more stringent statistical cutoff for the

DCIS versus IBC comparison (Supplementary Fig. 2).

These findings suggest that alterations in these key bio-

logical processes play a fundamental role in the transition

from DCIS to IBC.

Validation of tissue-compartment-specific gene

expression in independent data sets

Stroma-specific and tumor-specific gene expression pro-

files defined from microdissected samples were applied to

three independent gene expression datasets comprising

DCIS and IBC cases to verify that these expression profiles

were distinctly associated with invasive disease [13, 29,

36]. These analyses show that the classifiers of DCIS

versus IBC in the epithelial compartment are highly

effective at segregating these two forms of disease

(Fig. 4a). Genes differentially expressed in the stromal

compartment were also capable of effectively separating

DCIS and IBC when applied to an independent set of

stromal samples (Fig. 4b). Combined, these analyses

indicate that alterations in gene expression within the

epithelial compartment are particularly relevant for the

transition between DCIS and IBC and are highly repro-

ducible through the independent data sets evaluated.

Distinction between pure DCIS and DCIS associated

with IBC

Several prior studies have analyzed DCIS co-existing in one

tumor with IBC [12–14, 29, 36]. Here, we interrogated the

gene expression profile as observed in our pure DCIS cases

(TJU) versus those DCIS samples that were obtained in

conjunction with IBC (GSE14548). These analyses show

that the DCIS cases present in concert with IBC harbor gene

expression profiles more similar to IBC (Fig. 5a). Similarly,

powered comparisons show differential expression in IBC

and pure DCIS (P = 7.51 9 10-7), but not in IBC versus

mixed cases (P = 0.7). In particular, those genes that we

defined as being upregulated in IBC are already elevated in

the DCIS associated with IBC. This finding may provide an

explanation for why relatively few changes in the epithelial

compartment were seen in studies analyzing DCIS associ-

ated with IBC, and suggest that upregulation of these genes

in the epithelial compartment of DCIS is associated with

disease progression. Consistent with that supposition,

mixed DCIS/IBC have an expression profile magnitude that

is indistinguishable from IBC (Fig. 5b).

DCIS IBC DCIS stroma   IBC stroma DCIS IBC DCIS stroma   IBC stroma

A B
Fig. 3 Highly significant

differences in gene expression

between DCIS and IBC.
a Heatmaps depict genes with

an absolute fold change

difference of[1.5 and P \ 0.01

in each tissue compartment.

b Heatmaps of genes with that

demonstrated a fold change

difference of [1.5 and

FDR \ 40% in each of the

tissue compartment are

provided
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Association of differentially expressed DCIS/IBC genes

with breast cancer outcome

Presumably, the altered gene expression associated with

progression to IBC could yield more aggressive forms of

disease that would have significant effect on disease out-

come. Consistent with this concept, box/whisker plots

demonstrate that the genes differentially expressed

between DCIS and IBC are significantly deregulated in a

consistent manner between healthy/normal breast and

breast tumor tissue in a large (N [ 1,000) integrated breast

cancer data set (Fig. 6a). This finding indicates a relatively

general role for dysregulation of the genes identified in our

study across all forms of breast cancer and suggests that

such genes could be utilized as markers. Interestingly,

while these genes were generally dysregulated across all

IBC, their prognostic significance was only observed in

ER-negative breast cancer—where elevated DCIS/IBC

signature expression (top 25% as determined by quartile

survival analyses) was associated with poor outcome

(Fig. 6b).

DCIS to IBC is associated with EMT and myoepithelial

gene expression

To determine how the genes defined in our analyses relate

to prior gene expression studies on breast cancer disease

progression, gene set enrichment analyses (GSEA) was

performed. These data revealed there was an over-repre-

sentation of genes involved in EMT (EMT-Quiagen/Taube

Normal epithelium
DCIS
IBC
Mixed

Normal stroma
DCIS stroma
IBC stroma

A

B

Fig. 4 DCIS versus IBC classifiers validated on independent data

sets. a The genes identified as differentially expressed in DCIS versus

IBC effectively segregated disease state in three independent data

sets. b The genes differentially expressed in stromal tissue associated

with DCIS versus IBC effectively segregated disease in one

independent data set where stromal compartment samples were

available
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Fig. 5 DCIS associated with

invasive disease already harbor

gene expression profile similar

to IBC. a Relative expression

levels of epithelial (top panels)

and stromal classifiers (bottom
panels) as identified in pure

DCIS (TJU) were compared

with data from DCIS associated

with invasive disease
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genes that are upregulated from
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expression levels of epithelial

classifiers were compared with

data from pure DCIS and mixed

DCIS/IBC from an independent

cohort (GSE26304). Left panels
show genes that are upregulated

from DCIS to IBC, right panels
show genes that are

downregulated from DCIS to

IBC
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et al.), myoepithelial cell specific genes (Grigoriadis et al.)

and disease progression (Schuetz et al./Kim et al.) [26–28]

(Fig. 7a, b). These findings suggest that transcriptional

reprogramming within the epithelia toward a more invasive

state is a critical and common feature of breast cancer

disease progression.

To investigate specific biological facets of the gene

expression differences defined between DCIS and IBC

epithelia, we specifically focused on significant differen-

tially expressed genes that have previously been identified

as EMT- and myoepithelial-associated genes. As shown in

the box and whisker plots, EMT associated genes were

consistently upregulated in invasive disease relative to pure

DCIS (Fig. 7c). This observation was specific to the epi-

thelial compartment, and was not observed in the stroma

(not shown). Analysis of the EMT signature across breast

cancer subtypes demonstrated an enrichment in all breast

cancer subtypes. Importantly, in the context of ER-negative

breast cancer this signature was associated with poor dis-

ease outcome as determined by quartile survival analyses

(Fig. 8a). Similarly, application of myoepithelial-specific

genes across breast cancer subtypes demonstrated an
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Fig. 6 Genes dysregulated between DCIS and IBC are deregulated in

IBC relative to healthy controls. a The gene expression classifiers

were applied to a large microarray database of IBC cases. These

discriminatory gene profiles were significantly deregulated in ER-

positive and ER-negative breast cancer. b Investigating the prognostic

significance of this gene expression program revealed that it is

associated with poor outcome in ER-negative breast cancer

(P = 0.0184)
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Epithelium

NAME SIZE NES NOM p-val FDR q-val

35 1.90 1.39E-02 7.98E-03

84 1.84 1.66E-02

24 1.77 3.90E-03 1.51E-02

43 1.69 2.69E-02 2.54E-02

18 1.69 1.20E-02 2.09E-02

26 1.43 7.50E-02 9.04E-02

18 -0.41 9.58E-01 9.71E-01

13 -0.91 6.04E-01 7.93E-01

135 -1.53 2.44E-02 1.59E-01
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Fig. 7 EMT and myoepithelial

expression programs are

enriched in IBC. a GSEA

analyses was performed on a

collection of gene expression

signatures relevant to breast

cancer disease progression.

These data revealed a highly

consistent enrichment for gene

sets involved in EMT and

myoepithelial cell-specific

genes. b Representative

enrichment plots are shown.

c Box and whisker plots
demonstrate the elevation of

EMT and myoepithelial cell-

specific genes in IBC versus

DCIS
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overall induction in breast cancer, but association with poor

disease outcome specifically in ER-negative breast cancer

(Fig. 8b). Thus, the deregulated programs of gene expres-

sion related to EMT and myoepithelial differentiation as

observed at the transition to IBC are relevant to the out-

come of ER-negative breast cancer.

Discussion

The management of breast cancer has been dramatically

influenced by the definition of specific subtypes of disease

that have known prognosis and treatment susceptibilities.

In contrast, our understanding of DCIS biology and the

mechanisms of progression to IBC is less mature. There is

significant interest in identifying the nature of molecular

events involved in disease progression to determine those

precursor lesions likely to progress to malignancy and

therefore to provide individualized treatment to patients

with DCIS. To date, molecular analyses of DCIS have been

limited by scant availability of frozen tissue for molecular

studies, shortage of DCIS tissue biorepositories with long-

term follow up, and varying treatment modalities. In

addition, the small size of DCIS lesions in many cases

precludes analysis of whole tissue sections and requires

microdissection to analyze lesional cells and avoid con-

tamination with normal tissue.

Several studies evaluating gene expression profiles in

DCIS demonstrated that there was remarkable similarity of

the neoplastic epithelial cells of DCIS and IBC [12, 13,

14]. However, other investigators comparing transcriptome

of DCIS and IBC have identified stage-specific markers

and a gene expression classifier that differentiate DCIS and

IBC [29, 30]. Another recent study demonstrated that genes

conferring invasive growth are present only in a subset of

DCIS cases [36]. Our findings indicate that there are

intrinsic differences in the gene expression program of

DCIS and IBC. Importantly, these alterations are distinct

from tumor grade, ER/PR status, and Her2 status, indicat-

ing that there is a general basis for invasive behavior. It has

been postulated that alterations in the tumor microenvi-

ronment (i.e., stroma) are crucial for progression to inva-

sive disease. In fact, prior studies reported most

transcriptional changes are evident in the stroma sur-

rounding DCIS versus IBC, as opposed to the lesions

themselves [12–14]. This study demonstrated that the

largest degree of alterations in gene expression between

pure DCIS and IBC is present in the epithelial/tumor

compartment. Importantly, the classification potential of

these alterations was subsequently validated in multiple

independent data sets. While there are clearly differences

in the stroma as well, the overall number of significant

genes and relevant pathways in that compartment involved

in progression to invasive behavior remain elusive. While

we did initially observe statistically significant differences

between DCIS and IBC stroma, after adjusting for multiple

testing, very few genes passed this more rigorous statistical

filtering and relevant pathways in that compartment

involved in progression to invasive behavior are unclear.

To examine the concept that invasive potential is pre-

determined at the early stages of breast carcinogenesis, we

compared data sets of DCIS associated with the IBC

against our pure DCIS that did not progress to IBC on at

least 8 years follow up. These analyses indicate that in

DCIS that is associated with IBC there is already a sig-

nificant induction of gene expression, and particularly

genes associated with invasion are largely deregulated in

DCIS associated with IBC. This finding likely explains

why there is little difference in gene expression in the

epithelial compartment of DCIS that are microdissected

from invasive disease [12–14]. Correspondingly, cases of

mixed DCIS/IBC behave essentially as IBC, suggesting

that such lesions that have the capacity to progress largely

express the gene expression program of invasive disease

[36]. These findings illustrate that there exists a clear

molecular distinction between pure DCIS and DCIS which

is associated with invasive disease and that may already

have undergone changes in gene expression profiles to

become more similar to that of IBC.

Gene expression programs associated with invasion are

associated with the progression from DCIS to IBC.

Upregulation of genes associated with EMT and myoepi-

thelial cell specific genes was seen in IBC when compared

to pure DCIS, and these changes were highly reproducible

between independent data sets. The development of the

ability to invade the surrounding tissue is perhaps the most

critical event in cancer progression. Tumor cell invasion is

a multistep process, of which the key events include

increased migration, increased protease secretion, and

altered adhesion to allow dissemination from primary

tumor sites [37, 38]. While EMT has been implicated in

tumor invasion partly by reducing cell–cell adhesion, the

myoepithelial phenotype is specifically implicated in

increased cell motility [39]. Thus, such alterations in gene

expression specifically associated with disease state (in situ

versus invasive carcinoma), are clearly consistent with

multi-step processes driving the invasive behavior. This

finding is unique as many processes remain common

between DCIS and IBC. For example, both DCIS and IBC

Fig. 8 EMT and myoepithelial cell specific signatures are associated

with poor disease outcome in ER-negative breast cancer. EMT (a) and

myoepithelial cell-specific (b) gene expression signatures were

evaluated for relative expression across ER-positive and ER-negative

breast cancer showing consistent deregulation in disease. However,

both signatures were only associated with poor disease outcome in

ER-negative breast cancer (P \ 0.05)

b
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demonstrate similar proliferation rates, and similar levels

of cell cycle-related genes were observed between these

stages of disease (not shown). GSEA showed marked

overlap between genes upregulated in IBC transcriptome in

our study and myoepithelial genes described by Jones and

Grigoriadis [27, 40]. Consistent with these findings, other

studies have previously reported expression of several

other myoepithelial markers identified in our study (e.g.,

POSTN, FN, SPARC, LUM, COL1A2, COL1A11, and

CAV-1) in IBC. Furthermore and consistent with our

findings expression of several myoepithelial markers such

as S100A2, SPARC, and maspin was associated with a

poor prognosis in IBC, especially in ER-negative breast

cancers. Correspondingly, EMT has been implicated in

mediating both invasion and metastases. During EMT

epithelial cells convert to a mesenchymal cell phenotype

after losing cell polarity, disassembling cell–cell adhesion

machinery, and subsequently acquiring increased cell

mobility [39]. An EMT core signature has been recently

described using gene expression changes induced in human

mammary epithelial cells induced to undergo EMT [26].

GSEA showed enrichment of EMT core signature genes

among genes differentially expressed between IBC and

DCIS. EMT genes were clearly upregulated in IBC and

were associated similarly with poor outcome in ER-nega-

tive breast cancer. These findings agree well with the prior

association of EMT markers with poor outcome in basal

like IBC [26]. At present, how EMT influences prognosis

versus therapeutic response in ER-negative breast cancer

remains unknown. In our cohorts, there are insufficient

patient samples annotated for therapy to rigorously support

conclusions based on treatment (n = 26). However, in

patients treated with adjuvant chemotherapy a high

expression of EMT signature was associated with poor

overall survival (P \ 0.01). Together, these findings indi-

cate that myoepithelial and EMT phenotypes are associated

with the conversion to invasive disease in all subtypes of

breast cancer, but associate specifically with poor outcome

in ER-negative disease.

Recently, it has been suggested that pathologic features

and markers driving DCIS recurrence and progression to

IBC may vary. From the clinical history of DCIS it is clear

that while some patients will experience multiple recur-

rences in the form of DCIS over extended periods of time,

others will rapidly progress to IBC. In a case–control

study of 619 DCIS cases treated with a breast conserving

surgery without radiation or hormonal therapy (225 DCIS

with the recurrence and 395 without recurrence), larger

DCIS lesions and close/positive excision margins were

associated with a DCIS recurrence but did not predict

increased risk of invasive recurrence. In fact, none of the

evaluated pathologic factors was predictive of the invasive

recurrence. Additional studies with larger cohorts of DCIS

will be needed to determine if the relative expression of

the DCIS/IBC classifiers defined here are relevant prog-

nosticators for disease progression. However, one can

envision that the gene expression program of the DCIS at

the time of the diagnosis could determine the rate of the

progression to IBC. Such knowledge in association with

clinical features (age, co-morbidities) could become a base

for the development of the clinical tests allowing for the

accurate prognostication of the DCIS patients. This would

have a dramatic impact on DCIS treatment and allow

identification of a low risk group of the patients who

require follow up only, and a high risk group needing

additional therapy.
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