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Abstract A risk prediction model is a statistical tool for

estimating the probability that a currently healthy indi-

vidual with specific risk factors will develop a condition in

the future such as breast cancer. Reliably accurate predic-

tion models can inform future disease burdens, health

policies and individual decisions. Breast cancer prediction

models containing modifiable risk factors, such as alcohol

consumption, BMI or weight, condom use, exogenous

hormone use and physical activity, are of particular interest

to women who might be considering how to reduce their

risk of breast cancer and clinicians developing health pol-

icies to reduce population incidence rates. We performed a

systematic review to identify and evaluate the performance

of prediction models for breast cancer that contain modi-

fiable factors. A protocol was developed and a sensitive

search in databases including MEDLINE and EMBASE

was conducted in June 2010. Extensive use was made of

reference lists. Included were any articles proposing or

validating a breast cancer prediction model in a general

female population, with no language restrictions. Duplicate

data extraction and quality assessment were conducted.

Results were summarised qualitatively, and where possible

meta-analysis of model performance statistics was under-

taken. The systematic review found 17 breast cancer

models, each containing a different but often overlapping

set of modifiable and other risk factors, combined with an

estimated baseline risk that was also often different.

Quality of reporting was generally poor, with characteris-

tics of included participants and fitted model results often

missing. Only four models received independent validation

in external data, most notably the ‘Gail 2’ model with 12

validations. None of the models demonstrated consistently

outstanding ability to accurately discriminate between

those who did and those who did not develop breast cancer.

For example, random-effects meta-analyses of the perfor-

mance of the ‘Gail 2’ model showed the average C statistic

was 0.63 (95% CI 0.59–0.67), and the expected/observed

ratio of events varied considerably across studies (95%

prediction interval for E/O ratio when the model was

applied in practice was 0.75–1.19). There is a need for

models with better predictive performance but, given the

large amount of work already conducted, further

improvement of existing models based on conventional

risk factors is perhaps unlikely. Research to identify new

risk factors with large additionally predictive ability is

therefore needed, alongside clearer reporting and continual

validation of new models as they develop.

Keywords Breast cancer � Systematic review �
Prediction models

Background

A risk prediction model is a statistical tool for estimating

the probability that a currently healthy individual with

specific risk factors (e.g. age, menopausal status) will

develop a future condition, such as breast cancer, within a

certain time period (such as within 5 years or lifetime).

Risk models combine the baseline risk of developing the
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condition with an individual’s risk score, i.e. a score

derived from their set of risk factor values multiplied by the

‘beta’ weights (e.g. log odds ratios) associated with these

factors, as estimated from a statistical equation. The

baseline risk of the condition represents the underlying

population risk for patients whose risk factor values are all

zero (or ‘not present’), and this is usually estimated from a

prospective population-based cohort study. The risk-score

component shows how much the baseline risk is multiplied

for increasing values of the risk factors, and may also be

estimated using a cohort study or, for rare conditions, a

case–control study. The two main statistical models used to

identify important risk factors and to estimate their asso-

ciated beta weights are logistic regression and Cox pro-

portional hazards regression. The variables in the model

can be any combination of environmental, behavioural,

genetic or psychological attributes of the person. As well as

estimating risk estimates for specific individuals, risk pre-

dictions model can also make a population-based estimate

of risk by using average risk factor values from the

population.

After a risk prediction model has been developed in a

sample from a population, it then needs to be validated in

further independent samples from the same population, and

indeed within samples from different populations to ensure

that it is reliable and generalisable. Frequently the predic-

tive accuracy of the model is not as good in the validation

sample as the original sample, and so adjustments are made

leading to new or modified models being gradually

developed over time. Even if the same risk factor variables

are included, their beta weights may be changed which

would then constitute a different model, as the risk score

would then change. The performance of prediction models

may also vary according to the population they are applied

to, so that a model may have good accuracy in a high risk

population and not in a low risk population and vice versa.

There are a wide variety of ways to describe the perfor-

mance of predictive tests. Steyerberg et al. [1] describe a

number of these, and many of the statistical measures used

are well-known from diagnostic test studies, such as sen-

sitivity, specificity and the AUC (area under the receiver

operating characteristic curve (ROC)) [2].

In practice, only some of these statistics are reported in

modelling and validation articles for risk prediction mod-

els, and the two most common are the E/O statistic and the

C statistic, interpreted as follows:

• The E/O statistic measures the calibration performance

of the model. It compares expected (E) numbers to

observed (O) numbers of events, so a well fitting model

should have the number close to 1. A number lower

underestimates the incidence of the condition whereas a

number higher overestimates the incidence. Often

E/O statistics are presented for deciles of the population

defined by predicted risk, to see whether E/O is close to

1 in all deciles or not.

• The C statistic measures the discrimination perfor-

mance of the model. It gives the proportion of

randomly chosen pairs from the sample (i.e. a person

with the condition paired with one without it), where

the person with the condition has a higher predicted risk

than the one without. A C statistic of 0.5 is equivalent

to no discrimination between people who develop the

condition and those who do not, whereas 1.0 indicates

perfect discrimination. The AUC and the C statistic are

the same.

Such performance statistics can be used to compare

competing risk prediction models. Ideally one or more

primary studies would need to be done that used the same

data to run all of the different models and discover which

one was superior in terms of calibration and discrimination.

Such studies are, however, rare and so systematic reviews

of the literature to identify, extract and synthesise perfor-

mance statistics for each model across multiple studies are

important.

Risk models in breast cancer

A large number of risk prediction models have been

developed that have looked at a variety of different risk

factors for developing breast cancer. The most well-known

is the Gail model but there are numerous others such as the

Claus model, the Tyrer-Cuzick model and the Jonker

model [3]. These models for the prediction of breast cancer

incidence should not be confused with models that predict

recurrence or mortality after the initial breast cancer inci-

dence; these are known as prognostic models rather than

risk prediction models [4]. There are numerous breast

cancer prognostic models and a recent health technology

assessment reviewed 61 prognostic models of single or

multiple factors [5, 6].

Family history is an important risk factor for breast

cancer and is usually included in these prediction models.

Some models explore breast cancer incidence in mothers

and sisters as risk factors, whilst others also look at family

history of ovarian cancer. Where the models only looks at

family history, the variables investigated are not modifi-

able, as opposed to other models which include variables

such as alcohol consumption, BMI or weight, condom use,

exogenous hormone use and physical activity which are all

potentially modifiable. Many women are interested in

whether they can reduce their risk of breast cancer so it

would be useful to know which modifiable variables are

included within existing prediction models and, if altered,

the extent to which they might reduce their risk of breast
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cancer. Clinicians and health policy makers may also aim

to lower the population rate of breast cancer by public

health interventions intended to reduce modifiable risk

factors.

Scoping the literature prior to our review, we found two

relevant systematic or semi-systematic reviews of inci-

dence risk prediction models for breast cancer. One, pub-

lished in 2007, searched Medline and PubMed only and did

not assess breast cancer risk prediction models in depth [7].

A systematic review of breast cancer risk assessment

models [3] published in 2009 listed seven models, of which

four included family history variables only (BOADICEA,

Claus, Claus2, Jonker) one was a modification of the Claus

model (from a article by van Asperen from 2004) and the

remaining two were the Gail and the Tyrer-Cuzick models,

both of which do include modifiable risk factors. The

systematic review did not synthesise model performance

statistics across multiple studies, and did not fully cover the

possible list of models available as several other models

have been published [8, 9]. Therefore, there is no currently

published systematic review assessment of the most accu-

rate breast cancer incidence prediction model to use in the

UK population or similar. In this article, we report a sys-

tematic review identifying articles developing or validating

breast cancer incidence risk prediction models that contain

at least one modifiable risk factor. The aim is to qualita-

tively summarise the models and the risk factors they

contain, and to collate and meta-analyse model perfor-

mance statistics across studies, to allow the performance of

each model to be compared.

Methods

A protocol was developed and a scoping search undertaken

in November 2009. For the full systematic review the

following databases were searched from inception to June

2010: Cochrane library (CDSR, CENTRAL, HTA, DARE,

NHSEED), MEDLINE, EMBASE, CAB Abstracts and

PsychINFO. The following search terms were used: breast

cancer and prediction or risk model as index terms and text

words as this was found to maximise the number of rele-

vant citations. A sensitive search strategy was used as there

is no specific MESH term and database indexing of pre-

diction model studies is relatively poor. Extensive use was

made of reference lists in the systematic reviews and pri-

mary studies to find further studies for inclusion.

Inclusion criteria were any studies developing and/or

validating a breast cancer risk prediction model for the

general female population using multiple variables, at least

one of which was a modifiable risk factor. There was no

restriction on study type; for example, studies may use data

from cohort studies, prospectively or retrospectively

recruited, where some healthy women at the start went on

to develop breast cancer, or they may use data from case

control studies where cases had breast cancer and controls

did not, with risk factors ascertained from existing records.

There were no language restrictions. Excluded were breast

cancer in men, women who already had breast cancer or

benign breast pathology when recruited and studies in high

risk groups of women such as with specific genetic muta-

tions or who have close family relatives with breast cancer.

Models investigating single risk factor results such as

mammography, assessing genetic risk factors only includ-

ing carrier status of mutations, assessing invasive tech-

niques such as biopsies only, assessing family history of

breast or ovarian cancer only and predicting genetic

mutations rather than cancer were excluded. Screening and

early detection studies were excluded, as were models

published more than 25 years previously (i.e. before 1985).

All identified citations (titles ± abstracts) were screened

by one reviewer for inclusion and 10% were checked by a

second reviewer with no discrepancies. Full articles were

ordered for all included or possibly included citations and

screened for inclusion. All data extraction was conducted

by two reviewers independently and disagreements were

resolved by discussion with a senior statistician. There are

no specific quality assessment checklists for prediction

modelling studies but there is a list of criteria recently

published by Altman [6]. This was for prognostic rather

than predictive studies but the issues are similar. The

quality factors he discusses that are relevant to prediction

models are listed below.

• Study design—cohort usually of higher quality due to

risk factors being recorded at baseline and time of event

used.

• Patient sample—prospective data collection with char-

acteristics of patients recorded.

• Sample size—the power of the study depends on the

number of events so if a general population sample is

used it will need large numbers or long follow up or

both. It was suggested that there needs to be ten times

the number of events to the number of variables

studied.

• Incomplete data, missing or losses to follow up—these

are difficult problems that reduce power and probably

result in bias. Completeness of data should be reported.

• Variables—use of continuous variables on their origi-

nal scale is better than categorisation of a continuous

variable into, for example, low and high risk groups, as

categorisation of a continuous variable reduces power.

• Presentation—whether full presentation of the model is

given including all of the variables, their beta weights,

and the baseline risk estimate; this is important to

enable the model to be applied in practice.
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• Validation—ideally the models needs to have valida-

tion from an independent sample rather than looking at

model performance in the same sample used to develop

the model, or even when splitting the sample in order to

use half to develop the model and the other half to

validate it.

For each study identified by our review, we extracted

information relating to each of these criteria and noted

when pertinent information (e.g. missing data, model beta

estimates provided, etc.) was not reported. Study charac-

teristics and results were extracted, tabulated and assessed

qualitatively and graphically where appropriate. Results

were interpreted in light of methodological strengths and

weaknesses identified in quality assessment. For validation

studies, any metric of model performance (such as the

E/O statistic and the C statistic) were extracted alongside

their uncertainty (e.g. their confidence interval or standard

error). Where observed over expected (O/E) rates were

given in articles, these have been reported in the summary

tables but converted to E/O to give consistency in the

meta-analysis. Where multiple studies reported the same

performance statistic for a model, a random-effects meta-

analysis was performed, using the DerSimonian and Laird

method via STATA software version 11 [10, 11], to sum-

marise model performance. This approach estimates the

average performance of the model, the between-study

heterogeneity in model performance, and a 95% prediction

interval for the model performance when it is applied in a

single population setting [12].

Results

From the database searches 7,317 references were found of

which 1,265 were duplicates. The flow of articles is shown

in Fig. 1. The following studies were found:

• Six studies describing the development of a new

prediction model (Arne 2009, Colditz 2000, Cook

2009, Gail 1989, Tyrer 2004 and Wacholder 2010).

• Nine studies validating one or more prediction models in

a new sample from a potentially different population

((Gail 1 or 2 model validation: Amir 2003 (also validated

Tyrer 2004), Bondy 1994, Costantino 1999, Rockhill

2001, Speigelman 1994, Schonfeld 2010, Ulusoy 2010)

(Rosner 1994 model validation: Rockhill 2003 [13] (also

validated Colditz 2000), Viallon 2009 [14]).

• Eleven studies both describing and validating one or

more models (Barlow 2006 (validated Gail 2), Boyle

2004 (validated Gail 2), Chen 2006 (validated Gail 2),

Decarli 2006 (validated Gail 2), Gail 2007 (validated

Gail 2), Novotny 2006 (validated Gail 2), Rosner 1994

(validated Pike—but this model excluded as published

in 1983), Rosner 1996 (validated Pike—ditto), Rosner

2008 (validated Colditz), Tice 2005 (validated Gail 2),

Tice 2008 (validated Gail 2)).

Studies describing a new risk prediction model

In total, 17 studies developing a new risk prediction model

were found and several of these described more than one

version, and new models were often a modification of

previously proposed models (e.g. with the addition of one

or more risk factors). The models and their reporting are

described in Table 1. None of the 17 prediction model

studies gave a justification for the sample size used, though

most included large numbers of participants. Fifteen of the

17 articles stated the number of eligible patients for model

derivation; seven gave the number of events per variable;

eight summarised the sample characteristics (e.g. mean

age, proportion post-menopausal) in a table; nine stated

whether there was missing risk factor data for some par-

ticipants; and fifteen stated how they handled continuous

variables (i.e. whether kept continuous or categorised).

Only six reported the full specification of the final devel-

oped model(s), including parameter values (beta weights)

and their standard errors or 95% confidence intervals for all

included variables. Of those 11 articles that did not report

the full model, eight alternatively gave beta weights for a

partial set of variables and/or gave transformed beta

weights (e.g. odds ratios or risk ratios) for some or all

variables. The variables used in each of the prediction

models are shown in Table 2. The modifiable risk factors

that were included in one or more models were alcohol

consumption, breast biopsy number, BMI or weight, con-

dom use, exogenous hormone use (HRT, contraceptive

pill), and physical activity. The most commonly included

risk factors in the models were age, Age at first live birth

Citations retrieved for 
assessment of full  
paper= 79 

Papers included in this 
systematic review 
= 26 

Development of a new risk 
prediction model only = 6 

Both development of a new model and 
validation of one or more models = 11 

Excluded from systematic review = 53 
(Systematic/semi systematic reviews = 2 
Irrelevant = 49 
Insufficient detail = 1) 

Total number of 
citations found 
= 7317 

Irrelevant = 5973 
Duplicates = 1265 

Independent validation of one or more 
models = 9 

Fig. 1 PRISMA diagram for systematic review
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Table 1 Risk prediction model reporting and analysis characteristics

Description of key

aspects of study design

Sample

characteristics

Data quality Handling of

continuous variables

Presentation of model

Article Number of

eligible

patients

given

Number

of

events

per

variable

Were they

summarised in a

table (e.g. mean

age, proportion

males, …)

Missing data for

each variable

mentioned/

stated in the

article?

Were they kept

continuous or

categorised in the

model?

Was the complete model

given (i.e. parameter

estimates and their

uncertainty, i.e. s.e. or

CI)?

If not, was any part of

the model given?

Arne 2009 No Not

stated

No No Not given No No

Barlow

2006

Yes,

1,007,600

Stated Yes Yes Categorised (test for

trend across

categories of a

continuous factor

performed)

No Yes; ORs and CIs for

each category of each

variable relative to

the reference

category

Boyle 2004 Yes, 5,157 Not

stated

Yes No Categorised No (only some of the

final model variables

are given)

Yes; ORs and CIs

given for a partial set

of the included

variables; score chart

provided

Chen 2006 Yes,

284,780

Not

stated

No Yes Categorised No Yes (variable names

with coefficients, but

no CIs)

Colditz

2000

Yes,

58,520

Not

stated

No No Kept continuous Yes

Cook 2009 Yes,

45,281

Not

stated

Yes Yes, as

complete data

available

Kept continuous Yes

Decarli

2006

Yes, 5,157 Stated Yes Yes; patients

with missing

data excluded

Categorised No Yes; ORs and CI given

for variables

Gail 1989 Yes, 5,998 Stated No No Continuous but age

categorised

YES (estimates and their

standard errors given)

Gail 2007 Yes, 3,254 Stated Yes Yes (NB they

had complete

data)

Categorised YES (estimates and their

standard errors given)

No

Novotny

2006

Yes, 4,598 Not

stated

No No Categorised No Yes; ORs and

parameter estimates

given, but no

standard errors or CIs

Rosner

1994

Yes,

91,523

Not

stated

No Yes: patients

with missing

data excluded

Continuous No Yes; some parameter

estimates and some

CIs given

Rosner

1996

Yes,

89,132

Not

stated

No No Continuous Yes

Rosner

2008

Yes,

59,812

Not

stated

No No Continuous Yes

Tice 2005 Yes,

81,777

Stated Yes Yes Categorised, as in

the Gail model

No Yes; some parameter

estimates and CIs

given

Tice 2008 Yes,

1,095,484

Stated Yes Yes A mixture of

continuous and

categorisation

used

No No

Tyrer 2004 No Not

stated

No No Not given No No

Wacholder

2010

Yes,

11,588

Stated Yes Yes Categorised No Yes; ORs and CIs for

the variables
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Table 2 Breast cancer risk models comparison of factors

Risk factors (modifiable

factors in bold)

Arne

2009

Barlow 2006

pre-menopausal

Barlow 2006

post-menopausal

Boyle

2004

Chen

2006

Colditz

2000

Cook

2009

Decarli

2006

Gail

1989

Age Y Y Y Y Y Y Y Y

Age at menarche Y Y Y Y Y

Age at first live birth and/or age at subsequent

births

Y Y Y Y Y Y

Age at menopause Y Y

Alcohol consumption Y Y Y

Atypical hyperplasia/benign breast disease Y Y y

Breast density Y Y Y

Birth history/parity Y Y

Birth index Y Y

Breast biopsy number Y Y Y Y Y

BMI or weight Y Y Y Y Y

Condom use Y

Ethnicity Y

Exogenous hormone use (pill, HRT) Y Y Y Y

Family history of breast cancer Y Y Y Y Y Y Y Y Y

Family history of any cancer

Height Y Y

Physical activity Y

Reproductive age period Y

Surgical menopause Y Y Y

Risk factors (modifiable factors in bold) Gail

2007

Novotny

2006

Rosner

1994

Rosner &

Colditz

1996

Rosner

2008

Tice

2005

Tice

2008

Tyrer-

Cuzick

2004

Wacholder

2010

modelsa

Age Y Y Y Y Y Y Y Y 1, 2, 3

Age at menarche Y Y Y Y Y Y Y 1, 2, 3

Age at first live birth and/or age at subsequent

births

Y Y Y Y Y Y Y 1, 2, 3

Age at menopause Y Y Y Y

Alcohol consumption Y

Atypical hyperplasia/benign breast disease Y Y Y

Breast density Y Y

Birth history/parity Y Y

Birth index

Breast biopsy number Y Y Y Y Y 1, 2, 3

BMI or weight Y Y Y

Condom use

Ethnicity Y

Exogenous hormone use (pill, HRT) Y

Family history of breast cancer Y Y Y Y Y 1, 2, 3

Family history of any cancer Y

Height Y Y

Number of contraceptives Y

Physical activity

Reproductive age period

Surgical menopause Y

a Five models were presented in Wacholder 2010 but only three had modifiable risk factors and have been presented here
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and/or age at subsequent births and family history of breast

cancer. The risk factors only included in one model were

condom use, family history of any cancer, physical activity

and reproductive age period.

The only models with independent validations were

Colditz 2000, Gail 1 (1989) and 2 (1999), Rosner and

Colditz 1994 and Tyrer and Cusick 2004. Each of the 17

studies developing a new risk prediction models are now

briefly summarised.

The study by Arne (2009) [15] was conducted in Mac-

edonia but seems to have used an incidence database from

the USA. No details are given of the database itself but a

book reference is provided. The article is orientated around

establishing use of condoms as a risk factor for breast

cancer. One hypothetical example of a 54-year-old woman

gives an estimated breast cancer risk of 62.7%. No inde-

pendent validation of the model is available.

The article by Barlow et al. [16] developed two breast

cancer models, one for pre-menopausal women and one for

post-menopausal women. The database used was devel-

oped from seven US registries of women aged 35–84 who

were undergoing very regular mammography (yearly or

18-monthly). Given that mammography is a known risk

factor for breast cancer [17], the incidence in these cohorts

is likely to be higher than in the UK where mammography

is conducted routinely at 3-yearly intervals in women aged

over 50.

Boyle and colleagues [18] developed a model based on

an Italian case control study with the breast cancer cases

aged between 23 and 74 years (median 55) and the controls

aged 20–74 admitted to hospitals in the same catchment

area with acute conditions. The model was a modification

of the Gail 2 model (see below). The validation population

was taken from an Italian RCT for adjuvant breast cancer

treatment with tamoxifen but the women had all had hys-

terectomies. It was unclear why they had all had hyster-

ectomies and it was also unclear as to why this group were

chosen to validate the model because, as they remark in the

article, the risk of this cohort developing breast cancer is

around 20% lower than the general population.

The study by Chen et al. [19] is also a modification of

the Gail 2 model and compares the new model to the Gail 2

model in a US population. The article refers to three

unpublished articles by Chen and colleagues and as these

articles are unavailable, it makes assessment of the pre-

sented model problematical. The way the article is written,

with large numbers of abbreviations, equations and

assumptions that the reader will understand the mathe-

matical notation, makes the article very difficult to interpret

for practitioners wishing to implement prediction models

for breast cancer.

The study by Colditz and Rosner [20] was a continua-

tion of previous modelling work done by Rosner et al.

(see below) [21], but they present a different model. The

population was a cohort of 121,700 nurses from the USA

but only 58,520 were used, the remainder being excluded

for a variety of reasons including data inconsistencies

around births and parity, incomplete data on height, weight

and birth control pill use, and having had a surgical men-

opause. There is a further article by the same authors

(Rosner et al. [9]) describing further modifications of the

model with reference to predicting oestrogen-positive

breast cancer, but using the same population as the study

by Colditz and Rosner [20].

The article by Cook et al. [17] had Rosner and Colditz as

co-workers and also used the same population as the Col-

ditz and Rosner (2000) model [20], but the Cook et al.

(2009) model contained a different set of risk factors to the

Colditz and Rosner (2000) model and the modifications by

Rosner et al. [9]. Some of the article looks at predictors for

mammography but this is not relevant here. The article

presented beta-weight results by individual risk factors

from the total model which makes it easier to see the rel-

ative importance of the different factors.

The article by Decarli et al. [22] developed two models,

one using cancer data from a case control study and the

other from a cancer registry, both models being based on a

European cohort study—the Florence EPIC Cohort study

and using variables from the Gail 2 model for invasive

breast cancer (see below). Statistical methods and equa-

tions are presented in the text with the assumption that the

reader will understand the mathematical notation.

The Gail model [23] was one of the earliest models and

has undergone considerable development since the original

article from 1989. The original model (Gail 1) used data

from a case control study to estimate the beta weights (i.e.

log odds ratios) for the risk factor variables. These were

then combined with the baseline risk estimated using data

from the BCDDP Cohort (a population of white women

from USA), to allow individualised probabilities to be

calculated.

A development of the Gail model, described here as the

Gail 2 model, was published by Anderson and colleagues

in 1992 as a technical report so is not universally available

but is referred to in a article by Costantino et al. [24]. This

model is for predicting invasive breast cancer only, and the

baseline risk is estimated using a population of mixed

ethnicity (The SEER database) available from the placebo

arm of a RCT on adjuvant tamoxifen treatment. In this

population the original Gail model (model 1) underesti-

mated the risk of breast cancer (E/O = 0.84 (0.73–0.97)),

particularly in the older women aged over 60 (E/O = 0.66

(0.52–0.86)). The Gail 2 model was used to establish eli-

gibility for tamoxifen treatment by estimating baseline

risk of breast cancer and is available on the internet

(see http://www.cancer.gov/bcrisktool/Default.aspx). There
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were several subsequent validations found for the Gail 1 and

Gail 2 models (see below).

The article by Gail and colleagues 2007 [25] is a further

development of the modelling initiative where another

model was developed for invasive breast cancer risk in

Black women using a case control study for relative and

attributable risks, and the baseline risks estimated from

Black women’s data in a population cohort study (NCI

SEER) and from national mortality data.

Novotny et al. [26] developed two Czech models using

the same statistical approach as the Gail 2 model, including

the same risk factor variables and four additional ones

(number of relatives with any cancer, breast inflammation,

BMI and number of conceptions) for the latter. The beta

weights were estimated from a case control study in the

Czech population.

The study by Rosner et al. [21] developed a model

known as the Rosner and Colditz model which was a

development of an early model by Pike and colleagues

from 1983 but with an additional factor allowing for the

influence of more than one birth. They also used a US

Nurses cohort study for estimating their model parameters,

whereas the Pike model used a US population cancer sur-

vey and case control studies. One modification study was

found for the Rosner and Colditz model by Rosner and

Colditz [27] which introduced a term to allow for a tran-

sient increase in risk with first pregnancy to increase with

age at first pregnancy. This was because they noticed that

the Rosner and Colditz model tended to overestimate

incidence of breast cancer in younger women who had their

babies young and underestimate incidence in older women

who had their babies later.

Rosner et al. [9] developed another model, using their

model from 1994, which evaluated whether oestradiol

levels in post-menopausal women was a sufficiently

important variable to merit inclusion into the model. Only

oestrogen-positive breast cancers were considered. They

concluded that it gave predictive value in addition to life-

style factors.

Tice et al. [28] developed a model using a prospective

cohort study from USA and included the variable of mam-

mographic breast density with other variables from the Gail

2 model, with parameters estimated using Cox proportional

hazards model. A new model was developed by Tice and

colleagues (2008) [8] which incorporated mammographic

breast density into a proportional hazards model. They used

a population of US women from seven mammography

registries (the same as those used to develop the Barlow

models (see above)). They concluded that ‘‘the model has

only modest ability to discriminate between women who

will develop breast cancer and those who will not’’.

The Tyrer and Cuzick model was developed in the UK

[29] and is based on a Bayesian statistical analysis. The

population used was from the International breast inter-

vention study (IBIS) and UK national statistics (Cancer

Registry statistics from 1994). It combines extensive

family history, atypical hyperplasia (benign breast disease)

and endogenous oestrogen exposure.

The study by Wacholder et al. [30] was mainly orien-

tated around evaluating the predictive power of genetic

variants on the incidence of breast cancer. Five models

were described, but only the three which incorporated

modifiable risk factors are included here, and these were

modifications of the Gail 2 model. Interestingly, the addi-

tion of the genetic components to the models only added a

small increase in predictive power of between 2 and 4%.

Validations of prediction models

The only models listed above with independent validations

in subsequent articles were Colditz 2000, Gail 1 and 2,

Rosner and Colditz 1994 and Tyrer and Cusick 2004.

Validation study characteristics and results are shown in

Table 3. There were four articles with independent vali-

dations of the Gail 1 model (Bondy 1994 [31], Costantino

1999 [32], Novotny 2006 [26], Spiegelman 2004 [33]) and

12 articles with independent validations of the Gail 2

model (Amir 2003 [34], Barlow 2006 [16], Boyle 2004

[18], Chen 2006 [19], Costantino 1999 [32], Decarli 2006

[22], Gail 2007 [25], Rockhill 2001 [35], Schonfeld 2010

[36], Tice 2005 [28], Tice 2008 [8], Ulusoy 2010 [37])

[37]. Note that Costantino 1999 [32] evaluated both Gail

models, and several of the articles presented more than one

validation using different cohorts. The validation popula-

tions were mostly from USA, but there was also one study

from each of Czech Republic, France, Great Britain, Italy

and Turkey. The standard of presentation was variable and

some were very hard to interpret because of assumptions

that the reader will understand mathematical notation, for

example.

We extracted performance statistics from each of these

articles where available. Meta-analyses of the C statistic

(Fig. 2) and the E/O ratio (Fig. 3) were conducted for each

model that had the validation statistic extracted from two

or more articles. As validation statistics were often not

reported, only a few meta-analyses were possible and often

they contained a small number of studies. In most analyses

there was considerable between-study heterogeneity in the

validation statistic; for example, for Gail 2 model the

proportion of total variability that is due to between-study

heterogeneity (I2) was 94.5 and 92.5% in the meta-analyses

of the C statistic and E/O ratio, respectively. Such heter-

ogeneity is perhaps unsurprising given the variations in

populations used for the validations.

In the two meta-analyses of the C statistic (Fig. 2), the

average C statistic was 0.63 (95% CI: 0.59–0.67, based on
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Table 3 Breast cancer incidence model validation statistics

Model
validated

C statistic
(95% CI)

Other validation stats Validation population Comments

Amir 2003 Gail 2 0.735
(0.666–0.803)

E/O = 0.69 (0.54–0.90) High risk hospital cases
and controls from UK

Also evaluated three genetic models

Tyrer-
Cuzick

0.762
(0.700–0.824)

E/O = 1.09 (0.85–1.41)

Barlow
2006

Gail 2 0.598 Not given Mammogram registry in
USA population

Differences in time intervals for cancer
ascertainment meant validation unreliable

Bondy 1994 Gail 1 O/E = 0.76 High risk white women
in Texas USA

Subgroup analysis based on American
Cancer Society mammogram screening
guidelines given

Boyle 2004 Gail 2 Not given O/E = 0.89 (0.70–1.09) RCT of adjuvant
tamoxifen in USA, all
had hysterectomies

2 validations, above with original USA data
set, below with Italian registry dataset.
Unclear if for pre- or post-menopausal
women or both.

0.582 O/E = 0.96 (0.75–1.16)

Chen 2006 Gail 2 0.602 Not given Unclear

Costantino
1999

Gail 1 Not given E/O = 0.84 (0.73–0.97) Women at increased risk
of breast cancer in
USA RCT of adjuvant
tamoxifen

Distinguished clearly between total breast
cancer (Gail 1) and invasive breast cancer
(Gail 2)

Gail 2 E/O = 1.03 (0.88–1.21)

Decarli
2006

Gail 2 0.588
(0.546–0.631)

E/O = 0.93 (0.81–1.08) Italian case control and
registry studies

–

Gail 2007 Gail 2 0.636
(0.617–0.655)

O/E = 1.08 (0.97–1.20) Black women from USA Recalculated C statistic and O/E from data in
article

Novotny
2006

Gail 1 Not given Not given Mammogram registry in
Czech population

Only parameter estimates (ORs) with no
standard errors of CIs given

Rockhill
2001

Gail 2 E/O = 0.94 (0.89–0.99) White nurses in USA Subgroup analyses for high risk and
mammogram in past year also given

Rockhill
2003

Rosner &
Colditz

Not given E/O = 1.00 (0.93–1.07) Nurses from USA Validation on same cohort as original model
but using different time ranges

Colditz &
Rosner

E/O = 1.01 (0.94–1.09)

Rosner 1994 Pike 1983 Not given Not given Nurses from USA Pike model excluded as before 1985

Rosner 1996 Pike 1983 Not given Not given Nurses from USA Pike model excluded as before 1985

Schonfeld
2010

Gail 2 Not given Early SEER E/O = 0.87
(0.85–0.89)

White postmenopausal
women from USA
(NIH-AARP study)

Split SEER cohort by date from 1983–1987
and 1995-2003 and validated using two
different populationsLate SEER E/O = 1.03

(1.00–1.05)

Early SEER E/O = 0.86
(0.82–0.90)

White postmenopausal
women from USA
(PCLO trial)Late SEER E/O = 1.01

(0.97–1.06)

Rosner 2008 Colditz &
Rosner

0.635
(0.628–0.642)

Not given Nurses from USA Focus of article on oestrogen receptor-
positive breast cancer

Speigelman
1994

Gail 1 Not given E/O = 1.33 (1.28–1.39) Nurses from USA Overprediction attributed to higher baseline
incidence rates of breast cancer

Tice 2005 Gail 2 0.67
(0.65–0.68)

Not given Mammography register
in USA

ROC curve symmetrical

Tice 2008 Gail 2 0.613
(0.604–0.622)

Not given 7 mammogram registries
from USA

Some data missing so authors recommend
interpretation with caution

Ulusoy
2010

Gail 2 Not given Using cut off risk C1.67
sensitivity = 13.3%,
specificity = 92%,
PPV = 63%,
NPV = 51.9%

Turkish cases and
controls from one
hospital

Small validation sample

Viallon
2009

Rosner
and
Colditz

Not given E/O = 0.947 (0.912–0.982) French teacher, spouses
and employees

Most of article describes mathematical
simulations
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five articles) for Gail 2 model and also 0.63 (95% CI:

0.63–0.64, based on two articles) for the Colditz and

Rosner model, which indicates only moderate perfor-

mance. For the meta-analyses of the E/O ratios (Fig. 3), the

average E/O ratio was 0.95 (0.88–1.01) for the Gail 2

model. This suggests that, on average (across all popula-

tions), it appears to have good calibration (as the estimate

is close to 1 and the 95% CI contains 1), however, there is

considerable heterogeneity in calibration across studies.

This can be seen by the wide 95% prediction interval of

0.75–1.19, which gives the range of possible E/O ratios

when the model is applied in any given study population.

Gail model 1 had similar heterogeneity (Fig. 3). The

Rosner and Colditz model showed less heterogeneity, but

this may be due to it only being validated in two articles.

One study (Amir 2003) [38] was found which assessed

the performance of several models on the same data set

from South Manchester, UK. The population of 4,536

women had been assessed in a hospital clinic for breast and

other cancer risks, where they completed a comprehensive

risk assessment questionnaire, so were a high risk sample.

Of the full sample, 1,933 women were followed up by

screening every 12–18 months (screened population),

1,217 were discharged to routine follow up, 20 had breast

cancer at the start and 1,366 women were lost to follow up

during the study so this was a relatively small sample

(3,150 total and 1,933 screened). Cancer incidence was

found from the cancer registry but it was unclear how

successful the linkage was. It is unclear how the models

assessed were chosen but they included well-known breast

cancer models (Gail, Claus, Ford, Tyrer-Cuzick models

and Claus tables). Other models available at the time but

not assessed in this study included Rosner and Colditz

1994 [9, 39]. Amir and colleagues investigated the total

population and the screened population and concluded that

the Tyrer-Cuzick model was the most accurate for this high

risk sample (see Table 4). It is unclear whether the Tyrer-

Cuzick model would also be the best predictive model for a

general population sample.

Discussion

The systematic review found a total of 17 risk prediction

models, containing at least one modifiable risk factor, that

aimed to predict breast cancer in populations and in indi-

vidual women. Some have been independently validated,

most notably Gail 2 with 12 validations, but many have no

validations at all. However, none of the models that have

been validated in more than one dataset demonstrated

consistently outstanding performance, in terms of calibra-

tion or discrimination.

The standard of reporting of the articles could also be

improved, and it was difficult at times to find basic infor-

mation such as the number of events, amount of missing

data, and even the fitted model results; similar problems

NOTE: Weights are from random effects analysis

.       (0.49, 0.77)with estimated predictive interval

Inestimable predictive distribution with <3 studies

.

.

.

Gail 2

Rockhill 2001 (n=82109, USA)

Tice 2008 (n=629,229, USA)

Tice 2005 (n=81777, USA)

Amir 2003 (n=3150, UK)

Decarli 2006 (n=10031, Italy)

Subtotal  (I-squared = 94.5%, p = 0.000)

Rosner & Colditz

Rockhill 2003 (n=45210, USA)

Colditz & Rosner

Rockhill 2003 (n=45210, USA)

Rosner 2008 (n=59812, USA)

ID

Study

0.58 (0.56, 0.60)

0.61 (0.60, 0.62)

0.67 (0.66, 0.68)

0.74 (0.67, 0.80)

0.59 (0.55, 0.63)

0.63 (0.59, 0.67)

0.57 (0.55, 0.59)

0.63 (0.61, 0.65)

0.63 (0.63, 0.64)

ES (95% CI)

22.18

23.30

22.78

13.44

18.30

100.00

100.00

10.91

89.09

Weight

%

Meta-Analysis of the C-statistic

0 10.2 0.4 0.6 0.8

C-Statistic

Fig. 2 Meta-analyses of the C

statistics
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have been found by prediction model articles in other fields

[40, 41]. There are currently no accepted standards of

reporting for risk prediction studies, unlike for RCTs

(CONSORT guidelines) and for systematic reviews

(PRISMA guidelines), though there is increasing interest in

this area [42, 43]. Therefore, at the moment different

authors are reporting different aspects of prediction mod-

els, and in varying ways, and single studies aiming to

compare the performance of multiple models simulta-

neously are rare. This research focus generally seems to be

on developing another new model, often by modifying an

existing model, rather than seeking to validate existing

models. There needs to be greater research effort into

independent validation of promising models [44].

In this article, we have identified and attempted to

compare existing models using a systematic review and

meta-analyses. Though a few meta-analyses were possible,

because of variable reporting and few validation studies

there is insufficient information to distinguish the most

accurate model, or indeed if any models consistently

accurate enough for clinical practice. Further studies are

needed; in particular primary studies that conduct a com-

parative valuation of all of the models on the same data-

set(s), which has proved successful in other fields [45].

Only one study of this type was found (Amir) [34] but this

evaluated a limited number of models.

Systematic reviews of prediction studies are rare [46]

and there is no commonly accepted template. One strength

NOTE: Weights are from random effects analysis

.       (0.02, 84.88)

.       (0.75, 1.19)

with estimated predictive interval

with estimated predictive interval

Inestimable predictive distribution with <3 studies

.

.

.

.

Gail 1
Bondy 1994 (n=1981, USA)
Spiegelman 1994 (n=115172, USA)
Constantino 1999 (n=5969 , USA)
Subtotal (I-squared = 95.0%, p = 0.000)

Gail 2
Rockhill 2001 (n=82109, USA)
Schonfield 2010 1(NIH-AARP) (n=181,979, USA)
Schonfield 2010 2(PCLO) (n=64868, USA)
Schonfield 2010 3(NIH-AARP) (n=181,979, USA)
Schonfield 2010 4(PCLO) (n=64868, USA)
Constantino 1999 (n=5969, USA)
Boyle 2004 1 (n=5157, USA)
Boyle 2004 2 (n=5383, Italy)
Amir 2003 (n=3150, UK)
Decarli 2006 (n=10031, Italy)
Subtotal  (I-squared = 92.5%, p = 0.000)

Rosner & Colditz
Viallon 2009 (n=91968, France)
Rockhill 2003 (n=45210, USA)

Colditz & Rosner
Rockhill 2003 (n=45210, USA)

ID
Study

1.32 (0.96, 1.81)
1.33 (1.28, 1.38)
0.84 (0.73, 0.96)
1.13 (0.80, 1.60)

0.94 (0.89, 0.99)
0.87 (0.85, 0.89)
0.86 (0.82, 0.90)
1.03 (1.00, 1.06)
1.01 (0.97, 1.05)
1.03 (0.88, 1.21)
1.12 (0.90, 1.40)
1.04 (0.83, 1.30)
0.69 (0.54, 0.88)
0.93 (0.73, 1.19)
0.95 (0.88, 1.01)

0.95 (0.91, 0.98)
1.00 (0.93, 1.07)
0.96 (0.92, 1.02)

1.01 (0.94, 1.09)

ES (95% CI)

28.33
36.76
34.91
100.00

13.43
14.31
13.87
14.31
13.87
8.28
5.84
5.84
5.12
5.12
100.00

65.56
34.44
100.00

100.00

Weight
%

1.32 (0.96, 1.81)
1.33 (1.28, 1.38)
0.84 (0.73, 0.96)
1.13 (0.80, 1.60)

ES (95% CI)

28.33
36.76
34.91
100.00

100.00

Weight
%

Meta-Analysis of E/O Ratio

1

0.
5 2

0.
6

0.
8
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E/O Ratio

Fig. 3 Meta-analyses of

the E/O ratios

Table 4 Validations results from Amir 2003

Gail 1 Gail 2 Tyrer-Cuzick

E/O (95% CI) (Screened population) 0.48 (0.37–0.64) 0.89 (0.68–1.20) 0.81 (0.62–1.08)

C statistic (ROC AUC, 95% CI)) 0.735 (0.666–60.803) 0.727 (0.656–0.798) 0.762 (0.700–0.824)
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of this project is the comprehensiveness of the systematic

review which included a sensitive search and extensive use

of reference lists, so it is unlikely that any relevant studies

will have been missed. Databases such as Medline and

Embase do not have Medical Subject Heading (MESH)

terms for prediction models so retrieval is not straightfor-

ward. The sensitive search used the term ‘prediction’ but in

the published articles in the databases this term referred to

prediction of breast cancer (incidence), prediction of breast

cancer response to treatment and prediction of breast can-

cer recurrence. Prognostic and predictive terms were used

synonymously in some articles and the predictive factors

term was also used to describe the responsiveness of a

tumour to specific treatments. It is acknowledged that

screening for inclusions to systematic reviews by one

reviewer only is likely to introduce biases, however, the

second researcher screened 10% of the sample and found

no discrepancies. On the other hand, double data extraction

is a major strength of this review, as is the meta-analysis of

results.

From our review it is difficult to recommend one model

over another, and unfortunately no single model appears to

perform consistently well. Also, there was no indication

that any of the modifiable risk factors included in the

models were sufficiently predictive of breast cancer to

merit further investigation. From this it can be assumed

that, at present, we have insufficient evidence to recom-

mend that women attempt to modify any of these risk

factors in order to reduce their individual risk of breast

cancer. The main limitation of the models assessed is their

relatively weak ability to predict risk of breast cancer, as

found when their performance was evaluated indepen-

dently in external data. Unfortunately, many promising

models did not perform as well when considered in new

data. This means that for individual women, many who

have been identified as ‘low risk’ actually go on to develop

breast cancer whereas many identified as ‘high risk’ do not

[47]. It is possible that the weak predictive ability of the

models stems from the fact that many of the included risk

factors are common in society in women who never go on

to develop breast cancer and are associated with relative

risk of less than 10 whereas a good predictive factor would

need a much higher relative risk [47]. Also, some of the

more recent risk factor models were developed in order to

determine eligibility for breast cancer adjuvant trials. Drug

companies would have a vested interest in more women

being eligible which may have biased the studies.

Conclusion

There is a need for further validation studies of existing

risk prediction models for breast cancer, and for developing

improved breast cancer models with better predictive

ability. None of the combinations of modifiable risk factors

within the models was sufficiently powerful to predict

breast cancer. Given the large amount of work already

conducted on existing breast cancer models, it is uncertain

whether it is possible to improve the currently available

ones. Research is therefore also needed to identify new risk

factors with high associated relative risk that add large

predictive ability over and above currently used factors

[48, 49].

Acknowledgments We would like to thank Dr Gill Lawrence for

assistance and supervision at the beginning of this project.

Conflicts of interest None.

References

1. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M,

Obuchowski N et al (2010) Assessing the performance of pre-

dictive models. Epidemiology 21(1):128–138

2. Meads CA, Cnossen JS, Meher S, Juarez-Garcia A, ter Riet G,

Duley L et al (2008) Methods of prediction and prevention of pre-

eclampsia:systematic reviews of accuracy and effectiveness lit-

erature with economic modelling. Health Technol Assess

12(6):1–270

3. Jacobi C, de Bock GH, Seigerink B, van Asperen CJ (2009)

Differences and similarities in breast cancer risk assessment

models in clinical practice: which model to choose? Breast

Cancer Res Treat 115:381–390

4. Royston P, Moons KG, Altman DG, Vergouwe Y (2009) Prog-

nosis and prognostic research: Developing a prognostic model. Br

Med J 338:b604

5. Williams C, Brunskill S, Altman D, Briggs A, Campbell H,

Clarke M et al. (2006) Cost-effectiveness of using prognostic

information to select women with breast cancer for adjuvant

systemic therapy. Health Technol Assess 10(34)

6. Altman D (2009) Prognostic models: a methodological frame-

work and review of models for breast cancer. Cancer Invest

27:235–243

7. Chen WY, Colditz GA (2007) Risk factors and hormone-receptor

status: epidemiology, risk-prediction models and treatment

implications for breast cancer. Nat Clin Pract Oncol 4(7):415–423

8. Tice JA, Cummings SR, Smith-Bindman R, Ichikawa L, Barlow

WE, Kerlikowske K et al (2008) Using clinical factors and

mammographic breast density to estimate breast cancer risk:

development and validation of a new predictive model. Ann

Intern Med 148(5):337–347

9. Rosner B, Colditz GA, Iglehart JD, Hankinson SE (2008) Risk

prediction models with incomplete data with application to pre-

diction of estrogen receptor-positive breast cancer: prospective

data from the Nurses’ Health Study. Breast Cancer Res 10(4):R55

10. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials.

Control Clin Trials 7:177–188

11. Stata Corporation. Statistical software release 11.0. 2009. College

Station, Texas

12. Riley RD, Higgins JP, Deeks JJ (2011) The interpretation of

random effects meta-analysis. Br Med J 342:d549

13. Rockhill B, Byrne C, Rosner B, Louie MM, Colditz G (2003)

Breast cancer risk prediction with a log-incidence model: eval-

uation of accuracy. J Clin Epidemiol 56(9):856–861

376 Breast Cancer Res Treat (2012) 132:365–377

123



14. Viallon V, Ragusa S, Clavel-Chapelon F, Bénichou J (2009) How

to evaluate the calibration of a disease risk prediction tool. Stat

Med 28(6):901–916

15. Arne GN (2009) Breast cancer risk assessments to barrier con-

traception exposure. A new approach. Makedonska Akademija na

Naukite i Umetnostite Oddelenie Za Bioloshki i Meditsinski

Nauki Prilozi 30(1):217–232

16. Barlow WE, White E, Ballard-Barbash R, Vacek PM, Titus-

Ernstoff L, Carney PA et al (2006) Prospective breast cancer risk

prediction model for women undergoing screening mammogra-

phy. J Natl Cancer Inst 98(17):1204–1214

17. Cook NR, Rosner BA, Hankinson SE, Colditz GA (2009)

Mammographic screening and risk factors for breast cancer. Am J

Epidemiol 170(11):1422–1432

18. Boyle PM (2004) Contribution of three components to individual

cancer risk predicting breast cancer risk in Italy. Eur J Cancer

Prev 13(3):183–191

19. Chen J, Pee D, Ayyagari R, Graubard B, Schairer C, Byrne C et al

(2006) Projecting absolute invasive breast cancer risk in white

women with a model that includes mammographic density. J Natl

Cancer Inst 98(17):1215–1226

20. Colditz GA, Rosner B (2000) Cumulative risk of breast cancer to

age 70 years according to risk factor status: data from the Nurses

Health Study. Am J Epidemiol 152(10):950–964

21. Rosner B, Colditz GA, Willett WC (1994) Reproductive risk

factors in a prospective study of breast cancer: the Nurses’ Health

Study. Am J Epidemiol 139(8):819–835

22. Decarli A, Calza S, Masala G, Specchia C, Palli D, Gail MH et al

(2006) Gail model for prediction of absolute risk of invasive

breast cancer: independent evaluation in the Florence-European

Prospective Investigation Into Cancer and Nutrition cohort. J Natl

Cancer Inst 98(23):1686–1693

23. Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C

et al (1989) Projecting individualised probabilities of developing

breast cancer for white females who are being examined annu-

ally. J Natl Cancer Inst 81:1879–1886

24. Constantino JP, Gail MH, Pee D, Anderson S, Redmond CK,

Benichou J et al (2010) Validation studies for models projecting

the risk of invasive and total breast cancer incidence. J Natl

Cancer Inst 91(18):1541–1548

25. Gail MH, Constantino JP, Pee D, Bondy M, Newmon L, Selvan

M et al (2007) Projecting individualized absolute invasive breast

cancer risk in African American women. J Natl Cancer Inst

99(23):1782–1792

26. Novotny J, Pecen L, Petruzelka L, Svobodnik A, Dusek L, Danes

J et al (2006) Breast cancer risk assessment in the Czech female

population—an adjustment of the original Gail model. Breast

Cancer Res Treat 95:29–35

27. Rosner B, Colditz GA (1996) Nurses Health study: log-incidence

mathematical model of breast cancer incidence. J Natl Cancer

Inst 88(6):359–364

28. Tice JA, Cummings SR, Ziv E, Kerlikowske K (2005) Mam-

mographic breast density and the Gail model for breast cancer

risk prediction in a screening population. Breast Cancer Res Treat

94(2):115–122

29. Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model

incorporating familial and personal risk factors. [Erratum appears

in Stat Med. 2005 Jan 15;24(1):156]. Stat Med 2004; 23(7):

1111–1130

30. Wacholder S, Hartge P, Prentice R, Garcia-Closas M, Feigelson

HS, Diver WR et al (2010) Performance of common genetic

variants in breast-cancer risk models. N Engl J Med 362(11):986–

993

31. Bondy MLL (1994) Validation of a breast cancer risk assessment

model in women with a positive family history. J Natl Cancer Inst

86(8):20

32. Costantino JP, Gail MH, Pee D, Anderson S, Redmond CK,

Benichou J et al (1999) Validation of studies for models pro-

jecting the risk of invasive and total breast cancer incidence.

J Natl Cancer Inst 91(18):1541–1548

33. Spiegelman DC (1994) Validation of the Gail et al. model for

predicting individual breast cancer risk. J Natl Cancer Inst

86(8):20

34. Amir E, Evans DG, Shenton A, Lalloo F, Moran A, Boggis C

et al (2003) Evaluation of breast cancer risk assessment packages

in the family history evaluation and screening programme. J Med

Genet 40(11):807–814

35. Rockhill B, Spiegelman D, Byrne C, Hunter DJ, Colditz GA

(2001) Validation of the Gail et al. model of breast cancer risk

prediction and implications for chemoprevention. J Natl Cancer

Inst 93(5):358–366

36. Schonfeld SJ, Pee D, Greenlee RT, Hartge P, Lacy JV Jr, Park Y

et al (2010) Effect of changing breast cancer incidence rates on

the calibration of the Gail model. J Clin Oncol 28(14):2411–2417

37. Ulusoy C, Kepenekci I, Kose K, Aydintug S, Cam R (2010)

Applicability of the gail model for breast cancer risk assessment

in turkish female population and evaluation of breastfeeding as a

risk factor. Breast Cancer Res Treat 120(2):419–424

38. Amir EFreedman (2010) Assessing women at high risk of breast

cancer: A review of risk assessment models. J Natl Cancer Inst

102(10):680–691

39. Diez Collar MC, Ortega MP, Villanueva OR, Albaladejo VR,

Astasio AP, Calle Puron ME et al (2000) Epidemiological char-

acteristics of breast cancer development in pre and postmeno-

pausal women [Spanish]. Med Clin 115(8):281–286

40. Mallett S, Royston P, Dutton S, Waters R, Altman D (2010)

Reporting methods in studies developing prognostic models in

cancer: a review. BMC Med 8:20

41. Mallett S, Royston P, Dutton S, Waters R, Altman D (2010)

Reporting performance of prognostic models in cancer: a review.

BMC Med 8:21

42. Janssens AC, Ioannidis J, van Duijn CM, Little J, Khoury MJ et al

(2011) Strengthening the Reporting of Genetic Risk Prediction

Studies: The GRIPS Statement. PLoS Med 8(3):e1000420

43. Collins G. Opening up multivariable prediction models. http://

blogs.bmj.com/bmj/2011/08/03/gary-collins-opening-up-multi

variable-prediction-models. Accessed September 2011

44. Bleeker SE, Moll HA, Steyerberg EW, Donders AR, Derksen-

Lubsen G, Grobbee DE et al (2003) External validation is nec-

essary in prediction research: A clinical example. J Clin Epi-

demiol 56:826–832

45. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J,

McHugh GS et al (2008) Predicting outcome after traumatic brain

injury: development and international validation of prognostic

scores based on admission characteristics. PLoS Med 5:e165

46. Agrawal R, Sharma S, Bekir J, Conway G, Bailey J, Balen AH

et al (2004) Prevalence of polycystic ovaries and polycystic ovary

syndrome in lesbian women compared with heterosexual women.

Fertil Steril 82(5):1352–1357

47. Elmore JGF (2006) The risk of cancer risk prediction: ‘‘What is

my risk of getting breast cancer?’’. J Natl Cancer Inst 98(23):06

48. Cook NR (2010) Assessing the incremental role of novel and

emerging risk factors. Curr Cardiovasc Risk Rep 4:112–119

49. Pencina MJ, D’Agostino RBS, D’Agostino RBJ, Vasan RS

(2008) Evaluating the added predictive ability of a new marker:

from area under the ROC curve to reclassification and beyond.

Stat Med 27:157–172

Breast Cancer Res Treat (2012) 132:365–377 377

123

http://blogs.bmj.com/bmj/2011/08/03/gary-collins-opening-up-multivariable-prediction-models.
http://blogs.bmj.com/bmj/2011/08/03/gary-collins-opening-up-multivariable-prediction-models.
http://blogs.bmj.com/bmj/2011/08/03/gary-collins-opening-up-multivariable-prediction-models.

	A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance
	Abstract
	Background
	Risk models in breast cancer

	Methods
	Results
	Studies describing a new risk prediction model
	Validations of prediction models

	Discussion
	Conclusion
	Acknowledgments
	References


