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Abstract The MDM2 oncoprotein regulates the p53

pathway and, while functional polymorphisms of the

MDM2 and p53 genes have been investigated for associ-

ation with breast cancer risk, results are largely null or non-

conclusive. We have earlier reported that the increased

intake of soy isoflavones reduces risk of postmenopausal

breast cancer, and experimental studies suggest that dietary

isoflavones can down-regulate the expression of the

MDM2 oncoprotein. In this study, we investigated the

association between the MDM2 SNP309 and TP53 R72P

polymorphisms and breast cancer risk using a case–control

study of 403 cases and 662 controls nested among 35,303

women in The Singapore Chinese Health Study, a popu-

lation-based, prospective cohort of middle-aged and elderly

men and women who have been continuously followed

since 1993. The G allele of the TP53 R72P polymorphism

and T allele of the MDM2 SNP309 polymorphism were

putative high-risk alleles and exhibited a combined gene–

dose-dependent joint effect on breast cancer risk that was

more clearly observed in postmenopausal women. Among

postmenopausal women, the simultaneous presence of G

allele in TP53 and T allele in MDM2 polymorphisms was

associated with an odds ratio (OR) of 2.42 [95% confidence

interval (CI) 1.06–5.50]. Furthermore, the protective effect

of dietary soy isoflavones on postmenopausal breast cancer

was mainly confined to women homozygous for the high

activity MDM2 allele (GG genotype). In this genetic sub-

group, women consuming levels of soy isoflavones above

the median level exhibited risk that was half of those with

below median intake (OR 0.52; 95% CI 0.28–0.99). Our

findings support experimental data implicating combined

effects of MDM2 protein and the p53-mediated pathway in

breast carcinogenesis, and suggest that soy isoflavones may

exert protective effect via down-regulation of the MDM2

protein.
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Introduction

The activation of p53 protein upon cellular stress such as

DNA damage and oncogene activation leads to induction

of cell–cycle arrest and the activation of apoptotic cell

death, and may account for the role of this tumor sup-

pressor protein in preventing the accumulation of genomic

alterations and tumor development [1]. Somatic inactivat-

ing mutations of the p53 gene are found in over 50% of all

human tumors [2]. Hence, naturally occurring functional
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polymorphisms of the p53 gene have also been investigated

for possible association with human susceptibility to can-

cer. The p53 gene has a single base change of G to C at

exon 4 codon 72, known as the TP53 R72P polymorphism,

which causes alteration of amino acid residue from argi-

nine to proline [3]. Although both forms do not differ in

their ability to bind to DNA in a sequence-specific manner,

these two p53 variants differ in their abilities to bind

components of the transcriptional machinery, to activate

transcription, to induce apoptosis, and to repress the

transformation of primary cells [4].

An important regulator of the p53 pathway is the MDM2

protein which is an E3 ubiquitin ligase that can inhibit p53

activity by promoting ubiquitination and degradation of

p53 protein [5]. MDM2 binds to p53 and regulates its

cellular localization, stability, and activity. Hence, the

levels of the MDM2 protein in a cell or organism seem to

have a large effect on the antitumorigenic activity of p53

[6]. In animal studies, overexpression of MDM2 leads to

tumorigenesis in susceptible mice [7]; from human data,

amplification of the MDM2 gene has been documented in

several tumor types [8–10]. The MDM2 SNP309 poly-

morphism is a T to G change at nucleotide 309 in the first

intron (rs2279744). Compared with the T allele, the G

variant has been shown to have increased expression of

MDM2, particularly in response to estrogens, and is asso-

ciated with a decrease in the levels of p53 protein levels

and an attenuation in p53-mediated transcription of genes

[6, 11].

Despite abundant experimental data suggesting that the

attenuation of the p53 stress response pathway by the

MDM2 protein has significant effect on breast carcino-

genesis, epidemiologic associations of the MDM2 SNP309,

and TP53 R72P polymorphisms with breast cancer risk,

either separately or in interaction, have been largely null or

non-conclusive [12–14]. In a study that examined the

interaction between these two genes in breast cancer risk

among the US women in the Nurses Health Studies, none

of the combined genotypes of these two gene polymor-

phisms reached statistical significance, and the direction of

any possible interaction was inconsistent and uninterpret-

able [12].

In this study, we investigated the individual and com-

bined effects of MDM2 SNP309 and TP53 R72P poly-

morphisms on breast cancer risk in a case–control study

nested among female participants of the Singapore Chinese

Health Study, a prospective cohort study of diet and cancer.

Genistein, a dietary isoflavone, has been shown to down-

regulate the expression of the MDM2 oncogene at both the

transcriptional and translational level [15], and the inhibi-

tion of the MDM2 protein has in turn been associated with

antitumor activities in a breast cancer model [16]. Earlier,

we had reported that postmenopausal women with above

median intake of soy had a statistically significant, 26%

reduction in breast cancer risk compared with women with

lower intake [17]. Thus, in this study, we also explored

whether the beneficial effect of dietary soy on breast cancer

is mediated through an MDM2/TP53 driven pathway.

Materials and methods

Study subjects

The study design and subject recruitment of the Singapore

Chinese Health Study have been previously described [18].

In brief, 63,257 Chinese women and men, aged 45–74 years

belonging to the Hokkien or Cantonese dialect group, were

enrolled in the study between April 1993 and December

1998. At recruitment, information on lifestyle factors, usual

diet, and reproductive history (for women only) was obtained

through in-person interviews. The questionnaire also inclu-

ded semi-quantitative food frequency questionnaire (FFQ)

assessing current intake patterns, which was subsequently

validated against a series of 24-h-diet recalls among a sub-

population drawn randomly among the cohort participants

[18]. Written informed consent was obtained from all the

participants in the Singapore Chinese Health Study. This

study was conducted under the ethical approval for the

Singapore Chinese Health Study, and approved by the

Institutional Review Boards at the National University of

Singapore and the University of Minnesota.

Previously, we have measured concentrations of geni-

stein, daidzein, and glycitein in the market samples of the

seven common soyfoods in Singapore [19]. Total soy iso-

flavone intake for a given subject was computed based on

the subject’s response to the semi-quantitative food fre-

quency questionnaire, and the summation of genistein,

daidzein, and glycitein contents of the soyfoods in the

Singapore Food Composition Database [18, 20]. Earlier, in

a random sample of cohort subjects, we have shown the

presence of a statistically significant association between

urinary levels of isoflavones and dietary soy intake esti-

mated from the food frequency questionnaire [21].

Between April 1994 and December 1999, we attempted

to collect blood and single-void urine specimens from a

random 3% sample of study enrollees. Details of the bio-

specimen collection, processing, and storage procedures

have been described previously [22]. If the subject refused

to donate blood, then buccal cell samples were requested

and collected, if the subject consented. Out of 1,059 female

cohort participants contacted for biospecimen donation,

blood (n = 514) or buccal cells (n = 164) were collected

from 678 subjects, representing a participation rate of 64%.

The control group for the present study comprised this

subcohort of women free of a history of breast cancer as of
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December 31, 2007. There were 662 subjects who satisfied

these criteria.

We identified incident breast cancer cases occurring

within the Singapore Chinese Health Study cohort through

the population-based cancer registry in Singapore. The

nationwide cancer registry has been in place since 1968

and has been shown to be comprehensive in its recording of

cancer cases [23]. As of December 31, 2007, there were

783 incidences of female breast cancer cases in this cohort;

among them, 403 cases (51.5%) had also given us blood or

buccal specimens for genotyping. Histological and staging

information of these 403 breast cancer diagnoses were

confirmed by manual review of the pathology reports and

clinical charts. Compared with breast cancer patients who

donated a blood or buccal sample, those who did not were

less educated (37 versus 31% had no formal education).

More Cantonese gave biospecimens (55.7%) compared

with Hokkiens (44.3%). Those who donated biospecimens

also were a few years younger at diagnosis compared to

those who did not donate (mean, 61 versus 63 years).

Table 1 Distributions of known risk factors for breast cancer among cases and controls

All women Postmenopausal women at recruitment

Case Control OR (95% CI)a Case Control OR (95% CI)a

Total subjects 403 662 281 462

Age (years) at menarche

\13 67 98 1.00 41 53 1.00

13–14 173 260 1.01 (0.70–1.46) 109 172 0.84 (0.52–1.35)

15–16 124 207 0.95 (0.64–1.42) 98 160 0.88 (0.54–1.45)

17? 39 97 0.65 (0.39–1.07) 33 77 0.62 (0.34–1.12)

P for trend 0.114 0.202

Number of live births

None 49 48 1.00 36 30 1.00

1–2 143 183 0.81 (0.51–1.28) 78 95 0.71 (0.40–1.26)

3–4 136 262 0.54 (0.34–0.86) 96 180 0.48 (0.28–0.83)

5? 75 169 0.44 (0.26–0.73) 71 157 0.41 (0.23–0.74)

P for trend 0.0001 0.0007

Age (years) at first live birth

B20 56 123 1.00 46 99 1.00

21–25 129 247 1.12 (0.76–1.65) 89 182 1.02 (0.66–1.58)

26–30 111 183 1.27 (0.84–1.92) 75 117 1.27 (0.79–2.05)

31? 57 60 1.95 (1.18–3.21) 34 34 1.96 (1.06–3.61)

Nulliparous 49 48 2.03 (1.19–3.45) 36 30 2.29 (1.23–4.28)

P for trend 0.0008 0.001

Family history of breast cancer

No 395 654 1.00 274 457 1.00

Yes 8 8 1.49 (0.55–4.03) 7 5 2.02 (0.63–6.48)

BMI (kg/cm2)

\20 47 94 1.00 27 54 1.00

20– \ 24 227 371 1.26 (0.85–1.86) 160 269 1.20 (0.73–2.00)

24– \ 28 92 153 1.27 (0.82–1.96) 67 104 1.32 (0.75–2.30)

28? 37 44 1.82 (1.04–3.21) 27 35 1.63 (0.82–3.24)

P for trend 0.074 0.152

Age (years) at menopause (postmenopausal women only)

\50 102 200 1.00

50–54 148 233 1.28 (0.93–1.77)

55? 31 29 2.27 (1.29–4.01)

P for trend 0.006

a Adjusted for age at recruitment, dialect group and level of education, OR odds ratio, CI confidence interval
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Genotyping methods

The MDM2 SNP309 (rs2279744) and TP53 R72P

(rs1042522) polymorphisms were genotyped using the

fluorogenic 50-nuclease assay (TaqMan Assay) [24]. The

TaqMan assays were performed using a TaqMan 2X Uni-

versal PCR Master Mix (Applied Biosystems, Foster City,

CA) according to manufacturer’s instructions. The oligo-

nucleotide primers for amplification of the polymorphic

region of MDM2 were GC148for (50-TTCAGGGTAAAG

GTCACGGG-30) and GC148rev (50-ACTACGCGCAGCG

TTCACAC-30) and for TP53 were GC155for (50-TCCCC

GGACGATATTGAACAA-30) and GC155rev (50-GGCCG

CCGGTGTAGGA-30). In addition, the fluorogenic oligo-

nucleotide MGB probes used to detect each of the alleles

for MDM2 were GC148F (50-CGCCGCAGCGGCC-30)
labeled with 6-FAM to detect the G allele and GC148 V

(50- CGCCGAAGCGGCC -30) labeled with VIC to detect

the T allele (Applied Biosystems). The MGB probes for

TP53 were GC155F (50-TGCTCCCCGCGTGGC-30)
labeled with 6-FAM to detect the Arg (R) allele and

GC155 V (50-TGCTCCCCCCGTGGC-30) labeled with

VIC to detect the Pro (P) allele. PCR amplification

using *10 ng of genomic DNA was performed in a ther-

mal cycler with an initial step of 95�C for 10 min followed

by 50 cycles of 95�C for 25 s and Tm �C for 1 min

(Tm = 66 for MDM2 and 60 for TP53). The fluorescence

profile of each well was measured in an ABI 7900HT

Sequence Detection System and the results analyzed with

Sequence Detection Software (Applied Biosystems).

Experimental samples were compared with 12 controls to

identify the three genotypes at each locus. Any of the

samples that were outside the parameters defined by the

controls were identified as non-informative and were re-

tested.

A total of 54 (5.1%) subjects had non-informative

genotype for MDM2 SNP309 polymorphism, 38 (3.6%)

had non-informative genotype for TP53 R72P polymor-

phisms and 12 subjects (1.1%) had non-informative geno-

types for both genes. These subjects were excluded from

the statistical analysis accordingly.

Statistical analysis

Data were analyzed by standard methods for unmatched

case–control studies [25]. Unconditional logistic regression

models were employed to examine the associations

between MDM2 and TP53 genotypes, separately and in

combination, and breast cancer risk. The associations were

measured by odds ratios (ORs) and their corresponding

95% confidence intervals (CIs) and P values. Age at

recruitment, dialect group (Cantonese, Hokkien), level of

education (none, primary, secondary school or higher), age

at first livebirth (20 years or younger, 21–25 years,

26–30 years, 31 years or older, nulliparous), soy isoflavone

intake (quartiles), and body mass index (\20 kg/m2,

20? kg/m2) were covariates in all logistic regression

models. The analyses involving women who were post-

menopausal at recruitment also included age at menopause

(\50 years, 50–54 years, and 55 years or older) as a

covariate. The same methodology was used to examine if

the soy-breast cancer association differed by MDM2 or

TP53 genotypes [25]. All covariates described above were

included in these logistic regression runs.

Statistical analysis was carried out using the SAS soft-

ware Version 9.1 (SAS Institute, Cary, NC). All the

reported P values were two-sided, and P \ 0.05 was con-

sidered statistically significant.

Results

Among the subjects, 69.8% were postmenopausal at

recruitment. The mean ages at biospecimen collection for

cases and controls were 61.3 [standard deviation (SD) 8.0]

and 58.8 (SD 8.3) years, respectively. Among all the

women with breast cancer, the mean age at diagnosis was

61.5 years (SD 8.2 years). Among the women with breast

cancer who were already postmenopausal at recruitment,

the mean age at diagnosis was 64.7 years (standard devi-

ation 7.4 years). Similar to our earlier results [22, 26],

increasing age at menarche and increasing number of live

births were associated with reduction in breast cancer risk.

Likewise, nulliparity, late age at first live birth, family

history of breast cancer, late age at menopause, and

increased body mass index were all associated with

increased breast cancer risk (Table 1).

Among the control subjects, the frequencies of the C and

G alleles of the TP53 R72P polymorphism were 0.47 and

0.53, while the frequencies of the G and T alleles of the

MDM2 SNP309 polymorphism were 0.53 and 0.47,

respectively. All genotypic distributions were in Hardy–

Weinberg equilibrium (P value = 0.9 for TP53 R72P and

P = 0.6 for MDM SNP309). For the TP53 R72P poly-

morphism, women possessing at least one copy of the G

allele (putative high-risk genotype) had an increase in

breast cancer risk (OR 1.19; 95% CI 0.86–1.64) relative to

the CC genotype. For the MDM2 SNP309 polymorphism,

women with at least one copy of the T allele (putative high-

risk genotype) showed a higher increase in breast cancer

risk compared with those homozygous for the G allele (OR

1.20; 95% CI 0.90–1.62) (Table 2).

The relative risk for TP53 low-risk genotype jointly with

MDM2 high-risk genotype is similar to that for TP53 high-

risk genotype jointly with MDM2 low-risk genotype

(Table 2). When these two genotypes were grouped (both
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are characterized by the presence of one high-risk geno-

type), the OR (95% CI) for breast cancer risk was 1.30

(0.70–2.40). The highest risk for breast cancer was

observed in women possessing both TP53 and MDM2

high-risk genotypes (OR 1.60; 95% CI 0.88–2.92) (P for

trend = 0.051). The association became stronger when the

analysis was confined to postmenopausal women; those

possessing both high-risk genotypes experienced a statis-

tically significant, 2.42 times increased risk for breast

cancer relative to women devoid of high-risk genotypes

(95% CI 1.06–5.50). The association between the number

of high risk genotypes and postmenopausal breast cancer

risk was statistically significant (P for trend = 0.036)

(Table 2).

Earlier, based on the entire cohort of women [17], we

reported that postmenopausal women with above- versus

below median intake of soy isoflavones experienced a

statistically significant, reduced risk of breast cancer (rel-

ative risk: 0.74; 95% CI 0.61–0.90). In this nested case–

control study within the cohort, we noted remarkably

similar results (OR 0.74; 95% CI 0.54–1.01) (Table 3). We

examined whether MDM2 genotype exerted an influence

on the dietary soy isoflavone-postmenopausal breast cancer

risk association. We noted that the strong protective effect

of dietary soy isoflavones on postmenopausal breast cancer

was mainly confined to women possessing the GG

genotype that was associated with increased MDM2 pro-

tein expression (Table 3). There was no evidence that TP53

genotype exerted any influence on the dietary soy iso-

flavone-postmenopasual breast cancer association

(Table 3).

Discussion

The present study demonstrated that MDM2 SNP309 and

TP53 R72P polymorphisms jointly exhibited a gene–dose-

dependent association with breast cancer, in particular

postmenopausal breast cancer. The highest risk was

observed in women possessing both the G allele (func-

tionality still controversial for breast cancer) of the TP53

gene and the low-activity T allele of the MDM2 gene.

Furthermore, we showed that the protective effect of die-

tary soy isoflavones on postmenopausal breast cancer was

mainly confined to women possessing the high-activity GG

genotype of the MDM2 gene.

The three major outcomes of the p53 stress response are

cell–cycle arrest, cellular senescence, and apoptosis. The

arginine variant coded by the G allele is a stronger and

faster inducer of apoptosis, and more efficient in sup-

pressing oncogene-induced transformation than the proline

variant coded by the C allele [4, 27]. In contrast, the proline

Table 2 TP53 R72P and MDM2 SNP309 genotypes in relation to breast cancer risk

All women Postmenopausal women

Cases Controls OR(95% CI)a Cases Controls OR(95% CI)b

TP53 R72P genotype

CC (0) 73 145 1.00 47 105 1.00

GC 197 319 1.21 (0.86–1.69) 141 212 1.42 (0.94–2.15)

GG 102 179 1.15 (0.79–1.68) 71 130 1.19 (0.75–1.90)

GC or GG (1) 299 498 1.19 (0.86–1.64) 212 342 1.34 (0.90–1.98)

MDM2 SNP309 genotype

GG (0) 96 174 1.00 65 120 1.00

GT 212 300 1.28 (0.94–1.75) 150 212 1.31 (0.90–1.91)

TT 77 140 1.03 (0.71–1.51) 53 95 1.03 (0.65–1.64)

TT or GT (1) 289 440 1.20 (0.90–1.62) 203 307 1.22 (0.85–1.75)

TP53/MDM2 genotypes

0/0 (0 high-risk genotype) 17 40 1.00 8 29 1.00

1/0 or 0/1 (1 high-risk genotype) 123 226 1.30 (0.70–2.40) 88 156 1.99 (0.86–4.62)

1/0 70 130 1.28 (0.67–2.43) 51 87 2.05 (0.86–4.88)

0/1 53 96 1.33 (0.68–2.59) 37 69 1.92 (0.78–4.73)

1/1 (2 high-risk genotypes) 221 334 1.60 (0.88–2.92) 156 230 2.42 (1.06–5.50)

P for trendc 0.051 0.036

a Adjusted for age at recruitment, dialect group, level of education, body mass index, age at first livebirth and soy isoflavone intake, OR odds

ratio, CI confidence interval
b Additionally adjusted for age at menopause, OR odds ratio, CI confidence interval
c For association between number of high-risk genotypes (0, 1 or 2) and breast cancer risk
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variant is a stronger inducer of transcription and more

efficient in inducing cell-cycle arrest [4, 27]. Owing to the

difference between the two p53 polymorphic variants in

their biochemical properties and biological effects on cell

cycle progression, it is difficult to define the functionally-

impaired p53 protein as this may differ according to which

biological deficiency in the p53-driven mechanistic path-

way is dominant in the carcinogenesis of different subtypes

of breast cancer. This may also be the reason for the lack of

consistent replication in the reported gene-cancer associa-

tions in the literature, although the TP53 R72P polymor-

phism has been tested extensively for several cancers, such

as lung, cervical, colorectal, and bladder cancers [28–33].

Furthermore, studies that showed positive association

between p53 polymorphism and cancer risk were also

contradictory with regard to the identity of the high-risk

allele, with some studies showing the G allele to increase

cancer risk [31, 34], while others showed the C allele to be

the high-risk allele [35–37]. In the most recent meta-

analysis of 21 studies involving 24,063 subjects, the big-

gest to date, there was no association between TP53 R72P

polymorphism and breast cancer risk [38], which concurs

with an earlier meta-analysis of 17 case–control studies

that also concluded an overall null association [39]. In our

study, the increased risk of breast cancer among women

with the G allele of the TP53 R72P polymorphism, albeit

not reaching statistical significance, suggests that the p53

Arg variant protein, which is less efficient at inducing a

growth arrest than the p53 Pro variant protein, increases

breast cancer susceptibility. Consistent with our findings,

another study among Singapore Chinese showed that the

silent G allele that codes for the Arg variant in healthy

Chinese heterozygotes seemed to have been reactivated

during breast cancer formation, suggesting a positive cor-

relation between the G allele expression and breast cancer

risk [40].

For the MDM2 SNP309 polymorphism, the G allele

increases the affinity of a well-described cotranscriptional

activator of nuclear hormone receptors (Sp1) and results in

increased expression of the MDM2 protein. Since the

polymorphism sits in a promoter region regulated by hor-

monal signaling pathways, the MDM2 SNP309 locus could

also possibly affect how hormones, such as estrogen, affect

tumorigenesis in humans [6, 11]. However, published

case–control studies have yielded contradictory results,

leading to essentially null associations in subsequent meta-

analysis [41, 42]. Interestingly, a recent meta-analysis of 16

case–control studies showed that while there was essen-

tially null association between the MDM2 gene polymor-

phism and breast cancer risk in non-Chinese populations,

there was a suggestion of increased risk with the G allele

among Chinese populations [42].

In the combined effects of MDM2 SNP309 and TP53

R72P polymorphisms on breast cancer risk, if the p53 Arg

variant protein is indeed implicated in breast carcinogen-

esis, it is reasonable to postulate that the genetic combi-

nation with increased breast cancer risk would be the G

allele for TP53 polymorphism that codes for the p53 Arg

variant protein, and the T allele for MDM2 polymorphism

that is associated with lower expression of the MDM2

protein and an attenuation in the degradation of the p53

protein. Conversely, our study results suggest that higher

expression of the MDM2 protein and increased degradation

of the p53 Pro variant protein in women homozygous for

the MDM2 SNP309 G allele as well as for the TP53 R72P

C allele could confer protective effect for breast cancer. In

a recent pooled series from the Breast Cancer Association

Consortium involving 5,191 cases and 3,834 controls,

although none of the associations reached statistical sig-

nificance, the genetic combination with the lowest risk was

the GG genotype of the MDM2 gene and the CC genotype

of the TP53 gene, entirely consistent with our observations

[14]. Another study that examined survival of breast cancer

patients showed that among patients homozygous for the

MDM2 T allele, mutant p53 status and aberrant p53 protein

expression in breast tumors were associated with poor

Table 3 Effects of soy intake

in relation with TP53 R72P and

MDM2 SNP309 genotypes on

breast cancer risk among

postmenopausal women

a Adjusted for age at

recruitment, dialect group, level

of education, body mass index,

age at first livebirth and age at

menopause, OR odds ratio, CI
confidence interval

Soy isoflavones Cases Controls OR(95% CI)a

All postmenopausal women \10.6 mg/1000 kcal per day 161 242 1.00

[=10.6 mg/1000 kcal per day 120 220 0.74 (0.54–1.01)

MDM2 SNP309 GG \10.6 mg/1000 kcal per day 36 49 1.00

[=10.6 mg/1000 kcal per day 29 71 0.52 (0.28–0.99)

MDM2 SNP309 GT or TT \10.6 mg/1000 kcal per day 119 175 1.00

[=10.6 mg/1000 kcal per day 84 132 0.84 (0.58–1.22)

TP53 R72P CC \10.6 mg/1000 kcal per day 28 53 1.00

[=10.6 mg/1000 kcal per day 19 52 0.69 (0.33–1.47)

TP53 R72P GC or GG \10.6 mg/1000 kcal per day 120 183 1.00

[=10.6 mg/1000 kcal per day 92 159 0.79 (0.56–1.13)
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survival [43]. Our results and some of the other studies

cited suggest that the T allele-encoded MDM2 protein, in

the presence of an impaired p53 pathway, may lead to

increased stability and nuclear protein accumulation of the

impaired p53 variant protein, and thus increase cancer

susceptibility.

Epidemiologic studies among Asian populations that

consume moderate to high amount of soy, including this

cohort of Chinese women in Singapore, have shown that

dietary soy may protect against postmenopausal breast

cancer [17, 44]. While it remains possible that soy intake

may be a marker of some other dietary or lifestyle factors

that are causally related to breast cancer risk, experimental

studies have provided strong evidence on plausible causal

pathways through which dietary soy exerts its anti-carci-

nogenesis effects. Experimental studies have shown that

soy isoflavones predominately bind to and activate ERb
[45, 46], which in turn has been associated with the

upregulation of genes that leads to inhibition of prolifera-

tion in breast cancer cells [47–49]. Lately, experimental

studies have revealed that the anti-cancer effects of dietary

isoflavones may also be via ER-independent mechanisms,

such as through the inhibition of tyrosine protein kinase, an

enzyme frequently implicated in carcinogenesis [50], and

also by their pro-apoptotic and antiangiogenic effects [51].

More recently, genistein, a dietary isoflavone, has been

shown to down-regulate the expression of the MDM2

oncogene at both the transcriptional and translational levels

[15], and the inhibition of the expression of the MDM2

protein has in turn been associated with antitumor activities

in a breast cancer model [16].

Our results showed a stronger soy-breast cancer asso-

ciation among women possessing the MDM2 high-activity

genotype (GG) relative to their counterparts with the low-

activity genotypes (GC and CC). In other words, women

with higher expression of the MDM2 protein may show a

more prominent effect of soy isoflavone protection relative

to women with lower expression. Our data lend support to

the hypothesis that the protective effect of dietary soy on

breast cancer development, at least partially, is mediated

through the down-regulatory effect of soy isoflavones on

MDM2 expression. There is no experimental evidence to

link p53 to the biological effect of soy on breast cancer. As

expected, we noted no difference in the soy-breast cancer

association by TP53 genotype. It would be of extreme

interest to ascertain whether the cancer risk reduction

associated with higher intake of soy isoflavone is restricted

to wild-type p53 tumors in which down-regulation of

MDM2 expression would be expected to have a beneficial

effect.

The current study has several strengths. In this case–

control study nested within a well-established cohort, soy

consumption and other known environmental risk factors

for breast cancer were assessed before cancer diagnosis,

and hence can be presumed to be free of recall bias. The

limitation of the study is its relatively small sample size of

breast cancer cases. Hence, we interpret our observations

with caution, viewing them principally as a hypothesis-

generating set of findings that require confirmation by an

independent group. Nonetheless, it is important to note that

our novel findings possess biological plausibility, and are

consistent with predictions based on recognized models of

MDM2/p53-mediated pathways in breast carcinogenesis.

Our observations on the MDM2 genotype’s influence on

the protective effect of dietary soy on breast cancer carries

important scientific as well as public health implications.

In summary, the present study shows a combined effect

of MDM2 SNP309 and TP53 R72P polymorphisms on

breast cancer risk, and provides epidemiological validation

showing that the biological interaction between MDM2

protein and the p53-mediated pathway may play a role in

breast carcinogenesis. This is also the first epidemiologic

report suggesting that the ability of soy isoflavones to

down-regulate the MDM2 protein may be one etiologic

mechanism through which the intake of soy is associated

with breast cancer protection.
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