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Abstract The purpose of this article is to determine the

tumorigenic potential of estradiol treatment (E2) when

combined with either progesterone (P4) or medroxypro-

gesterone acetate (MPA) in normal luminal human breast

cells (HBE) and in human breast cancer cells (T47-D,

MCF-7). Proliferation profiles were evaluated, along with

the gene transactivation activity between the progesterone

and glucocorticoid receptors (PR, GR) in HBE, T47-D, and

MCF-7 cells treated by E2 ? P4 or E2 ? MPA. High

throughput transcriptome analysis was performed on RNA

from HBE cells treated by E2, E2 ? MPA and E2 ? P4.

GR content was analyzed in normal breast cells as well. In

HBE cells, E2 ? P4 treatment was antiproliferative and

promoted cellular differentiation. In contrast, E2 ? MPA

displayed mitogenic, antiapoptotic effects in HBE cells and

did not influence cellular differentiation. The effect of P4

and MPA on cell proliferation was, however, variable in

breast cancer cells. In cells containing GR or/and PR, MPA

decreased proliferation whereas P4 antiproliferative effect

needed the presence of PR. In HBE cells, the regulation of

genes by E2 ? P4, and E2 ? MPA was significantly dif-

ferent, particularly in cell proliferation and cell death gene

families. Further analysis revealed a modulation of the

glucocorticoid receptor gene expression pathway by

E2 ? MPA. Predominant MPA glucocorticoid activity in

normal and breast cancer cells was demonstrated using a

glucocorticoid antagonist and the down-regulation of the

GR by RNA interference. In normal luminal breast cells

and in breast cancer cells, P4 and MPA combined with E2

treatment have opposing mitogenic effects due to GR. The

consequences of MPA glucocorticoid potencies as well as

the importance of GR in breast tissue merit a reappraisal.
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Introduction

Hormonal replacement therapy (HRT) is commonly used

to treat climacteric symptoms and prevent postmenopausal

disorders. This treatment often combines estradiol (E2) or

estradiol derivatives with progestogens. Progestogens were

included to protect the endometrium against the develop-

ment of estrogen-induced neoplasia. Today, several pro-

gestogen compounds are commercially available, and

depending on the structure of these molecules, progesto-

gens can exert additional hormonal effects in addition to

their progestogenic and antiestrogenic activities. These

activities are suspected to alter the risk of breast cancer.

For example, the Women Health initiative randomized trial

reported a small increase in breast cancer risk with HRT,

including conjugated estrogens and medroxyprogesterone

acetate (MPA) [1]. In a large French cohort ([80,000

women), treatment with E2 combined with progesterone

(P4), or E2 combined with dydrogesterone did not increase

the relative risk of breast cancer [2]. However, HRT

composed of E2 in combination with different synthetic

progestogens were associated with a significant increase in

the breast cancer risk [2], suggesting that the use of P4 or

components with pure progestogen activity, do not influ-

ence the relative risk. Presently, with the exception of

France, most countries are using predominantly synthetic

progestogens in HRT, occulting the comparison and anal-

ysis from studies in different countries [3].

The analysis of the proliferative activities of progesto-

gens from published data is complicated by a number of

factors. Foremost, progestogen research has occurred under

different testing conditions and notably with different

molecules. In addition, in a number of cases the terms

progesterone and synthetic progestogens were inter-

changeably used despite tangible differences in their bio-

chemistry [4].

Progesterone and synthetic progestogens have diverse

steroid specificities, and consequently different pharma-

cological properties [5]. Studies comparing the impact of

P4 and MPA combined with E2 on proliferation and dif-

ferentiation in normal human breast cells and breast cancer

cells are sparse. In mammary tissues collected from

ovariectomized cynomolgus macaques female adults,

Wood et al. [6, 7] reported that E2 combined with MPA

was mitogenic and activated growth factor signalization.

This effect was not seen with E2 combined with P4 treat-

ment. The major pharmacological differences between P4

and MPA are the glucocorticoid and androgenic properties

of MPA. While P4 and glucocorticoids (GC) bind to

identical DNA recognition sites, the two hormones mediate

very distinct biological functions [8]. Few reports have

noted the importance of GC in breast cancer progression

[9, 10] while in breast cancer cell lines, they were char-

acterized for their antiproliferative and antiapoptotic

activities [11, 12]. Most recently, GR activation was pro-

posed to explain an enhanced tumor growth in rats sub-

mitted to recurrent stress [9]. However, only a few studies

have reported to date on GR expression in breast cancers

and no link has been reported between GR expression

levels and breast cancer prognosis [13].

Breast cells are constantly exposed to estrogens, either

exogenously administrated in combination with progesto-

gens, secreted from the ovaries before menopause, or

locally produced by aromatization of circulating andro-

gens. Moreover, progestogens cellular responses and PR

expression are modulated by E2 in normal and cancer

breast cells. In this article, we evaluated the impact of the

GC properties of MPA on normal and breast cancer cells in

equivalent conditions of female hormonal plasma levels

undergoing HRT. We, therefore, only compared the effects

of P4 and MPA in the presence of E2. Under these con-

ditions, we detected opposing effects of MPA and P4 on

cell proliferation and gene regulation in different breast cell

models. Using a glucocorticoid antagonist and GR silenc-

ing by RNA interference, we demonstrated that these

effects were related to the activation of the glucocorticoid

receptor of MPA in normal cells and in breast cancer cells

expressing GR.

Materials and methods

Reagents and steroids

17b estradiol (E2), Progesterone (P4), medroxyprogester-

one acetate (MPA), dexamethasone (DEX), insulin, Epi-

dermal Growth Factor (EGF), transferrin, choleratoxin,

cortisol, hyaluronidase, thymidine, mevinolin, ribonuclease

A, were purchased from Sigma (St Quentin Fallavier,

France). The progesterone receptor antagonist VA-2914

(VA) was kindly provided by HRA Pharma (Paris, France).

The glucocorticoid receptor antagonist ORG-34116 (AG)

was kindly provided by Dr HJ Kloosterboer ex-Organon

(Oss, The Netherlands).

Cell culture procedures

T47-D and MCF-7 cell lines were, respectively, maintained

in RPMI 1640 and in DMEM medium (Invitrogen, Cergy-
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Pontoise, France) supplemented with 10% fetal calf serum.

In some experiments, cortisol (5 ng/ml) was added.

Normal human breast epithelial cell (HBE) cultures

resulting from specimens of normal breast, obtained from

16 women (aged 15–25 years) undergoing surgery for

reduction mammoplasty, with their informed consent

according to the Ethical National rules and processed

according to the French law on clinical experimentation.

The patients had no reported history of breast disease and

pathological studies showed only normal breast tissue. The

procedure used for the HBE culture has been described

elsewhere [14]. HBE cells were maintained in HAM F10

medium (Invitrogen, Cergy-Pontoise, France) containing

NaHCO3 (0.24%), penicillin–streptomycin (1%), corti-

sol (5 ng/ml), T3 (6.5 ng/ml), choleratoxin (10 ng/ml),

transferrin (5 mg/ml), insulin (0.016 U/ml) and EGF

(10 ng/ml), and 5% human serum.

The steroid receptor content of the three cell types used

was measured by ER-EIA (Laboratory of Hormone Bio-

chemistry Hôpital Bicêtre). The relative amount of ER and

PR between HBE and breast cancer cells was about 50–100

times different (personal data). We previously demon-

strated the presence and hormonal regulation of PR and ER

in our model of HBE cells [14, 15]. Nonetheless, we

reconfirmed the presence of ER and PR using cytospin

analysis and further characterized HBE cells as keeping a

luminal differentiation using labelling positive for cyto-

keratine 18 (CK18) (Supplementary Fig. 1). Cytospins

were then incubated with ER (6F11 Novocastra) (1:50) or

PR (PGR-312 Novocastra) (1:200) (antibodies for 24 h at

4�C and a streptavidin–biotin–peroxidase method (Vecta-

stain kit, Abcys, Paris, France).

The presence and hormonal regulation of PR and ER

were verified by RT-PCR in each experiment. The Ct

values corresponding to ER in HBE cells were 29.8 ± 1.6

(mean ± SEM) as compared to 25 ± 1.45 in MCF-7 cells

and 21.9 ± 0.5 in T47-D cells. For PR, the Ct values were

27.0 ± 1.7, 28.7 ± 2.0 and 22.4 ± 0.9 for HBE, MCF-7

and T47-D cells, respectively (Fig. 1 Supplementary data).

Steroid treatments

After seeding, cells were starved for 24 h in serum-free and

phenol red-free medium. Then cells were treated with

progesterone (100 nM) or MPA (100 nM), alone or in

combination with estradiol (10 nM) or with DEX

(100 nM), VA (100 nM), AG (1 lM). Control cells were

treated with ethanol as vehicle (1:1000). Treatments were

carried out in a phenol red-free medium containing 5%

dextran–charcoal-stripped serum for a period of 48 h in

breast cancer cells and 96 h in HBE cells due to difference

in doubling time and optimal conditions as previously

reported [16–19]. Steroid concentrations were chosen

according to two criteria. First, previous experiments have

shown that the maximal antiproliferative effects of syn-

thetic progestogens were observed at 100 nM [20]. Sec-

ondly, it corresponds to the plasmatic levels reported after

administration of 5 mg of MPA/day (5 nM) [21]. More-

over, during the luteal phase, the level of progesterone is

from 10 to 40 ng/ml.

Microarray analysis

Gene expression analysis was carried out using Illumina

BeadArray Technology for Whole Genome Gene Expres-

sion (Illumina, Inc., USA). Three RNA preparations from

HBE cells were used for each experimental point. The

cultures were obtained from three different women. Cells

were treated for 6 h with hormones then total RNA were

extracted using TriZOL reagent. 10 lg aliquots of total

RNA was treated with DNase I, using the ‘‘DNA free’’ kit

(Ambion, Inc., USA) to eliminate genomic DNA contam-

ination. Total RNA quality and quantity were assessed

using the Agilent 2100 Bioanalyzer and the RNA 6000

Nano Assay kit (Agilent Technologies, USA). Only high-

quality RNA, having an RNA integrity (RIN) scores above

8.0, was used for subsequent analysis.

Labelling was performed using the Illumina TotalPrep

RNA Amplification kit (Ambion). Briefly, a first strand

cDNA was synthesized from 500 ng of each RNA samples,

than a second strand cDNA synthesis step was performed.

Double-stranded cDNA was purified and biotin-labeled by

in vitro transcription reaction of 12 h. The biotinylated

cRNA targets were then purified and the concentration in

vitro transcription products was determined using the

NanoDrop 1000A Spectrophotometer (Ambion). The

cRNA size distribution was evaluated by the Agilent

2100Bioanalyzer.

750 ng of amplified cRNA was hybridized to Human-

HT-12 v3 Expression BeadChip arrays (Illumina, Inc.,

USA), according to manufacturer directions. Hybridized

BeadChip arrays were stained with Amersham fluorolink

streptavidin-Cy3 (GE Healthcare). BeadChip arrays were

scanned with the Illumina BeadStation Scanner. The

BeadStudio software v3.4.0 (Illumina, USA) was used to

perform a Rank invariant normalization and to compile

data values with detection scores.

Data preprocessing was performed using the R statisti-

cal package ONE CHANNEL GUY (http://www.bio

conductor.org/). Filtering procedure was done employing

IQR filtering function using as cut an interquantile range

within the various samples lower than 0.25. Because of the

small sample size, the selection step of differentially

expressed genes was done using a TTest between subjects

with Welch approximation and Alpha (overall threshold

P value) = 0.01; the P value was based on permutation and
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the significance was determined by the Adjusted Bonfer-

roni Correction (TIGR MeV, www.tigr.org).

On each list of differentially expressed genes, we per-

formed a gene ontology (GO) analysis to assess enrichment

in GO categories.

For functional pathways analysis we used a more strin-

gent approach. Differential gene lists were crossed and only

genes modulated specifically by each treatment with a fold

change cut of ±1.2, were retained for successive analyses.

Statistical analyses of gene ontology (GO) terms and

functional pathways analysis were performed using the

web-based tool IPA (Ingenuity System, inc., http://www.

ingenuity.com). This tool provides GO terms and func-

tional pathways with their significant probabilities of

enrichment (p-values from Fisher Exact test) compared

with the reference gene list (Illumina HumanHT-12 v3

BeadChip arrays list). The P value accepted for significant

enrichment was lower than 0.05.

Raw data and intensity values are available in GEO

(record no: GSE23500).

Western blots

Cell lysates (30–80 lg) were subjected to a 10%

polyacrylamide gel electrophoresis and proteins were

transferred and detected using a chemoluminescence pro-

cedure. GR expression was analyzed with the human anti-

GR polyclonal primary antibody (1:1000) (GR (H300),

sc-8992, Santa Cruz, Heidelberg, Germany) and with an

anti-rabbit HRP-conjugated secondary antibody (1:5000)

(Santa Cruz, Heidelberg, Germany). Quantification of the

relative expression of GR was performed using Explora-

Nova Morpho Expert software.

Reporter enzyme assays

Cells were transfected with MMTV-LUC and GRE-LUC

plasmid reporters by using Lipofectamine Reagent or

Lipofectamine LTX Reagent, respectively, in breast cell

lines or HBE cells (Invitrogen, Cergy-Pontoise, France).

Transfection was performed according to the manufacturer

instructions. 24 h after transfection, breast cell lines and

HBE cells were treated with hormones for 24 h or 48 h,

respectively. At the end of the experiment, cells were lysed

and luciferase activity was determined using the Luciferase

Assay System (Promega, Charbonnières-les-bains, France).

GR silencing and siRNA transient transfections

MCF-7 cells and HBE cells were transiently transfected

with 10 nM of either siRNA control or siRNA GR using

the HiPerFect Reagent (Qiagen, Courtaboeuf, France) in

MCF7 or the Lipofectamine LTX Reagent in HBE cells

according to the manufacturer instructions. SiRNA GR

transfection consisted in a transfection of four siRNA GR/

NR3C1 sequences from Qiagen Flexitube Gene Solution

GS2908 (NR3C1_5, NR3C1_6, NR3C1_1, NR3C1_2)

which recognised the a-, b- and c-GR isoforms. Cells were

washed 48 h after transfection and harvested after 96 h for

MCF-7 cell line and 120 h for HBE cells for experiments.

For reporter transactivation experiments, cells were washed

48 h after siRNA transfection and then transfected with the

GRE-LUC plasmid reporter using Lipofectamine Reagent

for MCF-7 cells or Lipofectamine LTX Reagent for HBE

cells. 24 h after the reporter transfection and 72 h after the

siRNA transfection, cells were treated with hormones for

24 or 48 h, respectively in MCF-7 and HBE cells.

Proliferation assays

Flow cytometry analysis

Cells were synchronized with a 40 h of mevinolin at

20 lM treatment for HBE cells or with a double thymidine

block for MCF-7 cells [22]. After release of synchroniza-

tion, cells were washed in PBS, trypsinized and centrifuged

5 min at 1350 rpm. Cells were fixed with 70% ethanol

overnight and before analysis, cells were washed in PBS

and stained with 10 lg/ml propidium iodide in PBS (con-

taining 0.835 U/ml ribonuclease A). For each sample at

least 10,000 cells were counted on a BD LSR II flow

cytometer (BD Biosciences, Le Pont de Claix, France).

After gating out doublets and debris, cycle distribution and

subG1 phase were analyzed using the ModFit LT software

(Verity Software House).

Tritiated thymidine incorporation

Quantification of MCF-7 and T47-D cell proliferation was

determined using thymidine incorporation under various

treatments. 24 h after the beginning of hormonal treatment,

cells were incubated with 2 lCi of [methyl-3H] Thymidine

for 20 h for T47-D and for MCF-7 cells at 37�C. After

incubation cells were washed twice with PBS 19 and once

with 5% TCA (Trichloroaetic acid). Cells were incubated

in 5% TCA for 15 min at 4�C and lysed in NaOH 0.1 N for

15 min at 37�C. The total cell lysate was added to 5 ml of

scintillation liquid (Optiphase Hisafe 2, Perkin Elmer) and

radioactivity was counted with a b counter (Beckman,

LS-5000-CE).

The cell proliferation was also alternatively analysed

using 5-bromo-2-deoxyuridine (BrdU) incorporation with

the BrdU Cell Proliferation Assay kit (Merck, Nottingham,

UK) according to the manufacturer’s protocol. Briefly, 104

cells were seeded into 96 well culture dishes and treated

with hormones. 24 h after treatments, the BrdU Label
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(1:2000) was added to the media culture for 20 h. After

fixing and denaturing, cells were successively incubated

with Anti-BrdU antibody (1:100), the peroxydase goat anti-

mouse IgG HRP conjugate and substrate and then absor-

bances were measured.

Real-time quantitative reverse transcription

PCR (qRT-PCR)

Total RNA was extracted using TriZOL Reagent. 2 lg of

total RNA was subjected to reverse transcription (RT) by

using random primers for 1 h at 37�C. 2 ll of RT product

was diluted (1:10) and subjected to quantitative PCR using

sequence specific primers (300 nM) and Brillant SYBR

GREEN QPCR master mix on an Mx3000P apparatus

(Agilent Technologies, Massy, France). Sequence Primers

for target genes were: FAS, upper, 50-tacatcgactgcatcag

gca-30; lower, 50-gatactttcccgtcgcatac-30; IEX-1, upper, 50-
cggtcctgagatcttcacct-30; lower, 50-accctcttcagccatcagga-30;
36B4, upper, 50-gattggctacccaactgttg-30; lower, 50-cagggg

cagcagccacaaa-30. Thermocycling conditions: 1 cycle at

95�C for 10 min and 40 cycles at 95�C for 30 s, 60�C for

1 min, and 72�C for 30 s. Gene expression values were

normalized to the housekeeping gene 36B4.

For microarray validation, RealTime qRT-PCR were

performed on cDNA corresponding to 10 ng of RNA and

with the sequence-specific primers assay mix (Qiagen,

Stanford, CA). Qiagen assays used in validation analysis

were for: BLVRA, TMEM44, STARD13, IL6, IL33,

FKBP5, FGF18, KCNN4 and IL10. Fourteen validations

were done using these genes: 7 in E2 ? MPA-treated cells,

5 in E2 ? P4 and 2 in E2-treated cells.

Immunohistochemistry

Paraffin sections were de-waxed and rehydrated and anti-

gens sites were retrieved by treating sections in sodium

citrate buffer overnight in the Retriever 2100 apparatus

(PickCell Laboratories, The Netherlands). Sections were

incubated with a primary polyclonal antibody against

human GR (1:75) and a streptavidin–biotin–peroxidase

method (Vectastain kit, Abcys, Paris, France). A negative

control (omitting the first antibody) and a positive control

(normal appendix) were included in the series.

Immunofluorescence staining

Cells were grown on coverslips for 2 days. Cells were fixed

successively with PFA 4% for 5 min at room temperature,

with methanol and acetone at -20�C for 4 min each. Then

cells were permeabilized with 1% PBS-Triton X-100 for

30 min. Cells were then incubated 2 h at 37�C with the

human primary polyclonal GR (1:200) (Santa Cruz

Biotechnologies) and CK18 (Sigma, St Quentin Fallavier,

France) (1:800) antibodies followed by the fluorescent

Cyanine 3 conjugated rabbit anti-human IgG (1:200)

(Jackson ImmunoResearch, Suffolk, UK) or Alexa Fluor

488 conjugated mouse anti-human IgG (1:400) (Invitrogen,

Cergy-Pontoise, France) secondary antibodies for 20 min

at 37�C. Then cells were stained with DAPI and the cov-

erslips were mounted with the Prolong Gold reagent

(Invitrogen, Cergy-Pontoise, France).

Statistical analysis

To determine the statistical significance of treatments, the

data were analysed using One-way ANOVA tests and

multiple range Student–Newman–Keuls tests were per-

formed to compare the relative efficiency of each treatment

with the Instat 3 software (GraphPad, USA). P \ 0.05 was

considered as significant.

Results

Differential effect of P4 and MPA on cell proliferation

Cellular proliferation was compared in HBE, MCF-7, and

T47-D cells treated with E2 alone or combined with P4

or MPA (Figs. 1a, b, c). In agreement with the known

effects of E2 on breast cells, an increase of 139 ± 8%

(P \ 0.001), 389 ± 35% (P \ 0.001), and 149 ± 19%

(P \ 0.001), in cell DNA content was observed in HBE,

MCF-7 cells, and T47-D, respectively.

In HBE cells, P4 counteracted the E2 proliferative

effects (Fig. 1a). A significant reduction in the number of

cells in S and G2 phase was observed, as compared to cells

treated only with E2 (P \ 0.001). Consequently, a similar

cellular proliferation rate occurred in cells treated with P4

in combination with E2 than in untreated cells. In contrast,

MPA much less altered the E2-mediated cell proliferation

(Fig. 1a). The number of apoptotic cells was also signifi-

cantly increased by E2 ? P4 (140 ± 10%; P \ 0.001) as

compared to the control whereas apoptosis was decreased

in E2 ? MPA treated cells (79 ± 9%; P \ 0.05) (Fig. 1d).

In breast cancer cells, differential cellular growth regu-

lation is observed. In MCF-7 cells, P4 did not counteract

the effect of E2 on cell proliferation, as the proliferation

rate was identical to those cells treated by E2 alone

(Fig. 1b). In T47-D cells, the combined treatment of P4

with E2 resulted in a decrease of cell proliferation as

compared to E2 treatment alone (22.1 ± 6.9%; P \ 0.05)

(Fig. 1c). In contrast to HBE cells, in MCF-7 and T47-D

cells, MPA reduced the cell proliferation induced by E2 by

26.1 ± 3.6% (P \ 0.01) and 15.7% ± 2.0% (P \ 0.05),

respectively (Figs. 1b, c). Interestingly, in MCF-7 cells,

Breast Cancer Res Treat (2012) 131:49–63 53

123



MPA was more efficient to neutralize cellular proliferation

than P4. This differential effect of P4 and MPA was not

seen in T47-D cells (Fig. 1c). Moreover, apoptosis analysis

in MCF-7 cells demonstrated that addition of P4 or MPA

did not significantly modify the apoptosis induced by E2

(data not shown). This indicates that MPA combined with

E2 in MCF-7 can oppose the proliferative effects of E2, but

does not act as a pro apoptotic agent in these cells.

These results suggest that P4 and MPA potencies on

proliferative E2 activities are different depending if treat-

ment is administrated to normal or breast cancer cells. In

contrast, P4 and MPA induce opposite effects of apoptosis

independent of the cell type.

Differential effect of P4 and MPA on cell

differentiation

The differentiation state as well as the presence of factors

maintaining differentiation, foretells the onset of cell

transformation and neoplastic progression. If the role of P4

on mammary epithelium differentiation is well known,

those of MPA are less detailed. We analyzed the expression

levels of fatty acid synthetase (FAS), known to be associ-

ated with differentiation in normal breast tissue [23]. The

role of FAS in breast cancer remains ambiguous since it

has been associated with invasion and is negatively cor-

related with PR expression level [24, 25]. In HBE cells,

only P4 induced FAS expression (Fig. 2a). While in MCF-

7 cells, only MPA increased FAS mRNA levels (Fig. 2b),

in T47-D cells both treatments P4 and MPA similarly

increased FAS mRNA levels (Fig. 2c). These results sug-

gested that in normal epithelial cells, MPA does not exhibit

cellular differentiation potency. In contrast, in MCF-7, the

FAS induction observed under MPA treatment could

suggest a potential deleterious effect of MPA.

Differential gene regulation by P4 and MPA

in normal breast cells

The data above described an opposite effect of MPA and

P4 on cellular proliferation and differentiation in HBE

cells. These observations suggest that MPA treatment

could be associated with a loss of the protective effect

usually conferred by P4 to normal epithelial breast cells. In
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Fig. 1 P4 and MPA on cell

proliferation. Cell proliferation

(a) and apoptosis (d) were

measured by flow cytometry in

HBE cells treated for 96 h with

10 nM E2 alone or combined

with 100 nM P4 or 100 nM

MPA (mean ± SEM, n = 5,

*P \ 0.05, **P \ 0.01,

***P \ 0.001). Cell

proliferation was measured by

[3H] thymidine incorporation in

MCF-7 (b) and T47-D (c) after

48 h treatment with E2 (10 nM)

alone or combined with P4

(100 nM) or MPA (100 nM)

(results are expressed as % of

control in mean ± SEM, n = 4

for MCF-7, n = 3 for T47-D,

*P \ 0.05, **P \ 0.01,

***P \ 0.001)

54 Breast Cancer Res Treat (2012) 131:49–63

123



order to clarify this observation, gene expression profiles of

HBE cells treated with P4 and MPA in combination with

E2, or by E2 alone, and compared to untreated cells was

performed. As shown in Fig. 3a, only 39 genes were

commonly regulated by P4 and MPA treatments, and only

nine were regulated by all three treatments, suggesting that

the cellular responses to these treatments are divergent.

Indeed, 257 genes were regulated exclusively by E2 and

P4, 204 by E2 and MPA, and 132 specific genes by E2

alone treatment (Fig. 3a).

We performed a GO analysis (Fig. 3b). We found sig-

nificant enrichment in many categories linked to develop-

ment, cellular growth and cancer in the three gene lists

examined. GO analysis showed that gene families associ-

ated with cell death (P = 0.0000272) and cell growth and

proliferation (P = 0.00119) were the most highly enriched

by E2. After combination with P4, the profile was quite

different: cell morphology and cellular function and

maintenance were both highly significantly modulated

(P = 0.000358 for each). In cells treated by E2 ? MPA,

cell death and small molecular biochemistry involved

genes were the most significantly altered (Fig. 3b)

(P = 0.000593 for each) in accordance with the results on

apoptosis shown in Fig. 1b.

Moreover, taking into account only those genes specif-

ically modulated by each treatment we observed significant

enrichment in different pathways. In particular, E2-modu-

lated genes were related to signalling and metabolism,

taking part in RhoA signalling (P = 0.0158), lysine

degradation (P = 0.0380), and glutathione metabolism

(P = 0.0372). The combination of P4 with E2 mostly reg-

ulated molecules associated with metabolic functions and

immune responses such as pentose phosphate pathways

(P = 0.0479), galactose metabolism (P = 0.00166),

folate biosynthesis (0.0138), and granzyme-A signalling

(P = 0.0138). Finally, the combination of MPA with E2

regulated genes involved either in signalling or in metabolic

pathways such as G-protein coupled receptor signalling

(P = 0.0191), cAMP-mediated signalling (P = 0.00646),

pyruvate metabolism (P = 0.0182), PXR/RXR activa-

tion (P = 0.0138), and glucocorticoid receptor signalling

(P = 0.0389).

Microarray results were validated on 71% of genes

(10/14) in the analysed conditions by real-time PCR (data

not shown).

Effect of natural and synthetic progestogens

on gene transactivation

MPA treatment modulated significantly the GR signalling

pathways in HBE cells microarrays analysis. MPA has

known mixed steroid properties, such as GR gene binding

and transactivation, whereas P4 has no significant gluco-

corticoid activity [5, 26]. In order to elucidate if their

opposite effects on cellular proliferation and differentiation

were due to their different steroidal potencies, we further

looked at the transactivation efficacy of the two progesto-

gens on PR and GR-dependent reporter genes.
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Fig. 2 P4 and MPA on FAS

transcription. FAS mRNA
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quantitative RT-PCR in HBE

(a), MCF-7 (b), and T47-D (c).

Cells were treated with E2

(10 nM) alone or combined

with P4 (100 nM) or MPA

(100 nM) for 48 h.

Normalization was performed

as indicated in ‘‘Materials and

methods’’ section and the basal

expression in untreated cells

was normalized to 1

(mean ± SEM, n = 7 (MCF-7

and HBE), n = 4 (T47-D),

*P \ 0.05, **P \ 0.01)
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Normal and breast cancer cells were transiently trans-

fected with the MMTV-LUC reporter vector containing

both progestogen and glucocorticoid-responsive elements.

In HBE and T47-D cells, P4 and MPA induced reporter

transcription, (Figs. 4a, b). These effects were inhibited by

the antiprogestogen, VA and the anti-glucocorticoid AG

[27] (Figs. 4a, b). In contrast, we observed that only MPA-

induced reporter transcription in MCF-7 cells. P4 treatment

had no effect even when cells were co-treated by E2 in

order to stimulate progesterone receptor (PR) expression

(Fig. 4c). This latter result suggested that the induction of

MPA-mediated reporter vector was not dependent on the

PR cell content in MCF-7 cells. MPA MMTV-LUC

reporter induction was totally counteracted by AG, and

partially by VA. However, it is known that anti-progesto-

gen also exhibits anti-glucocorticoid activities [28]. These

data show that in MCF-7 cells, nuclear PR is inactive,

suggesting that the MMTV-LUC reporter induction by

MPA is mediated by its glucocorticoid properties.

GR content in normal and cancerous breast cells

GR has been reported to be present in breast cancer cell

lines [13, 29, 30]. However, very little information in

normal breast tissue is available [29]. We analyzed the GR

content to better correlate the results obtained with MPA in

our cellular models. As shown in Fig. 5a, GR expression

was detected in HBE cells in the nuclei from cells

expressing the luminal marker CK18. We confirmed the

expression of GR in luminal epithelial and myoepithelial

cells from ductal and lobular structures, as GR staining was

observed in the cytoplasm and most of the nuclei when

studied by immunohistochemistry in normal breast tissues

from 16 patients who underwent mammoplasties (Fig. 5b).

Stromal cells and adipocytes were also stained predomi-

nantly in their nuclei (not shown). Using western blot

analysis, we noticed that GR was clearly expressed in

normal breast cells, strongly in MCF-7 cells, but absent in

T47-D cells (Fig. 5c). The ratio of GR expression was

fivefold between MCF-7 cells and HBE (Fig. 5c).

The MPA cellular response is mediated

via its glucocorticoid activity in MCF-7 cells

The GR localization studies revealed that only HBE and

MCF-7 cells contained significant amount of this steroid

receptor. We compared the transcription efficacy of MPA

and a potent glucocorticoid, dexamethasone (DEX), on a

reporter vector containing six GR-responsive elements,

GRE-LUC, in normal and MCF-7 cells. MPA and DEX,
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MPA were hybridized on microarrays. The gene expression profiles

were analyzed and compared to untreated HBE cells. a Number of

genes significantly regulated by each treatment. b Gene expression

analysis sorted by major function. Statistical analyses were performed

using the web-based tool DAVID Resource
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but not P4, induced a strong GRE-LUC transactivation, in

both HBE and MCF-7 cells (Figs. 6a, b). This promoter

based activation was inhibited by AG (Figs. 6a, b). In T47-

D cells, DEX and MPA had no significant effect on GRE-

LUC activity (data not shown). Since T47-D cells are

lacking GR (Fig. 5c), these results showed that there is no
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Fig. 4 P4 and MPA ability to

activate transcription is cell type

dependent. HBE (a), T47-D (b),

and MCF-7 (c), cells were

transfected with a murine

mammary tumor virus-

luciferase reporter construct

(MMTV-LUC) and treated with

E2 (10 nM), P4 (100 nM), MPA

(100 nM), VA (100 nM), and

AG (1 lM). Luciferase assays

were performed 24 h after

treatments. Basal luciferase

activity in untreated cells was

normalized to 1 for each cell

type (mean ± SEM, n = 3)

Fig. 5 Glucocorticoid receptor

expression in mammary cells.

Expression of GR and CK18 by

immunofluorescence in HBE

cells (a). Immunocytochemistry

of GR labelling in red (left),
CK18 in green (middle), merge

(right) (9600).

Immunodetection of GR in

luminal (LC) and myoepithelial

cells (MEC) in ductal (left) and

alveolar (right) structures of

normal human breast tissues

(original magnification 9400).

Representative images of tissues

from 16 different

mammoplasties (b). Detection

of GR expression by western-

blot in HBE, MCF-7 and T47-D

cells (c). 30 lg of proteins were

loaded in each well
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cross-activity between GR and PR for the binding and

activation of GRE-LUC using a pure glucocorticoid (DEX)

but also a mixed steroid (MPA) in these cells.

We next examined the glucocorticoid effects on cell

proliferation. In HBE cells, DEX and MPA significantly

induced cell proliferation by 139 ± 5% (P \ 0.001) and

123 ± 5% (P \ 0.05) as compared to control (Fig. 6c).

AG reversed the mitogenic effects of DEX and MPA

(Fig. 6c). However, in MCF-7 cells, DEX significantly

decreased cell proliferation as compared to control and E2

treated cells, by 29.2 ± 7.8% (P \ 0.05) and 44.0 ± 8.6%

(P \ 0.001), respectively (Fig. 6d). Co-treatment of MPA

and DEX with AG restored cell proliferation to the control

level (P \ 0.01) (Fig. 6d). These results indicated that, in

HBE and MCF-7 cells, the cellular responses on cell pro-

liferation are induced by the glucocorticoid activity of

MPA.

These results strongly suggest that the difference in the

P4 and MPA effects on proliferation, apoptosis and FAS

expression previously observed (Figs. 1a, b, 2a, c) can be

related, at least in part, to the glucocorticoid activity of

MPA. In this light, we studied the MPA effects on FAS

transcription. In MCF-7 cells, the level of FAS transcrip-

tion induced by MPA and DEX were similar and both were

inhibited by AG (Fig. 7a). To confirm the glucocorticoid-

like activity of MPA in this cellular system, we studied the

IEX-1 gene. This gene is implicated in cell proliferation

and reported to be repressed by glucocorticoids [8]. The

IEX-1 mRNA levels were decreased by MPA and DEX,

and this effect was counteracted by AG (Fig. 7b).

In order to confirm the participation of GR on MPA-in-

duced cellular responses in the S phase of HBE and MCF-7

cells, GR protein content was abolished when cells were

transiently transfected with GR-specific siRNA (siGR) as

compared to control siRNA (siCONT) (Figs. 8a, e). In cells

silenced for GR, GRE-LUC transcription activation induced

by MPA was not detected (Figs. 8b, f). Similarly, DEX and

MPA effects on FAS and IEX-1 mRNA levels were abol-

ished when cell were lacking GR compared to control cells

(Figs. 8c, g). We confirmed that cell proliferation induced

by MPA was equally mediated by GR, since in absence of

GR, MPA as DEX could not exert their proliferative or

antiproliferative effects in HBE as well as MCF-7 cells

(Figs. 8d, h).

GR gene expression in breast cancer microarray studies

Glucocorticoid receptor expression regulation in breast

tissue has been relatively ignored. As shown herein using

breast cancer cells, their GR content may vary. We
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Fig. 6 MPA mimics the effect

of dexamethasone on

transcription activity and cell

proliferation. HBE (a) and

MCF-7 (b) cells were

transfected with a luciferase

reporter construct containing

glucocorticoid receptor element

in the promoter (GRE-LUC)

and then treated with P4

(100 nM), MPA (100 nM),

DEX (100 nM), and AG

(1 lM). Luciferase assays were

performed 24 h after

treatements (mean ± SEM,

n = 3). Cell proliferation was

determined by flow cytometry

in HBE cells (c) and by BrdU

incorporation in MCF-7

(d) cells treated with E2

(10 nM), MPA (100 nM), DEX

(100 nM), and AG (1 lM)

(mean ± SEM, n = 5 (HBE),

n = 2 (MCF-7), *P \ 0.05,

**P \ 0.01, ***P \ 0.001)
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searched from the publically available information from

breast gene array data bases for potential GR gene regu-

lation within the breast tissue using OncomineTM (Com-

pendia Bioscience, Ann Arbor, MI). Glucocorticoid

receptor was less expressed in ductal breast carcinomas

than in normal breast tissues (P = 0.003, 5.31E-10 and

3.26E-6) in Sorlie et al., Perou et al.; and Richardson et al.

databases, respectively [31–33]. In order to increase the

number of samples, an outlier analysis was used to calcu-

late GR gene expression variability within all genes studied

in available seven datasets. GR expression was shown to be

amongst the more variably expressed genes. Based on a

threshold at the 5th percentile from an analysis of 731

expressed genes representing between 4,643 and 19,574

microarray experiments, the GR gene expression scored a

median rank of 486 [34–40]. Globally, GR gene expression

was extremely variable within breast tumors. In addition,

GR gene expression variability was found within the breast

carcinomas subtypes, such as in situ ductal carcinomas,

invasive ductal carcinomas, and lobular carcinomas. No

correlation with GR and ER or PR expression was detected,

as well as with the triple negative breast carcinomas.

Discussion

The increase of breast cancer risk by combined HRT has

been related to the mixed progestogen pharmacological

properties [2]. The findings of this article explain some of

the reasons behind this observation. Our findings demon-

strate that MPA glucocorticoid properties induce opposing

mitogenic, and cellular differentiation effects on normal

and cancerous mammary luminal cells.

Despite an abundant literature, the role of progestogens

on the breast remains controversial. Unlike most studies on

progestogen effects, this study compared two combined

treatments used in clinics, which differently altered the

breast cancer risk, E2 ? P4 and E2 ? MPA. We believed

that the evaluation of progestogens impact on cellular

responses should be performed in presence of estradiol,

because of the concomitant presence of estrogens and

progesterone or progestogen in normal human breast cells.

Furthermore, ER and PR can be co-expressed in breast

tumors, and both exhibit biological interactions. To

approach this question we used a specific cellular model of

human primary luminal epithelial cells, for which the cel-

lular responses to hormones remain similar to what is

observe in normal mammary gland [14, 20, 41]. Our model

shows that E2 ? MPA displayed mitogenic and antiapo-

ptotic effects in HBE cells but that P4 was able to inhibit

the E2 mitogenic effect and to be proapoptotic. This result

is consistent with the in vivo data, demonstrating that P4

was able to reverse the proliferative effect of E2 after

topical application on breast skin [42], whereas in post-

menopausal women treated with estrogen plus MPA, pro-

liferation was increased compared to the estrogen alone in

the terminal duct-lobular units of the breast [43].

Similarly, in breast tissues of Cynomolgus macaques,

MPA was proliferative and stimulated the expression of

EGFR ligands and its downstream targets, with a higher

efficiency than P4 [6, 7]. The Cynomolgus macaque is a

proper model for hormonal study response because of its

close relationship on microanatomy, mammary gland

development, and sexual steroid receptor expression

responses to exogenous hormones compared with human [6].

These results were supported by the microarray experi-

ments in HBE cells. We observed that E2, E2 ? P4, and

E2 ? MPA induced different sets of genes compared to

untreated cells. GO analysis showed that E2 mostly mod-

ified the gene families associated with cell death and cell

growth and proliferation. Combined treatment with P4

modified the profile of genes mainly involved in cell
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differentiation and cell morphology, whereas E2 ? MPA

modified predominantly cell metabolism and cell death

regulation gene sets. These data corroborated our own

results on proliferation and cell death as well as the known

data on cellular proliferation, differentiation, motility,

and morphology regulated by estrogen and progestogens

[33, 34]. The data were extracted upon hormone regulation

of three individual phenotypes; the convergence of the

gene regulations within the category strengthens our

finding and validates our cellular model.

The modulation of the GR pathway genes by MPA is

important. MPA is known to exhibit a strong relative
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Fig. 8 GR silencing inhibited

the glucocorticoid properties of

MPA. HBE (a) or MCF-7

(e) cells were transfected with

specific siRNA directed against

GR (siGR) for 120 or 96 h,

respectively. GR expression was

detected by immunoblotting.

Inhibition of MPA-mediated

transcription by GR silencing.

HBE (b) or MCF-7 (f) cells

were first transfected with

control siRNA (siCONT) or

siGR, secondly with GRE-LUC

reporter construct and then

treated with MPA (100 nM),

DEX (100 nM) and AG (1 lM).

Luciferase assays were

performed 48 or 24 h after

treatments. GR silencing

inhibited the gene regulation by

MPA (100 nM) and DEX

(100 nM) in HBE (c) or MCF-7

(g) cells. Results were expressed

as the mean ± SEM of at least

three and two experiments in

duplicate, respectively, in MCF-

7 and HBE cells. GR silencing

inhibited the proliferative or

antiproliferative effects of DEX

and MPA, respectively, in HBE

(d) and MCF-7 (h) cells. Cells

were transfected with siCONT

or siGR and treated with DEX

(100 nM) or MPA (100 nM) for

96 or 48 h and cell proliferation

was determined by flow

cytometry. Results were

expressed as the mean ± SEM

of at least three independent

experiments for MCF7, and one

in triplicate for HBE
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binding affinity for GR, shown to be 45% of the DEX in

ZR75-1 cells [26, 44]. We were also able to demonstrate

the importance of this pharmacological aspect, as T47-D

cells are lacking GR and no difference between MPA and

P4 combined with E2 was observed. In the MCF-7 cells

used in this study, PR gene expression was up-regulated by

E2 (data not shown). However, P4 did not reverse the

proliferative effects induced by E2, the MMTV reporter

gene was not activated by P4 and P4 was not more quickly

metabolized in a 5a-derivative as using Dutasteride, a

potent 5a reductase inhibitor (data not shown). These

observations suggest that PR is not functional in these

MCF-7 cells indicating that the observed MPA effects

should be related to its GC activity.

Our results are in agreement with the GC antiprolifer-

ative and antiapoptotic effects observed in breast cancer

cell lines [11, 12]. The impact of GC on tumors remains

unknown because only few reports are available on the

presence of GR in breast cancers. A recent publication

reported GR expression in 40% of invasive ductal carci-

nomas, but whereas a link between GR expression level

and the age of the patients was seen, no correlation with the

prognosis was observed [13]. Another publication showed

that GR nuclear expression decreased with the progression

of breast cancers, but GR cytoplasmic expression remained

the same [30].

The contribution of GC on normal tissue is only partially

documented and mostly in animal models. Glucocorticoids

are involved in the proliferative phase of mice and rats

mammary gland development [44]. Despite the lack of

direct experimental evidence, GC are considered to induce

similar effects in the human breast development. More

recently, the role of GR in enhancing mammary tumor

growth in rats submitted to recurrent stress was shown.

Social isolation dysregulates glucocorticoid stress responses

across the life span and increases glucocorticoid receptor

activity in the nuclei of mammary tumor cells. This result

was associated with an increase in the size, the number, and

the malignancy of spontaneous mammary tumors [9].

GR expression in normal breast tissue was studied so far

only in one publication [29]. In this study we observed GR

labelling in the cytoplasm and the nuclei of luminal epi-

thelial and myoepithelial cells as well as in the nuclei of

stromal cells and adipocytes. Similar labeling was observed

in the nuclei of ductal and lobular cells in benign breast

diseases, in the stromal cell nuclei and in the nuclei of

myoepithelial cells surrounding breast ducts in benign

breast diseases [29]. The presence of GR in breast cancer

cells irrespective of the type of breast cancer, and its

widespread location to the epithelial, myoepithelial, stro-

mal, and adipocytes as we observed in the normal tissues,

suggest that the role of GC in breast cancer can be complex

and unpredictable.

The role of GR expression in breast carcinogenesis has

not been deeply investigated. Breast cancer microarray

studies show that GR expression globally decreases

between normal and tumoral tissues. But in tumoral tissues,

GR expression was extremely heterogeneous and not cor-

related with PR or ER, as also reported in rat mammary

tumors [9]. This is in accordance with the results from the

clinical studies on HRT and breast cancer risk [1]. In these

studies, the relative risk of breast cancer is increased to a

relative low level and by a promoter effect concerning only

a subset of women exposed to the treatment. The low or

high expression of GR could explain that MPA indepen-

dently of ER and PR could promote or repress breast

tumorigenesis. This suggests that its expression level could

help to define other therapeutic strategies including glu-

cocorticoid receptor modulation.

In our study using cells containing endogenous steroid

receptors, cross talk between GR and PR was not detected

(Figs. 4a, c, 6a, b) suggesting that GR cannot mimic PR

responses in normal and breast cancer cells. GR and PR

preferentially bind specific steroids, but cross-over bind-

ings between the specific DNA responsive elements and

hormone/receptor complex have been described [45].

Despite these reported effects, PR and GR regulate dif-

ferent genes and encounter for very different physiological

roles. How the specific action of PR and GR occurs is still

not fully understood. The different physiological concen-

trations of P4 (10–20 ng/ml) and cortisol (100–200 ng/ml)

could contribute to their different effects, as well as is the

different set and sensitivity of co-modulators in their tissue

specificities [46].

The limitations of this study is that the in vitro model

cannot take into account the in vivo metabolism of phar-

macological agents, and the interaction with the various

histological components of the breast tissues. Equally, only

luminal cells are contained in the culture system whereas

interactions with luminal surrounded cells as stromal and

myoepithelial cells might play a predominant role in GC

regulation of breast tissue as these cells also express GR.

Glucocorticoid effects on precancerous lesions should also

be considered. More data is needed to complete the

understanding of GC effects in breast carcinogenesis.

The increased risk in breast cancer under combined

HRT is considered to be a promoter effect on pre-existing

cancer or transformed cells [47]. We have shown that the

glucocorticoid receptor is differentially expressed in breast

cancer cells and its expression may modulate the MPA

progestogen response. In normal breast cells, P4 is a more

potent estrogen antagonist than MPA, and is a differenti-

ation factor, whereas MPA lacks this effect. Our results

suggest that MPA could promote tumorigenesis by

increasing proliferation in normal cells and cancer pro-

gression in cancer cells according to PR and GR levels.
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MPA combined with E2 was antiproliferative, antiapo-

ptotic, and promoted FAS expression in MCF-7 cells. The

exact result of these effects is difficult to predict. This

observation indicates that in healthy tissue, MPA may exert

deleterious effects and could promote cancer emergence,

while in cancer cells the rates of GR and PR would mod-

ulate the effects of MPA. Our results will contribute to

promote complementary studies to understand the GR

involvement in breast cancer development.
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