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Abstract The type I insulin-like growth factor (IGF)

receptor (IGF1R) is a transmembrane tyrosine kinase

involved in breast cancer proliferation, survival, and

metastasis. Several monoclonal antibodies directed against

the receptor are in clinical trials. In order to develop a

methodology to detect and measure IGF1R levels in breast

cancer cells, we covalently conjugated an IGF1R antibody,

AVE-1642, with quantum dots (Qdots), which are nano-

crystals that emit fluorescence upon excitation. AVE-1642

Qdots only bound to cells that express IGF1R, and mea-

sured IGF1R levels by fluorescence emission at 655 nm.

After binding to the cell surface, AVE-1642 Qdots under-

went receptor mediated endocytosis, localized to endosome,

and later translocated into the nucleus. Treating MCF-7

cells with AVE-1642 Qdots, but not unconjugated Qdots

alone, downregulated IGF1R levels and rendered cells

refractory to IGF-I stimulation. Furthermore, cell prolifer-

ation was slightly inhibited by AVE-1642 Qdots, but not the

unconjugated Qdots. Our data suggest that AVE-1642

Qdots can be used to detect IGF1R expression and measure

changes in cell surface receptor levels. In addition, the

inhibitory effect of AVE-1642 Qdots to cell proliferation

implies that it may serve as a traceable therapeutic agent.
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Introduction

Targeted therapies against specific molecules relevant to

cancer proliferation, motility and metastasis, have become

‘‘the wave of the future’’ for many types of cancer, including

breast cancer [1]. One such target is the type I insulin-like

growth factor receptor (IGF1R). IGF1R is a tyrosine kinase

receptor that is activated by insulin-like growth factor (IGF)-I

and IGF-II. Activated IGF1R recruits adaptor proteins, such as

insulin-receptor substrate 1 (IRS-1) and IRS-2, leading to

downstream activation of multiple signaling pathways

including mitogen-activated protein kinase (MAPK) and

phosphatidylinositol-3 kinase (PI-3 K) [2]. Increased

expression and/or enhanced activity of IGF1R have been

observed in breast cancer specimens [3]. It is well documented

that IGF1R plays important roles in the proliferation, survival

and metastasis of breast cancer cells [4]. Therefore, IGF1R has

surfaced as an attractive target for breast cancer therapy.

Several monoclonal antibodies directed against the receptor

are in clinical trials.

Previous results from our laboratory have shown that a

chimeric single chain antibody, scFv-Fc, downregulates the

level of IGF1R both in cell lines and in an in vivo xeno-

graft model [5]. Similar downregulation of IGF1R has been

seen with other monoclonal antibodies, including EM-164,

A12, and h7C10 [6–8]. Downregulation of IGF1R rendered

cells refractory to further IGF-I and IGF-II stimulation and
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was associated with decreased tumor growth [7]. Thus,

levels of IGF1R post therapy could be an excellent phar-

macodynamic marker and potential indicator of response.

Although agents targeting IGF1R are in clinical trials,

patient enrollment is not based on pre-selected levels of

IGF1R in tumor specimens. To date, there has been little

association between levels of IGF1R and response to anti-

IGF1R therapies in preclinical model systems. For exam-

ple, in prostate cancer cell lines with 4-fold differences in

IGF1R expression, the anti-IGF1R monoclonal antibody

A12 is equally effective in suppressing monolayer growth

[9]. However, downregulation of IGF1R after A12 mono-

clonal antibody therapy is universally seen [10]. Methods

to detect receptor downregulation in vivo could be useful in

the clinical development of these anti-IGF1R antibodies.

Recently quantum dots (Qdots) detection of specific

molecules has surfaced as a novel approach for molecular

imaging and medical diagnostics [11–14]. Qdots are semi-

conductor nanocrystals that emit fluorescence from visible to

infrared wavelengths, upon excitation by a light source.

Among several differently composed Qdots, Cadmium/

Selenide (Cd/Se) Qdots are the best studied. A Cd/Se Qdot is

composed of a Cd/Se core, a ZnS shell, passivated with an

outer layer of TOPO molecules. Compared with traditional

fluorophore, Qdots have excellent optical properties

including high brightness, resistance to photo-bleaching and

tunable wavelength. Over the past few years, scientists have

developed methodologies to covalently link Qdots to mole-

cules such as peptides, antibodies, or small-molecule ligands

for imaging applications as fluorescent probes [14, 15].

In this study, an IGF1R monoclonal antibody, AVE-

1642 (humanized version of EM-164), was conjugated to

Cd/Se Qdots. We show that AVE-1642 conjugated Qdots

(AVE-1642 Qdots) bind specifically to breast cancer cells

that express IGF1R. In addition, the impact of conjugated

Qdots on IGF signaling and cell proliferation was assessed.

Our results suggest that AVE-1642 Qdots can be used to

identify IGF1R in breast cancer cells, which provide a step

towards the application of Qdots in detecting IGF1R

in vivo and predicting the response post therapy.

Materials and methods

Reagents

All chemical reagents were purchased from Sigma (St.

Louis, MO, USA) unless otherwise indicated. IGF-I was

purchased from GroPep, Thebarton, SA, Australia. AVE-

1642 is a humanized form of EM164 [16) antibody from

Sanofi-Aventis, Paris, France and anti-CD20 antibody was

from ImmunoGen, Cambridge, MA, USA. ScFv-Fc is an

humanized IGF1R antibody, which has been described

elsewhere [5]. Alexa-488 labeled transferrin, 40,6-diami-

dino-2-phenylindole (DAPI) and Qdot (Quantum dots)

antibody conjugation kit were from Invitrogen, Carlsbad,

CA, USA. Antibodies used for Western blotting are

IGF1Rb polyclonal antibody (C-20) (Santa Cruz, Santa

Cruz, CA, USA), actin monoclonal antibody (Sigma,

St. Louis, MO, USA), Akt and phospho-Akt (Ser473)

antibodies, MAPK and phospho-MAPK antibodies (Cell

signaling, Danvers, MA, USA), and HRP-conjugated sec-

ondary antibodies (Biorad, Hercules, CA, USA).

Cell lines and culture

MCF-7 cells (human breast cancer cell line), R- cells

(mouse fibroblast cells with a homozygous disruption of

IGF1R gene), and R-/IGF1R cells (cell line derived from

R- cells with re-introduced IGF1R gene) were cultured

according to literature [16]. R-cells were a gift from Renato

Baserga (Thomas Jefferson University, Philadelphia, PA).

Conjugation of antibody with quantum dots

Antibodies were conjugated to Cd/Se Qdots (emission at

655 nm) through a heterobifunctional cross-linker, succin-

imidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate

(SMCC). The NHS ester end of SMCC was reacted with the

amine groups on the Cd/Se Qdots, and the maleimide end of

SMCC coupled to the sulfhydryls on the DTT-reduced

antibody according to the instructions of the manufacturer

(Invitrogetn, Carlsbad, CA, USA). Conjugate concentration

was determined using the extinction coefficient (Qdot

655 nm Ext coef. at 800,000 M-1 cm-1) measured at

638 nm.

Fluorescence microscopy

Cells were incubated with antibody-conjugated Qdots

(10 nM) for 1 h, then cells were washed three times with

PBS briefly. Cells were observed under an Olympus BX60

Upright Microscope to obtain bright field image and fluo-

rescent Qdots image using a band pass filter at 600/90 nm

(2009 magnification).

Confocal microscopy

Cells were incubated with antibody-conjugated Qdots

(10 nM) for various times, with or without the addition of

Alexa 488-labeled tranferrin. Cells were fixed using

methanol for 10 min at -20�C. In some experiments, cells

were rehydrated and stained with DAPI for 1 min, and then

dehydrated with increasing concentrations of ethanol. Cells

were mounted using SlowFade Gold anti-fade mounting

media (Invitrogen, Carlsbad, CA, USA). Cell fluorescence
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was observed using an Olympus Fluoview FV500 laser

scanning confocal system (6009 magnification).

Flow cytometry

Cells were trypsinized and resuspended in PBS/1% BSA/

0.1% sodium azide (FACS buffer). Cells were incubated

with anti-CD20 antibody or AVE-1642 Qdots in FACS

buffer for 1 h at 4�C. Cells were washed twice and resus-

pended with 400 ll FACS buffer. IGF1R levels on cell

surface were measured using a LSRII flow cytometer (BD

Biosciences, San Jose, CA, USA) with an excitation laser

at Violet and emission at 650/20 nm.

Cell stimulation and cell lysates

Cells were grown in Dulbecco’s Modified Eagle’s Medium

(DMEM). When cells reached 50% confluence, they were

serum-deprived for 24 h in serum free media as described

previously [17]. Cells were treated with various concen-

trations of antibody or antibody-conjugated Qdots for times

as indicated in figure legends. The next day, medium was

replaced with serum free media with or without IGF-I

(5 nM) for 10 min. Cells were washed twice with ice-cold

PBS on ice and lysed as previously described [17]. Protein

concentration of cell lysates was determined using the

bicinchoninic acid protein assay reagent kit (Pierce,

Rockford, IL, USA).

Gel electrophoresis and Western blotting

Proteins from lysates were resolved by SDS-PAGE and

transferred to nitrocellulose membranes. The membranes

were immunoblotted using IGF1Rb antibody (1:2,000

dilution), MAPK antibody (1:2,000 dilution), phospho-

MAPK antibody (1:2,000 dilution), Akt antibody (1:2,000

dilution), phospho-Akt antibody (1:2,000 dilution), or actin

antibody (1:5,000 dilution) followed by the appropriate

horseradish peroxidase-conjugated secondary antibody

(Biorad, Hercules, CA, USA). Western blots were devel-

oped by the chemiluminescence method.

Cell proliferation assay

Assays were performed as previously described [18]. Briefly,

cells were plated in triplicate in 24-well tissue culture plates

at a density of 20,000 cells per well in growth media. After

24 h, cells were washed twice with PBS and switched to

serum free media for 24 h. Cells were then treated with or

without unconjugated Qdots (10 nM), AVE-1642 Qdots

(10 nM), or AVE-1642 antibody (10 nM) in growth media

and incubated for 5 days. 60 ll of 5 mg/ml MTT reagent in

PBS was added to each well and plates were incubated for

3 h at 37�C. Wells were then aspirated and 0.5 ml of solu-

bilizing solution (95% DMSO + 5% IMEM) was added to

solubilize the formazan crystals. Absorbance was measured

at 570 nm with a 650 nm differential filter.

Results

Specific binding of AVE-1642 Qdots to cells that

express IGF1R

Cd/Se Qdots were conjugated with the IGF1R antibody

(AVE-1642), through a heterobifunctional chemical linker

SMCC. The same protocol was used to conjugate Qdots

with an irrelevant anti-CD20 antibody, directed against the

B-cell expressed CD20 protein. AVE-1642, or anti-CD20

conjugated Qdots were incubated with MCF-7 cells, a

Fig. 1 AVE-1642 Qdots bound to cells that express IGF1R specif-

ically. (a) MCF-7 cells were incubated with AVE-1642 Qdots (top
panels) or anti-CD20 Qdots (bottom panels) for 1 h, and then washed

with PBS. Cells were observed under fluorescent microscope. The left
panels show the bright field image of cells, and the right panels show

the Qdots fluorescence at 655 nm. (b) R- cells (top panels) or

R-/IGF1R cells (bottom panels) were incubated with AVE-1642

Qdots for 1 h, and then washed with PBS. Cells were observed under

microscope
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breast cancer cell line that expresses high levels of IGF1R

as previously shown [17]. In Fig. 1a, AVE-1642, but not

anti-CD20 conjugated Qdots, bound to MCF-7 cells and

emitted fluorescence upon excitation. To confirm that

AVE-1642 Qdots bound only to IGF1R expressing cells,

we used the IGF1R deficient cell line, R- cells, and its

derivative cell line in which IGF1R gene was re-introduced

(R-/IGF1R). Figure 1b shows that AVE-1642 Qdots only

bound to R-/IGF1R cells, but not R- cells, although R- cells

express the related insulin receptor [16). Therefore,

expression of IGF1R was necessary for AVE-1642 Qdots

binding.

Measurement of changes of IGF1R levels on cell surface

In order to confirm the specific binding of AVE-1642

Qdots, we performed flow cytometry analysis to measure

the fluorescent intensity bound to cells. Several cell lines

were incubated with either anti-CD20 Qdots, or AVE-1642

Qdots in vitro. When R- cells were incubated with AVE-

1642 Qdots, no specific fluorescence was detected on the

cell surface (Fig. 2a). In contrast, incubation of AVE-1642

Qdots to R-/IGF1R cells produced a dramatic increase of

fluorescence compared with that of the anti-CD20 Qdots

(Fig. 2b). This suggested specific binding of AVE-1642

Fig. 2 AVE-1642 Qdots measured changes of IGF1R levels by flow

cytometry analysis. (a and b) Cells were trypsinized, resuspended in

FACS buffer, and incubated with either AVE-1642 Qdots or anti-

CD20 Qdots. The fluorescence of bound Qdots was analyzed by flow

cytometry. The horizontal axis of the diagram represents the

fluorescent intensity of Qdots, and the vertical axis shows the

percentage of maximum cell number. (a) R- cells. Light line-defined

region represents fluorescence of bound anti-CD20 Qdots, and dark

line-defined region represents fluorescence of bound AVE-1642

Qdots. (b) R-/IGF1R cells. Light line-defined region represents

fluorescence of bound anti-CD20 Qdots, and shaded region represents

fluorescence of bound AVE-1642 Qdots. (c) MCF-7 cells were

pretreated with 250 nM of scFv-Fc, or remain untreated for 24 h, and

then cells were trypsinized, and incubated with or without anti-CD20

Qdots or AVE-1642 Qdots. The light shaded region represents

background from no Qdots incubated cells. The light line-defined

region represents fluorescence of bound CD-20 Qdots. The dark

shaded region represents fluorescence of bound AVE-1642 Qdots

without scFv-Fc treatment, and the dark line-defined region represents

fluorescence of bound AVE-1642 Qdots after scFv-Fc treatment
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Qdots to cell surface IGF1R. Since IGF1R antibodies

downregulate IGF1R levels, we determined whether AVE-

1642 Qdots were able to detect changes of surface IGF1R

levels. As shown in Fig. 2c, AVE-1642 Qdots, but not anti-

CD20 Qdots, bound to MCF-7 cells with high fluorescent

intensity. When cells were pretreated with a separate

IGF1R scFv-Fc antibody, the fluorescent intensity

decreased dramatically to 11% of baseline, consistent with

the antibody-induced down-regulation of IGF1R level in

cells. While we cannot rule out the possibility that scFv-Fc

interfered with AVE-1642 Qdots binding, the decrease in

IGF1R detected by fluorescence was equivalent to the

scFv-Fc mediated receptor downregulation detected by

immunoblot [5]. Therefore, AVE-1642 Qdots could detect

downregulation of IGF1R after antibody treatment.

Dynamic trafficking of AVE-1642 Qdots in MCF-7 cells

Fluorescent microscopy revealed that AVE-1642 Qdots

bound to cells within 10 min of exposure, but persistent

detection of Qdots could be seen for as long as 24 h and

beyond (data not shown). In order to assess the cellular fate

of AVE-1642 Qdots, we simultaneously added AVE-1642

Qdots and Alexa 488-labeled transferrin in MCF-7 cells.

Fluorophore-labeled transferrin has been used to trace

receptor-mediated endocytosis [19]. As shown in Fig. 3a,

Fig. 3 Trafficking of AVE-

1642 Qdots was dynamic in

MCF-7 cells. (a) MCF-7 cells

were incubated with AVE-1642

Qdots and Alexa 488-labeled

transferrin for 10 min (top
panels) or 1 h (lower panels),

and then cells were fixed. The

subcellular distribution of Qdots

and transferrin was observed

under confocal microscope. The

bar in each image represents

20 lm in length. (b) MCF-7

cells were incubated with AVE-

1642 Qdots for 6 h (top panels)

or 24 h (bottom panels), and

then cells were fixed and stained

with DAPI. The fluorescence of

Qdots and DAPI was analyzed

by confocal microscope
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when cells were exposed to AVE-1642 Qdots for 10 min,

they were mainly localized to the plasma membrane. By

1 h of incubation, a large portion of Qdots were co-local-

ized with transferrin in early endosome, suggesting that

Qdots were internalized through IGF1R mediated endo-

cytosis as we have previously suggested [5]. Surprisingly,

after 6 h, Qdots showed a juxta-nuclear staining pattern,

and a small portion of Qdots were actually localized in the

DAPI stained nucleus. By 24 h, the majority of the Qdots

were localized inside the nucleus. Therefore, the uptake of

Qdots in cells follows a dynamic trafficking path, from cell

membrane, to endosome, and then to the nucleus.

Time-dependent degradation of IGF1R by AVE-1642

Qdots

We and others have shown that downregulation of IGF1R

by antibodies occurs through endocytosis [5–8]. We

assessed whether antibody-conjugated Qdots also down-

regulated IGF1R in cells. As shown in Fig. 4a, IGF1R

levels were downregulated by IGF1R antibodies after 24 h,

including scFv-Fc and AVE-1642, but not anti-CD20,

consistent with our previous results [5, 16]. When cells

were incubated with AVE-1642 Qdots, but not anti-CD20

Qdots, the level of IGF1R decreased dramatically. Our

results suggest that AVE-1642 Qdots not only bound to

IGF1R, but also retained the function of downregulating

IGF1R through receptor mediated endocytosis. In addition,

the IGF1R level decreased in a time dependent manner; as

by 6 h, the IGF1R level was reduced by more than 50%

(Fig. 4b).

Effect of AVE-1642 Qdots on IGF-I stimulated cell

signaling

To assess the impact of Qdots treatment on cell signaling,

MCF-7 cells were pretreated with unconjugated Qdots, or

AVE-1642 Qdots, treated with IGF-I, and then the phos-

phorylation of downstream signaling molecules, including

Akt and MAPK was examined. Interestingly, when cells

were pre-treated with AVE-1642 Qdots for just 1 h, the

IGF-I stimulated phosphorylation of Akt and MAPK was

dramatically decreased (Fig. 4c). At this early time point,

the level of IGF1R had no significant changes when mea-

sured by immunoblot. However, confocal microscopy

showed that the AVE-1642 Qdots were localized in the

endosomes at 1 h. This suggests that IGF1R detected by

immunoblotting was localized in endosome and was sub-

sequently degraded. Decreased membrane IGF1R rendered

cell refractory to further IGF-I stimulation. After 24 h of

treatment, the level of IGF1R was downregulated and

IGF-I stimulated phosphorylation of Akt and MAPK was

diminished.

Impact of Qdots on MCF-7 cell proliferation

In order to examine whether Qdots, or conjugated Qdots

affected MCF-7 cell proliferation, MCF-7 cells were

Fig. 4 AVE-1642 Qdots caused IGF1R downregulation and rendered

cells refractory to further IGF-I stimulation. (a) MCF-7 cells were

treated with scFv-Fc (250 nM), anti-CD20 (250 nM), AVE-1642

(120 nM), anti-CD20 Qdots (10 nM), or AVE-1642 Qdots (AVE-
Qdots) (10 nM) for 24 h, and IGF1R levels were analyzed by Western

blotting. (b) MCF-7 cells were treated with AVE-1642 Qdots (10 nM)

for various time points, and IGF1R levels were analyzed by Western

blotting. (c) MCF-7 cells were pre-treated with unconjugated Qdots

(10 nM) or AVE-1642 Qdots (10 nM) for 1 h or 24 h, and then cells

were treated with IGF-I (5 nM) for 5 min. The level of IGF1R, the

phosphorylation and total level of Akt and MAPK were analyzed by

Western blotting using their specific antibodies. The level of actin

was used as a control
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cultured in full media in the presence or absence of

unconjugated Qdots, AVE-1642 Qdots, or AVE-1642

antibody. After 5 days, cell growth rate was assessed using

MTT assay. As shown in Fig. 5, Qdots themselves did not

significantly affect cell growth. However, AVE-1642

inhibited MCF-7 cell growth and AVE-1642 Qdots also

had a similar effect, but to a lesser extent.

Discussion

Given the increasing use and activity of molecular targeted

therapy, a major challenge is to determine which patients

benefit from specific target inhibition. The primary means of

selecting patients is based upon the expression level of tar-

geted molecules in primary tumors. Traditionally, ligand

binding in the case of estrogen receptor, fluorescent in situ

hybridization (FISH) for HER-2, and immunohistochemistry

for both molecules, has been used to detect receptor levels.

Recently, conjugated Qdots have been used to detect HER-2

levels in breast cancer cells [20, 21]. Herein, we show that

antibody conjugated Qdots specifically detect the expression

level of IGF1R in breast cancer cells. Direct conjugation

of AVE-1642 with Qdots does not alter the ability of AVE-

1642 to bind IGF1R. More importantly, AVE-1642 Qdots

have the ability to detect changes of the IGF1R levels, after

antibody downregulation of IGF1R. Since downregulation

of IGF1R after monoclonal antibody therapy is commonly

reported, the ability of AVE-1642 Qdots to detect receptor

downregulation could be useful in predicting response post

antibody therapies in clinical settings.

Our data have shown that AVE-1642 Qdots bind to

IGF1R on the cell surface, undergo receptor-mediated

endocytosis and co-localize with transferrin in the early

endosome. This is analogous to the finding that EGF con-

jugated Qdots bind to and activate EGFR, and are

internalized into the endosome [22]. In addition, similar

results were obtained by Jaiswal et al., showing that

dihydrolipoic acid-capped Qdots, which bind to positively

charged proteins, were localized to juxta-nuclear endo-

somal region of HeLa cells [23]. We have previously

shown that antibodies against IGF1R downregulate the

level of IGF1R on the cell surface. Here we show that

AVE-1642 Qdots, but not anti-CD20 Qdots, also specifi-

cally downregulated IGF1R level in cells. This is due to the

internalization and subsequent degradation of the receptor

in the endosome.

Our confocal microscopy data have shown that Qdots

were localized in the juxta-nuclear region within 24 h after

treatment. It is conceivable that Qdots translocate from

endosome to nucleus after IGF1R-antibody complex are

degraded in the endosome. It has been shown that other

nanoparticles, such as silica, or gold nanoparticles, can

translocate into nucleus through the nuclear pore complex

(NPC), after entering cells [24, 25]. Although the diameter

of the NPC is only 26 nm, Pante et al. indicated that gold

particles with a size of 39 nm can translocate into nucleus

through the NPC [25]. Since the size of unconjugated

Qdots is around 15–19 nm [26], it is very likely Qdots

translocate to the nucleus through the NPC as well. The

long term effect of Qdots on the nucleus structure and

function remains to be elucidated.

Beyond the intracellular fate of Qdots, their in vivo

distribution needs to be understood. It has also been

reported that in vivo intravenously delivered Qdots may be

taken up by the reticuloendothelial system (RES), which

consists of phagocytic cells located in the liver, spleen,

lymph nodes and bone marrow [27–31]. The RES uptake

not only prevents Qdots from targeting tumor, but also may

bring toxicity concerns to the RES organs. Therefore, the

long term metabolism of Qdots in vivo will need to be

studied thoroughly.

Since the Qdots utilized here are made of heavy metals,

one concern is that they may cause cytotoxicity to breast

cancer cells. However, our data have shown that incubation

of unconjugated Qdots with breast cancer cells didn’t affect

cell proliferation significantly. This is consistent with

previous reports that Qdots had minimal effect on cell

growth [32, 33]. Interestingly, AVE-1642 Qdots inhibited

cell growth to a smaller extent compared to unconjugated

antibody. Binding of AVE-1642 Qdots caused receptor

downregulation, and rendered cells refractory to IGF-I

treatment, therefore inhibiting cell growth. In this regard,

coupled with their fluorescence nature, AVE-1642 Qdots

Fig. 5 AVE-1642 Qdots, but not unconjugated Qdots, affected MCF-7

cell proliferation. Cells were incubated with unconjugated Qdots, AVE-

1642 Qdots (10 nM), or AVE-1642 antibody (10 nM) in full serum

media for 5 days. Cell proliferation was analyzed by MTT assay as

described in ‘‘Materials and methods’’. Analysis of variance was used to

compare the statistical significance among the data. Significant

differences among data was denoted as P \ 0.05 (one asterisk), and

P \ 0.001 (three asterisks)
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may be used to track the efficiency of antibody delivery

and targeting of tumor in vivo.

Our data have shown that AVE-1642 Qdots are excel-

lent agents to measure IGF1R level in cell lines with high

specificity. This finding provides a step towards the in vivo

application of AVE-1642 Qdots. Since breast cancer

metastasizes to distant organs, it is often not feasible to

measure levels of IGF1R in those sites. It may be prob-

lematic to use the level of IGF1R in primary tumors as a

criterion to select patients for anti-IGF1R therapy as sta-

bility of IGF1R over time has not been studied. Certainly,

there is little evidence of gene amplification of IGF1R in

breast cancer [34], and the level of IGF1R could vary from

the primary tumor to metastatic tumors. Therefore, it is

necessary to develop non-invasive in vivo imaging tech-

nology to quantitatively measure IGF1R levels in

metastasized tumors, and to be able to predict response

post therapy. The efficiency and stability of the in vivo

delivery and targeting of AVE-1642 Qdots to tumor is

currently under investigation in our laboratory.
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