
REVIEW

Overcoming endocrine resistance in breast cancer—are signal
transduction inhibitors the answer?

Philippe L. Bedard Æ Orit C. Freedman Æ
Anthony Howell Æ Mark Clemons

Received: 18 April 2007 / Accepted: 22 April 2007 / Published online: 22 May 2007

� Springer Science+Business Media B.V. 2007

Abstract Endocrine therapy is probably the most important

systemic therapy for hormone receptor positive breast cancer.

Hormonal manipulation was the first targeted treatment em-

ployed in breast cancer therapy even before the role of the

estrogen (ER) and progesterone receptors (PR) had been

elucidated. Unfortunately, a substantial proportion of patients,

despite being ER and/or PR positive, are either primarily

resistant to hormone therapies or will develop hormone

resistance during the course of their disease. Signaling through

complex growth factor receptor pathways, which activate the

ER are emerging as important causes of endocrine resistance.

Targeted therapies, such as signal transduction inhibitors

(STIs), are being explored as agents to be able to potentially

overcome this crosstalk and thus, resistance to hormone

treatment. This article reviews the biology of the ER, the

proposed mechanisms of endocrine resistance, and ongoing

clinical trials with STIs in combination with hormonal

manipulation as a means to overcome endocrine resistance.
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Introduction

The estrogen receptor (ER) is expressed in approximately

70% of patients with breast cancer and plays a critical role in

both breast cancer proliferation and metastasis. In spite of

high levels of ER expression however, many ER positive

patients demonstrate intrinsic resistance to hormonal thera-

pies and all patients with advanced disease eventually de-

velop acquired resistance to endocrine manipulation. It

appears that overactive growth factor receptor signaling

through multiple intracellular pathways may contribute to

the evolution of an endocrine resistance phenotype. Manip-

ulation of growth factor signaling networks has emerged as

an attractive strategy delay the onset of, or potentially even

overcome, resistance to endocrine therapy in breast cancer.

Search strategy and selection criteria

Data for this review were identified by searches of MED-

LINE, Current Contents, PubMed, and references from

relevant articles using the search terms ‘‘endocrine resis-

tance’’, ‘‘hormone resistance’’, and ‘‘estrogen receptor’’.

In addition, the clinical trials website ‘‘clinicaltrials.gov’’

was searched for all relevant clinical trials. Abstracts and

reports from meetings were included only when they related

directly to previously published work. Only papers pub-

lished in English between 1965 and 2006 were included.

Estrogen receptor biology

Estrogen receptor belongs to the steroid–retinoid receptor

superfamily, which includes other steroid hormones,

retinoic acid, vitamin D, and thyroid-hormone [1]. In

the ‘‘classical’’ model of ligand-activated transcription, the

steroidal estrogen molecule passively diffuses through the

cell membrane and binds to ER located in the nucleus.

After binding estrogen, ER dissociates from its chaperone
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proteins, phosphorylates, and dimerizes with another ER.

These activated ER-dimers release co-repressor proteins,

such as nuclear receptor co-repressor (NCoR), histone

deacetylase 1 (HDAC1), and metastasis-associated antigen

1 (MTA-1) and recruit co-activator proteins, such as

amplified in breast cancer-1 (AIB1), nuclear-receptor-

coactivator-1 (NCoA-1/SRC1) and the p300 and CBP-

associated factor (PCAF) [1, 2]. These activated ER-dimer

complexes bind to DNA promoter regions, known as

estrogen-response elements (EREs), and regulate tran-

scription of genes involved in proliferation, inhibition of

apoptosis, and the promotion of angiogenesis, invasion,

and metastasis (Fig. 1) [1].

Two distinct ERs have been identified, ERa and ERb,

which are located on separate chromosomes and encoded by

different genes. ERa and ERb differ in their tissue distri-

bution and ligand-binding characteristics, which may also

explain tissue-selective biological responses to estrogen [3].

ERa is most closely associated with carcinogenesis, as the

ratio of ERa:ERb increases when breast cells become

increasingly malignant. It has been speculated that ERb
may act as a tumor suppressor, forming dimer complexes

with ERa, thereby inhibiting ERa-driven transcription of

genes involved in tumor growth and spread [4]. In addition

to its role as a classical transcription factor, ER has recently

been found to be involved in other pathways of tumori-

genesis. One-third of genes regulated by ER do not contain

ERE-promoter sequences. ER may also function as a co-

activator by binding key proteins involved in the promoter

complex, such as fos and jun, and stabilize the binding of

other transcription factors to DNA at alternative response

elements such as AP-1. The ER-coactivator complex reg-

ulates the expression of a variety of proteins involved in cell

proliferation and metastasis, such as insulin-like growth

factor 1 (IGF-1), myc, cyclin D1, Bcl-2, and collagenase, in

this so-called ‘‘non-classical’’ manner (Fig. 1) [1, 2].

Although the majority of cellular ER is localized to the

nucleus, ER has also been associated with the cytoplasm

and cell membrane. The ER protein does not contain

hydrophobic transmembrane domains or membrane local-

ization sequences. Cellular ER is localized to the cell

membrane through its association with cytoplasmic mem-

brane anchors, such as caveolin [5]. There may also be a

role for post-translational modifications, alternative splic-

ing variants, and complex formation with alternative

transmembrane protein receptors, such as GPR30, to

localize ER to the cell membrane [6]. Membrane-bound

ER can inappropriately subvert known intracellular sig-

naling pathways to promote cell survival. Membrane-

bound ER interacts with members of the type 1 tyrosine

kinase growth factor receptor family, such as IGF-1R,

EGFR, and HER2. ER associates with Shc at the cyto-

plasmic membrane surface and induces phosphorylation of

IGF-1R leading to phosphoinositide 3-kinase (PI3K) acti-

vation and stimulation of the Akt (protein kinase B) path-

way [7] PELP1/MNAR is another important coadaptor

protein associated with membrane-bound ER. PELP1/

MNAR contains phosphoinositide 3-kinase (PI3K)

activating domains that can directly activate ERK/MAPK

when PELP1/MNAR in associated with ER [8]. PELP1/

MNAR may facilitate ER binding to membrane-bound

growth factor receptors, such as IGF-1R and EGFR, and

induce PI3K-driven activation of Akt. The end result of

stimulation of these pathways is increased cell survival,

through phosphorylation of pro-apoptotic proteins, such

BAD, caspase-9, Forkhead transcription factors and Ikap-

paB kinase alpha [9], and increased transition from G1-S

phase in the cell cycle through activation of the down-

stream effector of Akt, mammalian target of rapamycin

(mTOR). Moreover, activated Akt may also phosphorylate

nuclear ER and its coregulatory proteins [10], driving a

‘‘feed-forward’’ circuit of ER induced transcriptional

activity (Fig. 2) [11].

Thus, there are a variety of means by which the ER can

influence cell proliferation and metastasis: through direct

DNA binding at ERE-promoter sites, as a coactivator with

fos and jun at alternative promoter sites, and through non-

genomic molecular ‘‘cross-talk’’ by amplifying prolifera-

tive signals through tyrosine receptor kinase growth factor

receptors and their downstream effector molecules. Clear-

ly, there exists a complex network of bi-directional cross-

talk at multiple levels within breast cancer cells, whereby

the ER pathway and growth factor receptor signaling

pathways interact and potentiate one another resulting in

dysregulated proliferation and growth.

Mechanisms of endocrine-resistance

The goal of hormonal therapy is to block estrogen-induced

proliferation of breast cancer cells. Three broad classes of

Fig. 1 Nuclear initiated estrogen signaling, classical (left) and non-

classical (right). Left: Estrogen (E) binds estrogen receptor (ER),

induces dimerization of the protein, and activates DNA binding to

estrogen response elements (ERE) in the promoter region of target

genes. Coactivator proteins, including AIB1, NCoA-1, and PCAF are

recruited to the complex and activate transcription of target genes

(classical). Right: Estrogen-bound ER acts as a coactivator, binding to

fos and jun at other promoter sites such as AP-1, and recruiting other

coactivator proteins to activate the transcription of target genes
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hormonal therapy are used clinically to treat hormone-

responsive breast cancer: selective estrogen receptor

modifiers (SERMs), such as tamoxifen, which directly bind

to the ER and block its transcriptional activity; selective

estrogen receptor down-regulators (SERDs), such as ful-

vestrant, which bind to ER and induce its degradation; and

aromatase inhibitors (AIs), such as letrozole, anastrozole,

and exemestane, which reduce the production of estrogen

through inhibition of aromatase enzyme in peripheral tis-

sues, including bone, muscle and adipose tissue, and within

the tumor itself [12].

Although the advent of tamoxifen revolutionized the

treatment of breast cancer, almost 50% of ER-positive

metastatic breast cancer patients do not respond to

tamoxifen in the first-line setting, thereby demonstrating

intrinsic resistance. Even if patients respond to tamoxifen

initially, they all eventually develop acquired resistance

and their disease progresses. Similar findings are seen in

the adjuvant setting again confirming the presence of de

novo and acquired mechanisms of resistance to tamoxifen.

Interestingly though, despite de novo and acquired mech-

anisms of resistance, many patients who relapse on

tamoxifen therapy will respond to further hormonal

manipulation with either an AI or fulvestrant, demon-

strating that ER continues to play a critical role in prolif-

eration of their breast cancer [13]. Even patients previously

treated with tamoxifen and aromatase inhibition were

found to have a 19% clinical benefit rate with further

hormonal manipulation using fulvestrant in a recent single-

centre series [14]. In addition, in the EFECT trial that

randomized patients with metastatic breast cancer who had

progressed on prior treatment with a non-steroidal aroma-

tase inhibitor to treatment with fulvestrant or exemestane,

median duration of benefit was 9.3 and 8.3 months

respectively. In this study, >60% of patients had received

>2 prior endocrine treatments [15].

Understanding how breast cancer cells develop resis-

tance to hormonal manipulation and finding means of

restoring sensitivity to hormonal therapy is a rapidly

expanding area in breast cancer research. Some of these

mechanisms of ‘‘resistance’’ are in fact due to differences

in laboratory tissue processing. For example, significant

inter-laboratory variations in the immunohistochemical

definition of ER positivity exist. Moreover, there is also

intra-laboratory variability as the day of the week when a

surgical specimen is received in the laboratory influences

ER processing [16]. Loss of ER expression in the evolution

of the primary tumor to metastatic disease may contribute

to the emergence of estrogen resistance. Data from limited

clinical studies suggest that 17% of ER-positive patients

treated with adjuvant tamoxifen may convert to an ER-

negative phenotype at the time of relapse [17].

Mutations of the ER might also affect the response

to hormonal therapy, although studies suggest it occurs

in fewer than 10% patients who develop resistance to

tamoxifen [18]. Several transcriptional splice variants of

ER have been detected in breast cancer specimens that may

be involved in endocrine-resistance [19]. For example, ER-

bcx, a splice variant of ER-b, is unable to bind estrogen or

tamoxifen and induce transcription at EREs. ER-bcx is

expressed in 54% of breast cancer specimens as compared

with 9% of normal breast tissue [20]. Expression of ER-

bcx in breast cancer tissue is associated with lack of

expression of PR and resistance to tamoxifen in vitro [21].

There may also be biological variations in tamoxifen

metabolizing genes, which influence responsiveness.

Tamoxifen is converted to 4-hydroxy-N-desmethyl

tamoxifen (endoxifen) through the cytochrome P450

(CYP) 2D6 pathway [22]. Recent studies suggest that

levels endoxifen may contribute to the overall anticancer

effect derived from tamoxifen and those women with the

CYD2D6 *4/*4 genotype have a higher rate of relapse

when treated with adjuvant tamoxifen [23, 24].

Beyond genetic modifications of the ER and genetic

differences in tamoxifen metabolism, breast cancer cells

may develop enhanced sensitivity to estrogen following

prolonged hormonal blockade. Numerous in vitro models

of long-term estrogen deprivation (LTED) using cell cul-

ture techniques with estrogen-depleted media to mimic an

oophorectomized state have been published [25, 26]. In

response to estrogen deprivation, these cells initially stop

growing, but eventually adapt and grow as quickly as

wild-type cells cultured in estrogen-rich media. This

Fig. 2 Membrane-initiated ER signaling. GPR30 and calveolin help

localize ER to the cell surface. E2-activated ER associates with

PELP/MNAR, which activates membrane-bound growth factor

receptors, such as IGF-1R, ErbB2/HER-2, and ErbB1/EGFR,

resulting in downstream signaling through Akt and MAPK to activate

nuclear-ER and anti-apoptotic proteins, such as BAD, caspase-9,

Forkhead transcription factors and IkappaB kinase-a
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phenomenon of regrowth has been attributed to the

development of adaptive mechanisms of growth in re-

sponse to residual amounts of estrogen in the culture

media. In these models, LTED cells upregulate ER

expression and increase localization of ER to the cell

membrane. Increased signaling through peptide growth

factor pathways, such as IGF-1R and ErbB-2/HER-2, also

occurs resulting in MAPK and AKT activation. Stimulation

of these signaling pathways, in turn, leads to ligand-inde-

pendent activation of nuclear ER through phosphorylation,

driving transcription of ERE-induced genes involved in

proliferation, in spite of low levels of estrogen (Fig. 3).

More recently, long-term treatment with tamoxifen has

been shown to induce a similar estrogen-hypersensitivity

phenotype in cell culture, mimicking what may occur in

patients who progress after an initial response to tamoxifen

[27]. Emerging evidence suggests that tamoxifen may di-

rectly induce transcription of epidermal growth factors

receptors (EGFR), such as EGFR/HER-1 and ErbB-2/

HER-2/neu [28, 29]. In a paired biopsy study of patients

who progressed after tamoxifen therapy, increased levels of

ErbB-2/HER-2/neu expression and MAPK activity were

associated with tamoxifen failure [30]. Thus, long-term

treatment with tamoxifen in ER positive breast cancer may

increase growth factor receptor-mediated signaling, leading

to increased proliferation and escape from hormonal

control.

Constitutive activation of peptide-growth factor signal-

ing pathways, particularly the EGFR family, may play a

critical role in de novo endocrine resistance. Multiple

clinical studies demonstrate that HER-2/neu expression,

which occurs in 20–25% of breast cancer, portends a

poorer prognosis with tamoxifen therapy [31–33]. It has

been suggested that HER-2/neu may confer resistance to

tamoxifen by activating ER co-activator proteins, such as

A1B1, thereby diminishing the anti-estrogenic effects of

tamoxifen and leading to tamoxifen-induced proliferation

[34]. Osborne et al. found that co-expression of HER-2/neu

and A1B1 conferred a poor prognosis with adjuvant

tamoxifen therapy [35]. Interestingly, patients with high

HER-2/neu levels alone, without concomitant A1B1

expression, responded to adjuvant tamoxifen as well as

patients without HER-2/neu expression. Other studies have

suggested that expression of additional ER co-activator

proteins, such as NCoA-1/SRC-1, may also mitigate

resistance to tamoxifen therapy in HER2/neu-positive tu-

mors [36]. These findings suggest that amplified growth

factor signaling, through activation of ER co-activator

proteins, may lead to increased tamoxifen agonist activity

and tumor growth. The clinical finding that aromatase

inhibitors are superior to tamoxifen in HER-2/neu positive

patients in the neoadjuvant setting supports this theory that

tamoxifen may act as an agonist in breast cancer cells with

overactive growth factor receptor signaling networks [37,

38]. It is not yet known if this relative benefit of AI over

tamoxifen therapy in HER/neu positive patients exists in

the adjuvant setting. A recent retrospective analysis of the

BIG 1-98 trial suggested that HER-2/neu overamplification

was associated with a high relapse rate, regardless of

whether tamoxifen or letrozole was used [39].

Beyond HER-2/neu expression, lack of progesterone

receptor (PR) expression may also predict a poorer re-

sponse to tamoxifen therapy. The expression of PR is

regulated by ER activity. For many years, it was theorized

that ER+/PR– tumors might not respond as well to hor-

monal therapy because lack of PR expression reflected a

non-functional ER pathway [40]. This hypothesis was

supported by the observation that lack of PR expression is

associated with decreased response to tamoxifen, shorter

time to treatment failure, and poorer overall survival in

patients with metastatic disease [41]. Similarly, a meta-

analysis of adjuvant tamoxifen therapy for early breast

cancer demonstrated that patients with ER+/PR+ tumors

benefit more from tamoxifen than patients with ER+/PR–

tumors [42]. However, the recent findings of the Arimidex,

Tamoxifen, Alone or in Combination (ATAC) trial have

challenged traditional theories of hormonal sensitivity of

PR negative breast cancers [43]. In the ATAC trial, ER+/

PR– patients in the anastrozole alone arm had a simi-

lar outcome to ER+/PR+ patients treated with either

Fig. 3 A model depicting mechanisms of endocrine resistance.

Increased growth factor signaling through growth factor receptors,

such as IGF-1R, ErbB2/HER-2, and ErbB1/EGFR, leads to ligand-

independent activation of nuclear ER through phosphorylation.

Growth factor signaling also results increased ER co-activator

proteins, such as A1B1 and NCoA-1, which result in TAM-agonist

activity on breast cancer cells. Membrane-bound ER can increase

growth factor receptor signaling through PELP or directly through

Ras/MAPK activation. Increased growth factor signaling may lead to

loss of PR expression, and long-term stimulation leads to loss of ER

expression and ER-independent growth
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anastrozole alone, tamoxifen alone, or anastrozole com-

bined with tamoxifen [44]. In contrast, ER+/PR– patients

in the tamoxifen arms, either alone or in combination with

anastrozole, had a higher recurrence risk than ER+/PR–

patients treated with anastrozole alone. Similarly, subgroup

analysis of the Intergroup Exemestane Study (IES) also

suggested that there may be a differential response AI

therapy based upon PR expression, as ER+/PR– showed a

non-statistically significant trend toward greater benefit

with AI therapy over continued tamoxifen when compared

with ER+/PR+ patients [45]. However, the other two large

adjuvant AI studies, BIG 1-98 which compared adjuvant

letrozole versus tamoxifen and the ABCSG Trial 8/ARNO

95 trial of anastrozole versus tamoxifen after 2 years of

adjuvant tamoxifen, have not shown a similar differential

benefit for AI therapy for ER+ patients based upon lack of

PR expression [46, 47].

Although the role of PR status in predicting response to

AI therapy remains controversial, one possible explanation

for the differential benefit with AI therapy in PR negative

patients in the ATAC trial is overactive growth factor

signaling. Loss of PR expression in ER+ breast tumors is

associated with increased levels of IGF-1 [48], EGFR/

HER-1 [49] and HER-2/neu [50–52] activity. In addition,

loss of PR expression is also associated with reduced

expression of phosphatase and tensin homolog (PTEN)

[53]. PTEN is a critical negative regulator of the PI3K/Akt

pathway that transmits downstream intracellular signals

from growth factor receptors. IGF-1 is known to downre-

gulate PR expression through Akt-mediated signaling [45].

Studies have shown that high levels of active Akt are

associated with an increased risk of relapse for patients

treated with adjuvant tamoxifen [54, 55]. Loss of PR

expression may also occur with tamoxifen therapy.

Sequential biopsy studies have shown that more than half

of ER+/PR+ tumors at diagnosis become PR- negative at

the time relapse with adjuvant endocrine therapy [56]. One

possible explanation is that tamoxifen exerts a selection

pressure on ER+/PR+ breast cancer cells causing them to

increase growth factor signaling and subsequently lose PR

expression with prolonged therapy.

Preclinical data suggests that long-term activation of

growth-factor receptor signaling pathways may ultimately

lead to an estrogen independent phenotype. While growth-

factor receptor signaling initially increases ER transcrip-

tion and activity, sustained growth-factor signaling activity

produces downregulation of ER transcription and activity

[57]. For instance, treatment with exogenous EGF, IGF-1,

and TGF-b leads to decreased ER-a expression, through

increased EGFR, Akt, and protein kinase C (PKC) sig-

naling [58–60]. The events underlying this transition from

growth factor driven ER activation to ER downregulation

are poorly understood. It has been demonstrated that

chronic stimulation of ER by estradiol causes downregu-

lation of ER expression [61]. Sustained growth factor sig-

naling may lead to loss of ER expression in a similar

manner and ultimately dissociation from ER-mediated

growth. In vitro, breast cancer cells treated with long-term

estrogen deprivation upregulate growth-factor signaling

activity and evolve into an ER negative phenotype [62, 63].

In summary, there are various mechanisms by which

breast cancer cells can escape hormonal control: mutations

of ER, increased localization of ER to the cell surface and

non-genomic ER activity, expression of splice variants of

the ER, upregulation of growth factor receptor expression

and intracellular signaling, expression of ER coactivator

proteins, and finally, loss of ER expression (Fig. 3). As our

understanding of the biology of endocrine therapy im-

proves, the goal of future studies is to prolong response to

endocrine manipulation and potentially restore endocrine

sensitivity in tumors that have become resistant to endo-

crine therapy.

Completed and ongoing trials

Extending from research of growth factor signaling in the

laboratory setting, a number of clinical trials have sought to

determine whether the addition of signal transduction

inhibitors to endocrine therapy may overcome endocrine

resistance or delay its development. These have included

trials using HER2/neu antagonists, tyrosine kinase inhibi-

tors, multikinase inhibitors, and mTOR antagonists.

HER2/neu antagonists

A number of phase II studies have evaluated the combi-

nation of trastuzumab and AI therapy in the first and sec-

ond line setting (Table 1) [64]. The promising results of

early combination trials led to the initiation of a phase III

trial examining the effectiveness of combination of anas-

trozole with trastuzumab versus anastrozole alone in

women with metastatic ER and/or PR positive, with evi-

dence of HER2neu overamplification [65]. Patients were

allowed to have received tamoxifen as adjuvant treatment

or as treatment first line for metastatic breast cancer. The

primary endpoint was progression-free survival, which was

4.8 months in the combination arm and 2.4 months in the

anastrozole alone arm (P = 0.0016). There was also a trend

towards improvement in overall survival in the combina-

tion arm (28.5 months vs. 23.9 months), which was not

statistically significant. The lack of survival benefit in the

combination may be explained by the observation that

more than 70% of the women in the upfront anastrozole

alone arm received trastuzumab upon progression. Of note,
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there was an increase in the number of grade 3 and 4

adverse events in the combination arm (25% of patients vs.

15% of patients).

Since trastuzumab may not inhibit cells that express low

levels of HER2, an alternative strategy using lapatanib, an

oral tyrosine kinase inhibitor that inhibits both Erb1

(EGFR) and Erb2 (HER2), is under evaluation. A phase III

clinical trial with lapatanib [NCT00073528] in combina-

tion with letrozole was launched in 2003 to investigate the

combination of letrozole plus lapatanib versus letrozole

plus placebo in women with tamoxifen resistant advanced

breast cancer. Interestingly, Erb1 and Erb2 positivity is not

an inclusion criteria in this trial, although the results will be

analyzed to determine the impact of Erb1/Erb2 levels on

efficacy of treatment. In addition, an NCI phase II trial

[NCT00118157] is currently underway to investigate the

efficacy of the combination of tamoxifen and lapatinib in

women with tamoxifen resistant locally advanced or met-

astatic breast cancer. Studies in the future may investigate

the role of pertuzumab, an antibody that distrupts Her2

dimerization, which has been shown in vitro to promote the

antitumor efficacy of fulvestrant [66].

Tyrosine Kinase inhibitors

A third strategy that is under study is the use of tyrosine

kinase inhibitors in combination with endocrine therapy. A

phase II double blind multicentre three-arm preoperative

window trial of anastrozole alone versus anastrozole plus

gefitinib (an oral EGFR inhibitor) in two different combi-

nations (anastrozole plus gefitinib for 16 weeks or anas-

trozole alone for 2 weeks then anastrozole plus gefitinib for

16 weeks) was conducted in 206 patients, with the primary

endpoint being comparison of ki67 (a marker of cell pro-

liferation) at 16 weeks [67]. In this study, there was no

significant change in ki67 in these groups, and indeed, a

trend against the combination was suggested.

A second study looked at 53 previously untreated

postmenopausal patients with ER positive EGFR positive

primary breast cancer with randomization to 4 weeks of

gefitinib alone versus gefitinib plus anastrozole in a con-

trolled double blind trial. The combination of gefitinib plus

anastrozole was more effective than gefitinib alone in

reducing Ki67 (–77.3% versus –93.2% P = 0.008) but did

not significantly reduce tumor size (–30.3% versus –28.8%

P = ns) [68]. In a third trial, 13 postmenopausal patients

with resectable, histologically diagnosed hormone sensi-

tive breast cancer were treated with three months of le-

trozole and imatinib (a PDGFR/C-kit/stem cell factor

tyrosine kinase inhibitor) (400 mg twice daily) prior to

surgery. Five patients experienced grade 3 toxicity, and

three patients were withdrawn from the study after

2 months of treatment. Of 10 evaluable patients, 9 had a

clinical partial response and 1 had stable disease. This

study concluded that the combination of imatinib and le-

trozole may be promising however due to toxicity, the dose

of imatinib must be reduced [69]. Finally, preliminary

analysis of 18 patients in a phase II trial treated with le-

trozole and erlotinib (an EGFR tyrosine kinase inhibtior)

as first or second line hormonal therapy showed clinical

benefit (stable disease + partial response + complete re-

sponse) in 11 patients with time to progression of

13 months. In molecular studies, EGFR expression (by

IHC DAKO technique) did not correlate with clinical re-

sponse [70].

Table 1 Ongoing and completed phase II, III, and IV trials of endocrine treatment plus HER2 antagonists

Trial Trial design Population Trial phase Number of

patients

Primary outcome

Kaufmann et al.

[65]

Trastuzumab + Anastrozole

vs Anastrozole

Metastatic breast cancer, ER

and/or PgR+, HER2+

III 207 PFS 4.8 months vs.

2.4 months

(P = 0.0016)

Marcom et al.

[64]

Trastuzumab + Letrozole Advanced breast cancer ER and/or

PgR+ HER2 + No prior AI

II 32 OR 27% CBR 53%

NCT00238290 Trastuzumab followed by

trastuzumab + letrozole

Advanced breast cancer resistant to

nonsteroidal AI

II 40 ORR ‘‘efficacy’’

NCT00138125 Fulvestrant +/–

Trastuzumab

Advanced breast cancer, ER and/or

PgR+, HER2+

II/ randomized

open-label

120 ORR

NCT00171847 Letrozole + Trastuzumab Advanced breast cancer, HER2+, ER

and/or PgR+

IV/randomized

open label

370 TTP (clinical and

imaging)

NCT00073528 Letrozole +/– lapatinib Advanced breast cancer, no previous

hormone therapy

III/randomized,

double-blind,

placebo-

controlled

1280 TTP

NCT00118157 Lapatinib + Tamoxifen Advanced breast cancer, ER and/or

PgR+, tamoxifen resistant

II 21–41 CR + PR

312 Breast Cancer Res Treat (2008) 108:307–317

123



There are multiple ongoing trials (Table 2) exploring the

EGFR inhibitors gefitinib and erlotinib in combination with

AIs, SERMs (tamoxifen), and SERDs (fulvestrant).

Multikinase inhibitors

At present, it is not known which of the many identified

growth factor pathways are the most important in con-

tributing to endocrine resistance. Multikinase inhibitors,

which target several intracellular pathways, are therefore

being explored in combination with endocrine therapy. One

approach has been to use farnesyl transferase inhibitors,

which modulate the activity of many classes of intracellular

proteins. In a randomized phase II trial, 121 postmeno-

pausal patients with ER positive advanced breast cancer

that had progressed after tamoxifen were randomized to

letrozole plus placebo versus letrozole plus tipifarnib.

While the study was not powered to detect an impact on

disease progression, the objective response rate was higher

with letrozole alone than in the combination group (38%

letrozole group, 26% combination group) [71]. A second

phase II trial reported preliminary results in 19 postmen-

opausal tamoxifen-resistant patients treated with tamoxifen

and tipifarnib. In this small group there was one partial

response [72]. There is an ongoing phase II trial, which

randomizes women with hormone sensitive disease to an-

astrozole plus lonafarnib or anastrozole alone [NCT

00081510].

Other multikinase inhibitors currently being investigated

include sorafenib (which targets receptor tyrosine kinases

and serine/threonine kinases) [NCT 00217399] and

PTK787/ZK222584 (a VEGFR and TK inhibitor) [NCT

00263198].

Table 2 Ongoing and completed trials of endocrine therapy in combination with tyrosine kinase inhibitors

Trial Trial design Population Trial phase/design Number

of

patients

Primary endpoint

Study 0223

[67]

(Dowsett

et al.)

Anastrozole versus

Anastrozole + Gefitinib

(16 weeks) versus

Anastrozole + gefitinib

(14 weeks)

Postmenopausal, stage

I-IIIB, ER and/or

PgR+

Preoperative

window, phase II,

placebo-

controlled double

blind

206 No significant change found in Ki67

by 16 weeks

Polychronis

et al. [68]

Gefitinib versus

anastozole + gefitinib

(4 weeks)

ER and/or PgR+,

EGFR+

Preoperative

window, Phase II,

double blind

53 Reduction in Ki67 in combination

arm (–77.3% vs. –93.2%

P = 0.008), no significant

difference in tumor size

Chow et al.

[69]

Letrozole + imatinib ER and/or PgR+ Preoperative

window, single

arm

13 Clinical and pathological

outcomes- only 10 patients

completed treatment

NCT00057941 Anastrozole + gefitinib versus

Fulvestrant + gefitinib

Advanced breast

cancer, ER and/or

PgR+, no previous

fulvestrant or AI

II/randomized open-

label

148 Clinical efficacy

NCT00206414 Anastrozole + fulvestrant

+ gefitinib

Neoadjuvant,

Postmenopausal, ER

and/or PR+, tumor

‡3 cm

II, randomized,

open-label

40 Clinical RR

NCT00066378 Anastrozole +/– gefitinib Advanced breast

cancer, no response

to tamoxifen

II/randomized

double blind

placebo

controlled

108 PFS

NCT0077025 Anastrozole +/– gefitinib Advanced breast

cancer, previous

adjuvant tamoxifen

allowed

II/ randomized

double-blind

placebo

controlled

174 TTP

NCT00206492 Tamoxifen + gefitinib Neoadjuvant, HER2+,

ER+, primary breast

cancer >4 cm

II/non-randomized

open-label

45 Clinical efficacy

NCT00179296 Erlotinib + letrozole Measurable advanced

breast cancer, ER/

PR+, 1 prior

hormone therapy

II/non-randomized

open-label

150 CR + PR + SD
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VEGFR modulators

Following the introduction of VEGF receptor antagonists

in the treatment of other cancers, combining endocrine

modulators with VEGF receptor modulators is an attractive

approach. A phase I/II trial of letrozole with bevacizumab

showed that the combination is well tolerated [73]. Phase II

trials are currently recruiting that will investigate whether

bevacizumab can restore sensitivity to hormonal manipu-

lation in women who have progressed on endocrine therapy

[NCT00187694, NCT00240071].

Rapamycin analogues

The phosphatidylinositol-3-kinase (PI3K) pathway is an-

other signaling pathway that becomes overactive in breast

cancer cells, and may lead to endocrine resistance.

Molecular target of rapamycin (mTOR) is a downstream

key target protein for PI3K. The mTOR inhibitors CCI779

and RAD001 have been examined for their efficacy in

combination with endocrine agents. A randomized phase II

study of CCI-779 (temsirolimus) in combination with

letrozole compared to letrozole alone in patients with

advanced breast cancer suggested that progression free

survival may be extended in the combination arm [74]. The

phase III trial (n = 112) however was stopped early at

the recommendation of the Independent Data Monitoring

Committee since a greater percentage of patients treated

with the combination of temsirolimus and letrozole expe-

rienced more grade three toxicity when compared with

those treated with letrozole alone (hyperglycemia 4% vs.

1%, neutropenia 3% vs. 1%, asthenia 3% vs. 2%). As well,

the combination did not improve progression free survival

over treatment with letrozole alone [75]. Studies are ongo-

ing evaluating the value of adding everolimus (RAD001) to

letrozole as preoperative therapy of primary breast cancer

[NCT 0010116]. In preclinical studies, RAD001 treatment

of endocrine-sensitive and endocrine-resistant breast can-

cer cell lines resulted in a dose-dependant decrease in

proliferation and estrogen receptor alpha mediated tran-

scription [76].

Discussion and future research directions

Treatment of endocrine resistant breast cancer is a fasci-

nating and rapidly growing field. The use of signal trans-

duction inhibitors in this setting is still in its infancy. Since

we now understand that there are many potential mecha-

nisms of resistance, it makes intuitive sense that resistance

to endocrine manipulation will not be the same in every

patient. Further elucidation of clinically relevant pathways

of resistance, biomarkers reflecting the activity of these

pathways and surrogate biomarkers of response are there-

fore critical to determine which therapeutic strategies

should be tested. Recent studies suggest that overexpres-

sion of p53 and loss of p27kip1 expression may predict

resistance to endocrine therapy [77, 78]. Studies in the

neoadjuvant setting may be able to further this research, by

allowing for sequential tumor biopsies in order to deter-

mine the molecular effects of combining STIs with

hormonal treatment. However, caution must be used, par-

ticularly in the curative setting, since STIs may potentially

accelerate growth and metastasis. For instance, in one

study examining the use of gefitinib alone in patients with

operable breast cancer, women with ER positive and PR

negative and her2 amplified tumors were more likely to

show molecular growth inhibition, whilst ER+/PR+ tumors

showed molecular growth proliferation [79].

For targeted approaches, patient selection is crucial, as

we have learned from the studies of the role EGFR muta-

tions to predict responsiveness to Erlotinib [80] and gene

array studies to predicting the outcome with adjuvant

chemotherapy [81]. Many of the ongoing studies of STIs in

combination with endocrine treatment indeed incorporate

molecular profiling in order to be able to predict who will

respond to combination treatment. Finally, it is not yet

known whether the addition of STIs prior to the develop-

ment of endocrine resistance may be able to delay the

development of hormone resistant breast cancer.

At present, there is a sequence of endocrine treatments

that are used in treating ER and/or PR+ advanced breast

cancer, and once endocrine options have been exhausted

the treatment of choice is chemotherapy. In the future,

however, we may be able to intervene and reverse resis-

tance with a sequence of targeted signal transduction

inhibitors, thereby delaying the use of chemotherapy in

patients with advanced breast cancer.
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